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Abstract
Self-organised regular pattern formation is one of the foremost examples of the devel-
opment of complexity in ecosystems. Despite the wide array of mechanistic models
that have been proposed to understand pattern formation, there is limited general
understanding of the feedback processes causing pattern formation in ecosystems,
and how these affect ecosystem patterning and functioning. Here we propose a gener-
alised model for pattern formation that integrates two types of within-patch feedback:
amplification of growth and reduction of losses. Both of these mechanisms have been
proposed as causing pattern formation in mussel beds in intertidal regions, where
dense clusters of mussels form, separated by regions of bare sediment. We investi-
gate how a relative change from one feedback to the other affects the stability of
uniform steady states and the existence of spatial patterns. We conclude that there are
important differences between the patterns generated by the two mechanisms, con-
cerning both biomass distribution in the patterns and the resilience of the ecosystems
to disturbances.
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1 Introduction

Pattern formation at the landscape scale is an established feature of many ecosystems
across the world. Examples include alternating patches of vegetation and bare ground
in arid environments (Bastiaansen et al. 2018; Gandhi et al. 2019); “fairy circles” in
Namibian grasslands (Zelnik et al. 2015); patterns of open-water pools in peatlands
(Belyea 2007; Eppinga et al. 2009); tussock patterns in freshwater marshes (van de
Koppel and Crain 2006; Yu 2010); and labyrinthine patterns in mussel beds (van de
Koppel et al. 2005, 2008; Liu et al. 2014). Mathematical modelling has played an
important role in the study of this type of pattern formation. Most commonly, models
have been used to show that a hypothesised ecological mechanism can indeed generate
spatial patterns. A crucial commonality for these underlying processes is that there
is a local positive feedback, where organisms improve the conditions in which they
grow, but at the same time lower growth conditions at distance, often by means of
competition for resources. This scale-dependent alternation between local positive
feedback and larger-scale negative feedback has been proposed for many patterned
ecosystems, providing a general principle for regular spatial patterns for ecology and
beyond. Despite this common ground, a wide variety of specific mechanisms have
been proposed as potential generators of regular patterns. Soft-bottomed mussel beds
provided an example of a system in which multiple hypothesised mechanisms have
been shown to be potential generators of patterns. These large aggregations of mussels
form in intertidal regions, most notably in the Dutch Wadden Sea, and are often
patterned, with dense clusters of mussels separated by regions of bare sediment. Two
possible mechanisms for this patterning have been proposed: (i) “reduced losses”—
high mussel density reduces the dislodgement and predation of mussels, because of
their adherence to one another; (ii) “increased production”—a high density of mussels
increases their growth rate, since the faeces and pseudofaeces they produce raise them
towards the algae-rich upper water layers. Mathematical modelling confirms that both
of these mechanisms can generate spatial patterns (van de Koppel et al. 2005; Liu
et al. 2012). How then can one determine which mechanism is the real driver of the
observed pattern formation?

A first step in answering this question was taken by Liu and co-workers (Liu et al.
2012) who calculated bifurcation diagrams for models based on each of the twomech-
anisms, demonstrating significant differences between the patterns in the two models.
However, it is unclear to what extent these differences depend on the formulation of
the models and the parameter values, rather than being due to the alternative under-
lying patterning mechanisms. The objective of this paper is to address this issue in
a comprehensive way. We will do this by developing a hybrid model that includes
both the “reduced losses” and “increased production” mechanisms, with their relative
importance controlled by a single tuning parameter. Our hybrid model is based on the
“reduced losses” model proposed by van de Koppel et al. (2005) and the “increased
production” model proposed by Liu et al. (2012).

Webegin bydescribing the twomodels separately, startingwith the “reduced losses”
model (RLM). Denoting the mussel density by m̃ (̃x,˜t ) and the density of algae (the
mainmussel food sourceDolmer 2000;Øie et al. 2002) by ã(̃x,˜t ), themodel equations
are:
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∂ ã/∂˜t =

transfer to/
from upper
water layers

︷ ︸︸ ︷

˜F · (˜A − ã)−

consumption
by mussels
︷ ︸︸ ︷

˜B ã m̃ +

advection
by tide

︷ ︸︸ ︷

˜V ∂ ã/∂ x̃ (1a)

∂m̃/∂˜t = ˜C ã m̃
︸ ︷︷ ︸

birth

− ˜E m̃
/(

˜K + m̃
)

︸ ︷︷ ︸

dislodgement
by waves

+ ˜D ∂2m̃/∂ x̃ 2
︸ ︷︷ ︸

random
movement

. (1b)

Here˜t is time and x̃ is distance away from the shore; ˜A, ˜B, ˜C , ˜D, ˜E , ˜F , ˜K and ˜V are
positive parameters. Since its initial formulation in 2005 (van de Koppel et al. 2005),
model (1) and minor extensions have been studied in a number of papers, from both
applications and mathematical viewpoints (Wang et al. 2009; Liu et al. 2012; Sherratt
2013; Ghazaryan and Manukian 2015; Cangelosi et al. 2014; Sherratt and Mackenzie
2016).

The alternative “increased production” model (IPM) centres around the build-up
of faeces and pseudofaeces (van Broekhoven et al. 2015) under mussel beds, which
contribute to the underlying sediment. Since the mussels’ food source (algae) mainly
resides in upper water layer, this sediment deposition raises the mussels towards their
food source and thus further promotes their growth (Liu et al. 2012, 2014). In this
case, we denote the mussel and algal densities by m̂ (̂x,̂t ) and â(̂x,̂t ), respectively,
and we use ŝ (̂x,̂t ) to represent the amount of accumulated sediment. Herêt and x̂
are time and distance away from the shore, respectively. Then, the model of Liu et al.
(2012) is:

∂ â/∂̂t =

transfer to/
from upper
water layers

︷ ︸︸ ︷

̂F · (

̂A − â
)−

depth-dependent
consumption
by mussels

︷ ︸︸ ︷

̂B â m̂
(

ŝ + η̂̂S0
)/(

ŝ + ̂S0
)+

advection
by tide

︷ ︸︸ ︷

̂V ∂ â/∂ x̂ (2a)

∂m̂/∂̂t =
birth

︷ ︸︸ ︷

̂C â m̂
(

ŝ + η̂̂S0
)/(

ŝ + ̂S0
) −

death
︷︸︸︷

̂E m̂ +

random
movement

︷ ︸︸ ︷

̂Dm ∂2m̂/∂ x̂ 2 (2b)

∂ ŝ/∂̂t = ̂P m̂
︸︷︷︸

production

− ̂Q ŝ
︸︷︷︸

erosion

+ ̂Ds∂
2̂s/∂ x̂ 2

︸ ︷︷ ︸

dispersal

(2c)

where ̂A, ̂B, η̂ (< 1), ̂S0, ̂C , ̂Dm , ̂Ds , ̂E , ̂F , ̂P , ̂Q and ̂V are positive parameters. The
function

(

ŝ + η̂̂S0
)/(

ŝ + ̂S0
)

has the property of increasing from a nonzero value (̂η)
when ŝ = 0 towards the saturation level 1 as ŝ → ∞; this reflects the increase in
the growth rate of the mussel population with increased proximity to the (algal-rich)
upper water layers. Beyond these properties, the precise functional form is arbitrary.

Liu et al. (2012) calculated bifurcation diagrams for models (1) and (2) as a way
of comparing their predictions for pattern formation. One of their observations was a
distinct difference between the mussel densities in the patterns predicted by the two
models. They reported that the average mussel density within patterns in the reduced
losses model (1) is considerably greater than that in the spatially uniform steady state,
but that in the increased productionmodel (2) the twodensities are similar. In this paper,

123



99 Page 4 of 26 J. A. Sherratt et al.

we will present a more detailed study of this difference between the models with the
aim of clarifying whether it is due to different model formulations and parameters,
or whether it can genuinely be attributed to the different underling mechanisms. The
difference is important because it provides a potential avenue for testing which model
applies in a particular ecological context; mere observation of patterns is not sufficient
for this since both models predict pattern formation for a wide range of ecologically
plausible parameters. One issue that necessitates a detailed study is that (as we will
show) there aremultiple patterned solutions for any given set of ecological parameters.

As a first step, we consider a two-equation analogue of (2), which will facilitate
direct comparison between the two model frameworks. Our aim is not to obtain a
formal two-equation approximation to (2); rather, we seek a prototypical model of the
increased production mechanism, and we use (2) as a starting point for formulating
this. In this spirit, we will apply two simplifications to (2), neither of which is a good
quantitative approximation, but both of which maintain the key qualitative features of
themodel. Firstly, wemake a quasi-steady-state assumption on the kinetics of ŝ, setting
ŝ = (

̂P
/

̂Q
)

m̂ in (2a,b). In order for this to be a good quantitative approximation,
it would be necessary that ̂P and ̂Q are significantly larger than comparable rate
parameters in other equations. This is not actually the case: the timescale of sediment
production and erosion is broadly similar to that of mussel birth and death, and for
example the values estimated by Liu et al. (2012) for ̂P and ̂Q are the same. However,
ŝ does not play a central role in the pattern formation process, and the only effects
of the quasi-steady-state assumption are on quantitative details. Secondly, to simplify
the two-equation model we replace

(

ŝ+ η̂̂S0
)/(

ŝ+̂S0
)

by ŝ
/

̂S0. Quantitative validity
of this approximation would require that ̂S0 � ŝ � η̂̂S0, which holds for many of
the patterns predicted by (2) using the parameter estimates in Liu et al. (2012), but
not all. Note that (Liu et al. 2012) does not actually show any plots of the sediment
profile in the patterned solutions of (2); we show an example in Fig. 1. In fact, the
choice of functional form for the dependence of mussel birth on sediment level ŝ in
Liu et al. (2012) was somewhat arbitrary, and the prediction of pattern formation is not
sensitive to this functional form. In particular, the nonzero value of

(

ŝ+ η̂̂S0
)/(

ŝ+̂S0
)

when ŝ = 0 is not important, for the following reason. In Fig. 1, it is clear that the
mussel and sediment patterns are approximately in phase; this is a typical feature
of simulations, and it has a mathematical basis from linear stability analysis that we
outline in “Appendix”. It follows that if ŝ is small then m̂ will also be small, implying
that the growth rate will necessarily be small.

These two simplifications give the model

∂ â/∂̂t = ̂F · (

̂A − â
) − (

̂B ̂P
/

̂Q̂S0
)

â m̂ 2 + ̂V ∂ â/∂ x̂ (3a)

∂m̂/∂̂t = (

̂C ̂P
/

̂Q̂S0
)

â m̂ 2 − ̂E m̂ + ̂Dm ∂2m̂/∂ x̂ 2. (3b)

Numerical studies show that the qualitative features of pattern formation in (3) are
broadly similar to those in (2); an example comparison is shown in Fig. 1. However,
this similarity is not a key foundation of our study. Rather, our approach is to regard (3)
as a prototypical model for the “increased production” mechanism, which can easily
compared to the prototypical model (1) for the “reduced losses” mechanism.
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Fig. 1 A comparison of pattern solutions of the full increased production model (2) and the reduced model
(3). Before solving, we nondimensionalised the models. Rescalings (6) are not convenient for (3), and
so we used a different set of rescalings taken from Liu et al. (2012); details are given in “Appendix”.
This transforms (2) and (3) to ( A.1) and (A.2), respectively. We used the domain 0 < x̌ < 50 with
periodic boundary conditions, and with parameter values α̌ = 50, β̌ = 200, η̌ = 0.1, ν̌ = 360, Ď = 1,
δ̌ = 320, θ̌ = 2.5 and δ̌ = 1. (All notations are defined in “Appendix”). We began by solving (A.1),
with the variables (ǎ, m̌, š) set to the spatially uniform steady state (ǎs , m̌s , šs ) plus the small mixed-mode
perturbation 0.01(ǎs , m̌s , šs )

∑i=10
i=1 cos(π i x̌/50). The solutionswere plotted at times ť = 600, 602, 604.

We then used the solutions for ǎ and m̌ at ť = 604 as initial conditions for (A.2), again solving from ť = 0
and plotting the solutions at times ť = 600, 602, 604, although we translated the solutions in the negative
x̌ direction by 3.75 space units in order to facilitate comparison. (Since we are using periodic boundary
conditions, the solutions are invariant to translation.)

Our next step is to nondimensionalise the two two-equationmodels. Previous papers
on (1) and (2) have reduced them to dimensionless forms (van de Koppel et al. 2005;
Wang et al. 2009; Liu et al. 2012); however if one applies these rescalings to (1) and (3),
respectively, then the resulting pairs of equations are not easily comparable. We use
different rescalings that are constructed specifically to facilitate comparison between
the two dimensionless models. We give the rescalings in full because our subsequent
work depends crucially on the way in which the (dimensional) algal supply rate affects
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the dimensionless parameters in the two models. For (1), we substitute

ã ∗ = (

˜C
/

˜F
)

ã m̃ ∗ = (

˜B
/

˜F)m̃ x̃ ∗ = (

˜F
/

˜D
)1/2

x̃ ˜t ∗ = ˜F˜t

α̃ ∗ = ˜A ˜C
/

˜F ˜β ∗ = ˜E
/(

˜F ˜K
)

˜ξ ∗ = ˜F
/(

˜B ˜K
)

ν̃ ∗ = ˜V
/(

˜D1/2
˜F1/2)

(4)

which gives

∂ ã ∗/∂˜t ∗ = α̃ ∗ − ã ∗ − ã ∗m̃ ∗ + ν̃ ∗ ∂ ã ∗/∂ x̃ ∗ (5a)

∂m̃ ∗/∂˜t ∗ = ã ∗m̃ ∗ − ˜β ∗m̃ ∗/(

1 +˜ξ ∗m̃ ∗) + ∂2m̃ ∗/∂ x̃ ∗ 2. (5b)

Here the asterisks denote dimensionless variables and parameters. The dimensionless
parameters α̃ ∗, ν̃ ∗,˜ξ ∗ and ˜β ∗ are defined by a combination of dimensional constants,
but readers may find it useful to interpret intuitively α̃ ∗ as corresponding to the algal
supply from upper water layers, ν̃ ∗ as corresponding to the tide strength,˜ξ ∗ as cor-
responding to the ability of intermussel bonds to reduce dislodgement by waves, and
˜β ∗ as corresponding to the per capita dislodgement rate for isolated mussels.

For (3), we substitute

â ∗ = ̂C ̂P1/2

̂B1/2
̂F1/2

̂Q1/2
̂S1/20

â m̂ ∗ =
(

̂B̂P
̂F ̂Q̂S0

)1/2

m̂

x̂ ∗ = (

̂F/̂Dm
)1/2

x̂ ̂t ∗ = ̂F̂t

α̂ = ̂ÂC ̂P1/2

̂B1/2
̂F1/2

̂Q1/2
̂S1/20

̂β = ̂E/̂F ν̂ = ̂V
/(

̂Dm ̂F
)1/2 (6)

which gives

∂ â ∗/∂̂t ∗ = α̂ ∗ − â ∗ − â ∗m̂ ∗ 2 + ν̂ ∗ ∂ â ∗/∂ x̂ ∗ (7a)

∂m̂ ∗/∂̂t ∗ = â ∗m̂ ∗ 2 − ̂β ∗m̂ ∗ + ∂2m̂ ∗/∂ x̂ ∗ 2. (7b)

Again the asterisks denote dimensionless variables and parameters. Equations (7) are
the Klausmeier model, which has been well studied as a model of semi-arid vegetation
(Klausmeier 1999; Sherratt and Lord 2007; van der Stelt et al. 2013), and whose kinet-
ics are the same as those of the Gray–Scott model, which has important applications
to chemistry (Chen and Ward 2009; Doelman et al. 1997; Gray and Scott 1984). The
dimensionless parameters α̂, ν̂ and ̂β are defined by a combination of dimensional
constants, but readers may find it useful to interpret intuitively α̂ as corresponding to
the algal supply from upper water layers, ν̂ as corresponding to the tide strength, and
̂β as corresponding to the per capita dislodgement rate of mussels by waves.

The basic approach of this paper is to construct a hybrid model, which includes
both the reduced losses and increased production feedback mechanisms. The model
will include a new (dimensionless) parameter λ, which takes values between 0 and 1
and which controls the relative importance of the two mechanisms, with the equations
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Fig. 2 A typical pattern solution
of the hybrid model (8). We
show the evolution of a pattern
following a small random
perturbation of a uniform state.
The parameter values are
α = 0.2, β = 0.1, ν = 100,
ξ = 0.5, λ = 0.25

reducing to (5) when λ = 1 and to (7) when λ = 0. This approach is made possible
by the close similarity between the two pairs of dimensionless equations (5) and (7),
and our hybrid model is:

∂a/∂t = α − a − am [λ + (1 − λ)m] + ν ∂a/∂x (8a)

∂m/∂t = am [λ + (1 − λ)m] − βm
[

1 − λ + λ
/(

1 + ξm
)] + ∂2m/∂x2. (8b)

Note that a dimensional model can be recovered from (8) by using either (4) or (6) as
rescalings.

Figure 2 shows a typical example of a spatially patterned solution of (8). A central
question that we will address in this paper is how the mussel density in such patterns
changes as the supply rate of algae is varied. In view of this, it is important to note that
the algal supply parameters ˜A in (1) and ̂A in (2) do not appear in the rescalings for
m̃ ∗ or m̂ ∗ and that the only dimensionless parameters that they affect are α̃ ∗ and α̂ ∗.
Therefore,we can address our question by considering how the (dimensionless)mussel
density m in patterned solutions of (8) changes with the (dimensionless) parameter α.

2 Uniform Steady States of the Hybrid Model

For all parameter values, model (8) has a mussel-free steady state a = α, m = 0.
Spatially uniform steady states with m �= 0 must satisfy
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a = α
/[

1 + λm + (1 − λ)m2] (9)

0 = α [λ + (1 − λ)m] · (1 + ξm) − β [λ + (1 − λ)ξm] ·
[

1 + λm + (1 − λ)m2
]

.

(10)

Equation (10) is a cubic polynomial whose roots are very complicated algebraically,
and we investigated them using numerical continuation. Starting points for this are
provided by the extreme casesλ = 0 (increased productionmodel) andλ = 1 (reduced
losses model), for which the spatially uniform steady states have a much simpler
form; moreover, their stability can be determined quite easily; here and throughout
this section, the “stability” that we consider is to spatially uniform perturbations. For
λ = 0, (α, 0) is stable for all parameter values, and if α > 2β there are two other
steady states:

a = 2β2

α − √

α2 − 4β2
m = α − √

α2 − 4β2

2β
(11)

which is unstable and

a = 2β2

α + √

α2 − 4β2
m = α + √

α2 − 4β2

2β
. (12)

The stability of (12) depends on parameters, but it is always stable ifβ < 2which holds
for realistic parameter estimates (Liu et al. 2012). For λ = 1, (α, 0) is stable if and
only if α < β. When (α/β) lies between 1 and (1/ξ), there is one other nonnegative
steady state

a = (β − ξα)/(1 − ξ) m = (α − β)/(β − ξα) (13)

which is stable if ξ < 1.
With these expressions for the steady states when λ = 0 and λ = 1 as starting

points, we used the software package auto (Doedel 1981; Doedel et al. 1991, 2006)
to track the steady states and their stability as λ is varied. The results are significantly
different when ξ is above and below 1, and Figs. 3 and 4 illustrate the two cases. We
will discuss first the case ξ < 1 (Fig. 3) and then ξ > 1 (Fig. 4), before using our
results to construct a diagram (Fig. 5) showing the existence of a positive stable-steady
state in a parameter plane. However, a few general comments about the stability of the
steady states are a useful preliminary. The form of (10) shows that the steady states
depend on the parameters α and β only through the ratio α/β. In general, their stability
does depend on the individual values of α and β, but we will show later that when
β < 2, the stability also depends only on the ratio α/β. Realistic parameter estimates
are consistent with β < 2 (Liu et al. 2012), and therefore, the stability shown in Figs. 3
and 4 applies under this assumption. In the figures, we plot the mussel density m at
the steady states against λ, for a series of values of the parameter ratio α/β. Recall
that α and β are most usefully interpreted as representing the rates of algal supply and
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Fig. 3 Steady states for ξ < 1. We plot the steady-state solutions of (8) when ξ = 0.15, which is typical
of behaviour when ξ < 1. We plot mussel density m against the parameter λ. Solid

/

dashed lines indicate
stable

/

unstable steady states, calculated by numerical continuation using auto (Doedel 1981; Doedel
et al. 1991, 2006), with λ as continuation parameter. Dots indicate the steady states for the reduced losses
(λ = 1) and increased production (λ = 0) models; these are (a,m) = (α, 0) plus (11), (12) and (13). The
five different cases shown in the figure are separated by four critical values of α/β: 1, 1/λ0min ≈ 1.55, 2,
and 1/ξ ≈ 6.67; a full description is given in the main text. To improve clarity, the plot for α/β = 8.0 is
shown in two parts with different horizontal scalings. The stability of the steady states shown in the figure
is valid, provided that β < 2, which applies for realistic parameter estimates (Liu et al. 2012)

mussel loss, respectively, although of course they are dimensionless parameter ratios
that involve a combination of ecological quantities (see (4) and (6)).

Considering first ξ < 1, five different cases are shown in Fig. 3.When α/β is small,
the corresponding algal supply is insufficient to maintain a mussel population for any
value of λ, and the only steady state is the mussel-free state, which is always stable. As
α/β increases through 1, (13) becomes positive, and there is a stable steady state for
sufficiently large values of λ. This solution branch actually has a local minimum, at
λ = λmin say. The value of m giving this local minimum is negative when α/β is just
above 1, but it increases with α/β and passes through zero when (10) has a double root
at m = 0. A straightforward calculation shows that this occurs when α/β = 1/λ0min,
where λ0min is the corresponding value of λ and is given by

λ0min =
√
5 − 4ξ − 1

2(1 − ξ)
.
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Fig. 4 Steady states for ξ > 1. We plot the steady-state solutions of (8) when ξ = 1.5, which is typical
of behaviour when ξ > 1. We plot mussel density m against the parameter λ. Solid

/

dashed lines indicate
stable

/

unstable steady states, calculated by numerical continuation using auto (Doedel 1981; Doedel
et al. 1991, 2006), with λ as the continuation parameter. Dots indicate the steady states for the reduced
losses (λ = 1) and increased production (λ = 0) models; these are (a,m) = (α, 0) plus (11), (12) and (13).
The four different cases shown in the figure are separated by three critical values of α/β: 1/ξ ≈ 0.67, 1
and 2; a full description is given in the main text. The steady-state solution branches depend on α and β

only through their ratio α/β; their stability does depend on the separate values, but the stability of the steady
states shown in the figure is valid whenever 0 < β < 2, which applies for realistic parameter estimates
(Liu et al. 2012). Figure 7 shows the corresponding bifurcation diagram for a larger value of β

For the value of ξ used in Fig. 3, λ0min ≈ 0.646 ⇒ 1/λ0min ≈ 1.55. The numerical
results indicate a change in stability at the local minimum, as one would expect from
general bifurcation theory: λ = λmin is a saddle–node bifurcation point (Kuznetsov
2004, Ch. 3). Therefore, when (α/β) is just above 1/λ0min, there are two positive steady
states for λ > λmin, one stable and one unstable. Figure 5a shows that λmin decreases
as (α/β) increases, reaching 0 at α/β = 2. This heralds the appearance of nonzero
steady states for λ = 0 (the increased production model case): see (11) and (12). The
final change in qualitative behaviour occurs when α/β = 1/ξ , when the value of m at
the nonzero steady state (13) for λ = 1 passes through infinity and becomes negative.
For α/β > 1/ξ , the solution branch starting at (12) when λ = 0 does not intersect
λ = 1; instead, m → ∞ as λ → 1−. This is illustrated in the right-hand subpanel of
Fig. 3 for α/β = 8.

The onset of patterning in (8) occurs when a spatially uniform steady state becomes
unstable to inhomogeneous perturbations—this is a Turing or Turing–Hopf bifurca-
tion. A prerequisite for this is a positive steady state that is stable to homogeneous
perturbations, and the above results enable us to determine when such a steady state
exists (for ξ < 1). Firstly, we note that there is never more than one positive stable
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(a) (b)

Fig. 5 Existence of a positive stable steady state. The shading shows typical examples of the parameter
region forwhichmodel (8) has a positive steady state that is stable to homogeneous perturbations, for a ξ < 1
and b ξ > 1. The blue curve is the locus of λmin, calculated by a two-parameter numerical continuation
using auto (Doedel 1981; Doedel et al. 1991, 2006), with λ and α as continuation parameters. The red
curve is α/β = 1/λ: the mussel-free steady state a = α, m = 0 is stable below this curve and unstable
above it. The parameter values used for the plots were β = 0.1 and a ξ = 0.15, b ξ = 1.5

steady state.1 When α/β > 2, there is a stable steady for all λ, with the exception
of λ = 1 when α/β > 1/ξ . For 2 > α/β > 1/λ0min, the condition for a positive
steady state is λ > λmin, while for 1/λ0min > α/β > 1 the condition is λ > (β/α),
since m = 0 is a solution of (10) when α/β = 1/λ. Finally when α/β < 1, there
are no positive stable steady states. Figure 5a illustrates the parameter region giving a
positive stable steady state for one value of ξ between 0 and 1.

We now consider the case of ξ > 1, which is a little simpler (Fig. 4) . Again,
when α/β is small, the only steady state is the mussel-free state, which is always
stable. As α/β increases through 1/ξ , a branch of positive steady states appears. From
the viewpoint of bifurcation theory, this solution branch arises from a transcritical
bifurcation at (a,m) = (0,∞) when λ = 1; for fixed λ < 1, the appearance of the
steady states corresponds to a saddle–node bifurcation as α/β is increased. As for
ξ < 1, the solution branch has a local minimum, at λ = λmin say, which separates
stable and unstable parts of the solution branch. At α/β = 1, the mussel density at
the nontrivial steady state (13) for λ = 1 changes sign, and for α/β > 1 the mussel-
free steady state is unstable for values of λ above the intersection point of the two
solution branches. In the language of bifurcation theory, there is another transcritical
bifurcation, this time at (a,m) = (α, 0) when λ = 1. The value of λmin decreases as
α/β increases, and it reaches zero at α/β = 2, heralding the appearance of positive
steady states for λ = 0. Figure 5b shows a typical plot of λmin against α/β for ξ > 1.
This curve bounds the parameter region giving a positive steady state, which is shaded
in the figure. Note that for α/β > 1 there is a positive steady state for an interval of

1 This statement is based on evidence from our numerical continuation study, but is not proven. In particular,
there could in principle be a closed branch of spatially uniform steady states that exists for a range of values
of λ in (0, 1) but does not extend to either λ = 0 or λ = 1. However, we have not found any evidence of
such a closed branch.
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λ values up to 1 (including λ = 0), but not for λ = 1 itself. Figure 5b illustrates the
parameter region giving a positive stable steady state for one value of ξ greater than 1.

To conclude our discussion of steady states, we return to the issue of their stability;
specifically, we will justify our assertion that provided β < 2, stability depends on the
parameters α and β only through their ratio α/β. For a system of two coupled odes the
stability of a steady state depends on the trace and determinant of the Jacobian (a.k.a.
stability or community) matrix. For a steady state of (8) with m �= 0, the determinant
of the Jacobianmatrix depends on α and β only through their ratio α/β, while the trace
has the form T = F1β −F2. Here F1 and F2 are both strictly positive and depend on
λ, ξ and the ratio α/β; their algebraic forms are complicated2. However, sinceF2 > 0
it follows that for any set of values of λ, ξ and α/β, T < 0 for sufficiently small β.
Then, the steady state is stable

/

unstable when the determinant of the Jacobian matrix
is positive

/

negative, which depends on α and β only through their ratio α/β. In the
latter case, the steady state is unstable for all β, but when the determinant is positive,
the steady state will only be stable for β < βcrit = F2

/

F1. Thus for β > βcrit there
are no stable steady states with positive mussel density.

Our method of numerical continuation gives the value of m at the (unique) positive
steady state with positive Jacobian determinant at any point in the (α/β)–λ plane for
which this steady state exists; these are the shaded regions in Fig. 5. Using this, we
calculated βcrit , and the results are shown as colour maps in Fig. 6. For both ξ < 1
and ξ > 1, the minimum value of βcrit is 2, occuring at λ = 0 and α/β = 2; here,
the value of m = 1. Hence whenever β < 2, T < 0 and stability depends only on the
ratio α/β. To illustrate the difference in steady-state stability that can occur for larger
values of β, Fig. 7 shows the same bifurcation diagrams as in Fig. 3 but for β = 6.
The solution branch curves are the same, but for α/β = 1.8 and 2.5 the stability is
clearly different.

Our objective is to study pattern formation in (8) as λ varies between 0 and 1.
Therefore, we require that there is a positive stable steady state for all values of λ,
including the extreme case λ = 1 (reduced losses model). This only occurs when
ξ < 1 and 2 < α/β < 1/ξ (fourth panel in Fig. 3), and we restrict attention to
parameter values satisfying these constraints, and also β < 2.

3 Spatial Pattern Formation

When the parameters α, β, ξ and λ are such that (8) has a positive steady state that is
stable to spatially uniform perturbations, there is the possibility of pattern formation in
the spatial model (8), because the steady state can be destabilised by the advection and
diffusion terms. This is sometimes known as “differential flow instability” (Rovinsky
andMenzinger 1992). Conditions for patterning can be found via a standard procedure.
We linearise equations (8) about the steady state (as,ms) and substitute (a − as,m −
ms) = (a0,m0) exp(ikx + μt). The requirement that the constants a0 and m0 are not
both zero gives a dispersion relation, i.e. an equation for μ in terms of k. The steady

2 Denoting by ms the steady-state value for m, F2 = 1 + λms + (1 − λ)m2
s and F1 = [

(1 − λ)(1 +
ξms )(1 + (1 − λ)ξms ) + (

λ + (1 − λ)ms
)

λξ
]

ms
/[

(λ + (1 − λ)ms )(1 + ξms )
2].
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Fig. 6 βcrit for (a) ξ = 0.15, (b) ξ = 1.5. For values of β above βcrit , there are no stable steady states
with positive mussel density. The colour indicates βcrit according to the scalebar, with black indicating that
there is no positive steady state. Thus, the black region in these plots corresponds to the unshaded region in
Figs. 3 and 4. The key message from these plots is that in both cases the minimum value of βcrit occurs at
α/β = 2 and λ = 0, at which point βcrit = 2

state is stable if Reμ < 0 for all real k and unstable if Reμ > 0 for some real k. For
a more detailed explanation, see Murray (2003), Perumpanani et al. (1995), Sherratt
(2005), Siteur et al. (2014). Using this approach, we calculated the curves in the α–ν
plane on which the steady state loses stability, leading to patterns. This is illustrated
in Fig. 8, which shows that the α–ν region giving patterns shrinks as λ is increased.

The curves plotted in Fig. 8 give an upper limit on the algal supply parameter α

for spatial patterning, for given values of the other parameters. Intuitively, when α

exceeds this upper limit the food supply to the mussels is large enough to maintain
a spatially uniform mussel population. There is also a minimum value of α below
which patterns do not occur, because the food supply is insufficient to maintain even a
spatially patterned mussel population; this is discussed in more detail below. Between
these two threshold values of α there are spatial patterns. Although the patterns have a
constant shape, they are not stationary, but rather they move in the positive x direction
(away from the shore) because of the directed movement of the algae (towards the
shore). Mathematically, such movement is a standard feature of patterns in reaction–
diffusion–advection equations (Rovinsky and Menzinger 1992; Perumpanani et al.
1995; Malchow 2000), and it is reflected by the imaginary part of the growth rate μ

being nonzero. Intuitively, the model predicts that algal density is higher on the off-
shore side of a mussel band compared to the on-shore side, because of consumption
in the band. This causes a net growth of mussels on the off-shore side and a net loss
on the on-shore side, and this causes a gradual net off-shore migration of the band
(Song et al. 2017). Although such movement is intrinsic to patterned solutions of (8),
it is not observed in real mussel beds, presumably because the (deliberately) simplistic
modelling omits some stabilising feature(s) of the real system—one possibility for this
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Fig. 7 Steady states for ξ < 1 and β > 2. We plot mussel densitym against the parameter λ for the steady-
state solutions of (8) when ξ = 0.15 and β = 6. Solid

/

dashed lines indicate stable
/

unstable steady
states, calculated by numerical continuation using auto (Doedel 1981; Doedel et al. 1991, 2006), with
λ as continuation parameter. Dots indicate the steady states for the reduced losses (λ = 1) and increased
production (λ = 0) models; these are (a,m) = (α, 0) plus (11), (12) and (13). The five different cases
shown in the figure are separated by four critical values of α/β: 1, 1/λ0min ≈ 1.55, 2, and 1/ξ ≈ 6.67;
a full description is given in the main text. To improve clarity, the plot for α/β = 8.0 is shown in two
parts with different horizontal magnifications. These plots should be compared with Fig. 3, which shows
the corresponding plots when β < 2: the steady states are the same but there are differences in stability for
α/β = 1.8 and 2.5

is the oscillatory nature of tidal flow, which has recently been incorporated into the
reduced lossesmodel (1) andwhich does lead to patterns without large-scalemigration
(Sherratt and Mackenzie 2016).

Being periodic solutions moving with constant shape and speed, the patterns are
“periodic travelling waves”, and general theory for this type of solution implies that
for a given value of the algal supply α (and of the other parameters) there is a family of
patterns, with the migration speed and wavelength varying within the family (Sherratt
andSmith 2008; Sherratt 2012; van der Stelt et al. 2013;Rademacher andScheel 2007).
A convenient way of illustrating the wave family is to plot the patterning region in the
α—speed plane, and some examples are shown in Fig. 9 with calculations done using
the software packagewavetrain (Sherratt 2012). In these plots, the patterning region
is shaded; in keeping with Fig. 8 the region shrinks as λ is increased. The right-hand
boundary of the patterning region is a curve on which patterns with a particular speed
are initiated: mathematically this is a locus of Hopf bifurcations in the travelling wave
odes. The left-hand boundary is for the most part a curve along which the pattern
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Fig. 8 Pattern onset. We plot the patterning onset curves for (8) in the α–ν plane for β = 0.1 and ξ = 0.5
fixed, for 4 values of the parameter λ. As α and ν are varied from lower right to upper left in the parameter
plane, the locally stable positive steady state loses stability as the patterning onset curve is crossed. Note
that in contrast to much of our work on steady states, the results in this and subsequent figures depend on the
values of both α and β, rather than just their ratio. The curves were calculated by determining the dispersion
relation as described in the main text and then solving numerically the condition for this dispersion relation
to have a double root. The case λ = 0 provides a starting point for this solution, since (8) then reduces to
the Klausmeier model for which patterning conditions have been studied in detail in previous work (e.g.
Sherratt 2005; Siteur et al. 2014; Sherratt 2015). From this starting point, we gradually increased λ, solving
the double root conditions numerically using the solution at the previous value of λ as an initial guess. Note
that to enable direct comparison, the values of β and ξ used in this figure are the same as in Figs. 9, 10, 11, 12
and 13

wavelength becomes infinitely long: mathematically this is a locus of homoclinic
solutions. For one of the cases shown in Fig. 9 (λ = 0.95) a small part of the left-hand
boundary consists instead of a locus of folds; this implies multiple pattern solutions
in a small region of parameter space, but this has no practical significance for realistic
parameters.

4 Mussel Density in Spatial Patterns

Our basic objective is to compare the averagemussel density in spatial patternswith the
density in the spatially uniform steady state from which the patterns have developed.
Therefore, we tracked the form of the pattern along solution branches of (8) as α is
varied with the other parameters fixed and compared this with the steady state for the
same value of α. Again we used the software package wavetrain (Sherratt 2012)
for this calculation. Since there is a range of different patterned solutions for any
value of α within the patterning range (see Fig. 9), it is necessary to impose some
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Fig. 9 Pattern existence.We show examples of the regions (shaded) of the α-migration speed plane in which
patterns exist, for β = 0.1, ξ = 0.5 and ν = 100. The regions are bounded by loci of Hopf bifurcations,
homoclinic solutions and solution branch folds in the travelling wave odes. The vertical dotted lines show
the values of α between which there are pattern solutions of some speed. Thus, the right-hand vertical line
corresponds to pattern onset: mathematically there is a Turing–Hopf bifurcation in (8) at this value of α.
We also show curves of constant migration speed and of constant wavelength (period) passing through the
Turing–Hopf point. The various computations and plots were done using the software packagewavetrain
(Sherratt 2012). The shaded region includes patterns that are both stable and unstable as solutions of (8).
We include unstable patterns in the plots because they can be ecologically relevant in some situations (see,
for example, Sherratt et al. 2009). Note that to enable direct comparison, the same parameters are used in
Figs. 9, 10, 11, 12 and 13 . There is no special significance to the four values of λ that we have chosen, and
in particular our use of λ = 0.05 and 0.95 rather than 0 and 1 is arbitrary

form of constraint in order to specify the solution branch to be followed. A number
of simulation-based studies on semi-arid vegetation patterns (Sherratt 2013; Siteur
et al. 2014; Siero et al. 2015) have found that as rainfall is varied slowly, the biomass
within a vegetation pattern changes, but its wavelength remains the same—except for
occasional large and abrupt changes in wavelength that occur when patterns of a given
wavelength lose stability. Previous studies by one of us (Sherratt 2013, 2016) found a
corresponding result in both the reduced losses model (1) and the increased production
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model (2) for mussel bed patterns. Therefore, in the present work we considered
patterns of constant wavelength as α was decreased; we started our calculations at
the pattern onset (Turing–Hopf bifurcation) point. However, our results do not depend
critically on this assumption of constant wavelength, and to emphasise this we also
considered patterns of constant speed (and therefore varying wavelength) as α was
decreased. Both of the resulting solution branches are shown in Fig. 9. Figures 10
and 11 show typical results from these calculations. In both the constant speed and
constant wavelength cases, there is an increasing separation between the pattern and
steady-state solution branches as λ is increased between 0 and 1. Recall that Liu
et al. (2012) reported that the average mussel density in the spatial patterns was much
greater than that in the steady state for the “reduced losses” model, while there was
relatively little difference in the two densities for the “increased production” model.
In our hybrid model (8), there is a gradual transition from the increased production to
the reduced losses feedback mechanism as λ is increased at either constant speed or
constant wavelength. Therefore, the results in Figs. 10 and 11 are consistent with the
findings of Liu et al. (2012).

The vertical dashed lines in Figs. 10 and 11 are at values of α that are 20% below the
pattern-onset values. In Figs. 12 and 13, we show the corresponding patterns, plotting
mussel density against space. The steady-state mussel density is also indicated in these
figures. This shows that in contrast to the increased production mechanism, feedback
of decreased losses type (λ near 1) causes high mussel densities in the peaks of the
patterns; it is this that leads to the high level of mean mussel density, compared to the
steady state.

To quantify the difference between the pattern and steady-state mussel densities,
we calculated a single numerical measure of this difference. The starting point for our
calculation is the variation with α of the mean mussel density in patterns and of the
steady-state mussel density; typical examples of this are illustrated in Figs. 10 and 11.
We then calculated the average over α of the difference between the two densities and
divided this by the average of the steady-state density. We restricted our averaging to
values of α for which the pattern and the steady state both exist, and for which the
steady state is positive. In some cases, there is a fold in the pattern solution branch (for
example the λ = 0.95 case in Fig. 11), and then, we restricted attention to the part of
the solution branch between the fold and the pattern onset (Turing–Hopf bifurcation)
point. This prevents the results from being skewed by patterns with very low densities
that are (typically) unstable as solutions of (8). We repeated this procedure for a
sequence of values of α, and for three values of ξ , for both the constant speed and
constant wavelength solution branches. The results are shown in Fig. 14. This figure
illustrates the broad generality of two conclusions. First, the (average) mussel density
in the patterns is greater than that in the steady state—this follows from all of the
differences plotted in Fig. 14 being positive. And secondly there is a gradual increase
in the average difference in mussel density as λ is increased from 0 to 1, i.e. as the
feedback mechanism gradually shifts from increased production to decreased losses.
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Fig. 10 Density versus α at constant speed. We show comparisons of the average mussel density in spatial
patterns with the steady-state mussel density, when the migration speed is held constant at its value at
pattern onset (the Turing–Hopf bifurcation point, indicated by•). Using the software packagewavetrain
(Sherratt 2012), we tracked the form of the pattern along solution branches of (8) as α is varied with the
other parameters fixed. We plot the maximum, minimum and mean (average) mussel density in the patterns
and also the steady-state mussel density. The figure shows an increasing separation between the pattern
and the steady-state solution as λ is increased between 0 (increased production model) and 1 (decreased
losses model). The dashed vertical lines indicate the values of α used in Fig.12. Note that to enable direct
comparison, the same parameters are used in Figs. 9, 10, 11, 12 and 13

5 Recovery Time

Previous modelling predicts that self-organisation into spatial patterns significantly
increases the resilience of mussel beds to disturbances, relative to the resilience of
spatially uniform mussel populations (van de Koppel et al. 2005; Liu et al. 2012).
Moreover, in their study comparing models based on the reduced losses and increased
production mechanisms, Liu et al. (2012) reported that this increased resilience occurs
to a greater extent in the reduced losses model than in the model based on increased
production. However, it is again unclear to what extent this difference depends on the
formulation of the models and the parameter values, rather than being due to the alter-
native underlying patterning mechanisms. To clarify this, we investigated resilience
in our hybrid model (8), by removing a fixed proportion of the total mussel population
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Fig. 11 Density versus α at constant wavelength. We show comparisons of the average mussel density in
spatial patterns with the steady-state mussel density, when the wavelength is held constant at its value at
pattern onset (the Turing–Hopf bifurcation point, indicated by•). Using the software packagewavetrain
(Sherratt 2012), we tracked the form of the pattern along solution branches of (8) as α is varied with the
other parameters fixed. We plot the maximum, minimum and mean (average) mussel density in the patterns
and also the steady-state mussel density. As in Fig. 10, this figure shows an increasing separation between
the pattern and the steady-state solution as λ is increased between 0 (increased production model) and 1
(decreased losses model). The dashed vertical lines indicate the values of α used in Fig. 13. Note that to
enable direct comparison, the same parameters are used in Figs. 9, 10, 11, 12 and 13

from a patterned solution, via a spatially varying perturbation, andmonitoring the time
taken to return to the original pattern. A typical result is shown in Fig. 15, confirming
that the recovery time increases gradually as one varies the parameter λ from λ = 0
(increased production) to λ = 1 (reduced losses). This shows that the difference in
resilience can indeed be attributed to the underlying pattern mechanism, rather than
being a function of parameter values or other model details.

6 Discussion

The concept of self-organisation has been particularly successful in providing a frame-
work for the emergence of spatial patterns in a wide range of systems. Despite its
generality, a wide array of possible self-organisation models have now emerged for an
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Fig. 12 Patterns for the same speed as at the pattern onset point. We show examples of mussel density
patterns given by model (8). We plot patterns with the same migration speed as at the pattern onset (Turing–
Hopf bifurcation) point, with the value of α set at 20% below that at the pattern onset point. These values
of α are indicated by dashed vertical lines in Fig.10. In each panel, we also show the steady-state mussel
density (horizontal line). The patterns were calculated by numerical continuation of the travelling wave
odes starting at a Hopf bifurcation point, using the software package wavetrain (Sherratt 2012). Note
that to enable direct comparison, the same parameters are used in Figs. 9, 10, 11, 12 and 13

equally large array of example ecosystems, and attempts for unification have been lim-
ited. This limits our understanding of the functional differences between self-organised
ecosystems in a comprehensive way. Here we analysed a generalised model of pattern
formation in ecosystems using a model that combines two general mechanisms for
pattern formation: “increased production” and “reduced losses”. We showed that both
mechanisms predict Turing-type regular patterns to develop, but that there are clear
differences between the two models.

In reality, the reduced losses and increased production mechanisms are not
alternatives—both will apply to some extent, and they act in concert to generate spa-
tial patterns. Our hybrid model (8) provides a means of including both mechanisms,
with a single new parameter, and our detailed study of pattern generation provides a
comprehensive framework for understanding the solutions of this model. A key take-
home message of our work concerns sensitivity to variations in the balance between
the reduced losses and increased production mechanisms. Figures 14 and 15 show that
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Fig. 13 Patterns for the same wavelength as at the pattern-onset point. We show examples of mussel density
patterns given by model (8). We plot patterns with the wavelength as at the pattern-onset (Turing–Hopf
bifurcation) point, with the value of α set at 20% below that at the pattern onset point. These values of
α are indicated by dashed vertical lines in Fig. 11. In each panel, we also show the steady-state mussel
density (horizontal line). The patterns were calculated by numerical continuation of the travelling wave
odes starting at a Hopf bifurcation point, using the software package wavetrain (Sherratt 2012). Note
that to enable direct comparison, the same parameters are used in Figs. 9, 10, 11, 12 and 13

a change in this balance has a much greater effect in a system that is dominated by the
reduced losses mechanism than for a system dominated by the increased production
mechanism. This highlights that when the reduced losses mechanism is dominant, it is
particularly important to investigate the possibility and extent of additional feedback
mechanisms.

Our work has been set in the specific context of spatially patterned mussels beds.
However, one or other of the “decreased losses” and “increased production” mech-
anisms lie at the heart of many other patterned ecosystems. Vegetation patterns are
a characteristic feature of semi-arid ecosystems, consisting of alternating patches of
vegetation and bare ground (Bastiaansen et al. 2018; Gandhi et al. 2019). It is widely
accepted that a mechanism of increased production type plays a key role in the gener-
ation of these patterns; specifically, higher vegetation levels increase the rate at which
rain water infiltrates into the soil, leading to higher plant growth rates (Klausmeier
1999; Rietkerk et al. 2002; Meron 2012). Indeed, as we have already remarked, the
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(a) (b)

Fig. 14 Quantitative details of the comparison between the averagemussel density in spatial patterns and the
steady-state mussel density. In (a, b) the migration speed and wavelength, respectively, are held constant at
their value at pattern onset (the Turing–Hopf bifurcation point); examples of the two corresponding solution
branches are shown in Fig. 9. For each pair of λ and ξ values, we used the software package wavetrain
(Sherratt 2012) to track the form of the pattern along these solution branches as α is varied with the other
parameters fixed. We then calculated the average over α of the difference between the mean mussel density
and the steady-state mussel density and divided this by the average of the steady-state mussel density. This
gives a single number comparing the mussel density in spatial patterns and in the steady state, and we
plot this as a function of λ for ξ = 0.2, 0.5 and 0.8. The plots show an increasing separation between the
pattern and steady-state solution branches as λ is increased between 0 (increased production model) and 1
(decreased losses model). However, there is no clear trend in the way in which the difference in mussel
densities varies with the parameter ξ . The other parameters are β = 0.1 and ν = 100

Fig. 15 Recovery time versus λ. Quantitative comparison of recovery time from directional numerical
simulation on model (8). A spatial pattern is generated in model (8); then, a single pattern period was
extracted and a perturbed version of this was used as an initial condition on a spatial domain of length
equal to one wavelength, with periodic boundary conditions. The perturbation consisted of a removal of
20% of the total biomass, varying randomly in space. The “recovery time” is a measure of the time taken
for the solution to return to the patterned state; it is defined as the time by which solution is within 99%
of the pre-perturbation pattern. We found that the details of the perturbation had a negligible effect on the
recovery time. There is a clear trend for this recovery time to increase with the parameter λ, that is as the
feedback mechanism gradually shifts from increased production to decreased losses. The parameter values
are α = 0.2, β = 0.1, ν = 100
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λ = 0 limit of (8) gives the widely used Klausmeier model for vegetation pattern-
ing (Klausmeier 1999; Sherratt and Lord 2007; van der Stelt et al. 2013). Another
ecosystem in which a mechanism of “increased production” type drives pattern for-
mation is the sequence of ridges and hollows found in many peat bogs (Morris et al.
2011). In fact, two different mechanisms combine to generate these patterns, with
each mechanism being of “increased production” type. The elevated ridges are drier
than neighbouring hollows, which causes an increased production rate of peat and an
increase in the thickness of the surface acrotelm layer. This further amplifies the height
difference between the ridges and hollows. In addition, the higher evapotranspiration
rates by the vascular plants on the ridges lead to increased nutrient accumulation,
which generates faster plant growth and thus a thicker acrotelm layer. Mathematical
models based on these mechanisms confirm pattern formation (Morris et al. 2011;
Eppinga et al. 2009) and have been verified by comparison with field data (Eppinga
et al. 2008).

An example of an ecosystem in which pattern formation is driven by a mecha-
nism of “reduced losses” type is provided by patterns of hummocks and hollows on
intertidal mudflats. Diatoms accumulate on the top of hummocks, forming a biofilm
that is strengthened by extracellular secretions, and this promotes sedimentation; in
the hollows, water accumulation inhibits the corresponding processes. This was first
proposed as a pattern generation mechanism by Rietkerk and van de Koppel (2008)
and has subsequently been tested via both modelling and field data (Weerman et al.
2010).

The occurrence of the two alternative mechanisms in a wide range of ecosystems
highlights the importance of understanding the similarities and differences in the pat-
terns that they generate. In particular, the combination of modelling studies and field
work has the potential to distinguish the two mechanisms, and our results open up a
number of different avenues for such future cross-disciplinary research.
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Appendix

In Fig. 1, we show a comparison between two- and three-equation models for the
increased productionmechanism.As a prelude to these simulations,we derived dimen-
sionless versions of the models that can easily be compared. Rescalings (6) do not
extend to the three-equation model (2) in a natural way; therefore, we use instead the
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rescalings proposed by Liu et al. (2012):

ť = ̂Êt x̌ =
(

̂E
̂Dm

)1/2

x̂ ǎ =
(

̂E
̂F̂A

)

â m̌ =
(

̂P
̂ÊS0

)

m̂ š = ŝ
/

̂S0

α̌ = ̂F
/

̂E β̌ = ̂B̂S0
/

̂P ν̌ = (

̂E ̂Dm
)−1/2

ν̂ η̌ = η̂

Ď = ̂Ds
/

̂Dm θ̌ = ̂Q
/

̂E δ̌ = ̂ĈF̂A
/

̂E2.

This transforms (2) to the system

∂ ǎ/∂ ť = 1 − α̌ǎ − β̌ǎm̌(š + η̌)/(š + 1) + ν̌ ∂ ǎ/∂ x̌ (A.1a)

∂m̌/∂ ť = δ̌ǎm̌(š + η̌)/(š + 1) − m̌ + ∂2m̌/∂ x̌2 (A.1b)

∂ š/∂ ť = m̌ − θ̌ š + Ď ∂2š/∂ x̌2. (A.1c)

Applying the same rescalings to (3) gives

∂ ǎ/∂ ť = 1 − α̌ǎ −
(

β̌
/

θ̌
)

ǎm̌2 + ν̌ ∂ ǎ/∂ x̌ (A.2a)

∂m̌/∂ ť =
(

δ̌
/

θ̌
)

ǎm̌2 − m̌ + ∂2m̌/∂ x̌2. (A.2b)

In Fig. 1 we compare solutions of (A.1) and (A.2) for parameter values taken from
Liu et al. (2012). The uniform steady state (ǎs, m̌s, šs), which is used in the initial
conditions for the simulations in Fig. 1, is given by

šs =
δ̌ − α̌ − β̌θ̌ η̌ +

√

(

δ̌ − α̌ − β̌θ̌ η̌
)2 − 4β̌θ̌

(

α̌ − δ̌η̌
)

2β̌θ̌

m̌s = θ̌ šs

ǎs = 1 + šs

δ̌
(

šs + η̌
)

(see Liu et al. 2012 for details).
One notable feature of Fig. 1 is that in the solution of the three-equation model,

the patterns for m̌ and š are approximately in phase. Motivation for this small phase
difference comes from linear stability analysis of the spatially uniform steady state
fromwhich patterns bifurcate. Linearising (A.1) about this steady state and substituting
(ǎ − ǎs, m̌ − m̌s, š − šs) = (ǎ0, m̌0, š0) exp(ikx̌ + μť) gives

(

λ + θ̌ + Ďk2
)

š0 = m̌0.

Therefore, the phase difference between the m̌ and š patterns at the Turing–Hopf
bifurcation point is

arg
[(

Re λ + θ̌ + Ďk2
)

+ i Im λ
]

.
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Since |Im λ/k| is the pattern migration speed, which is small, the phase difference is
also small. There is no a priori reason for the phase difference not to increase, poten-
tially significantly, as the pattern amplitude increases, but our numerical simulations
suggest that this does not happen.
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