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Abstract
Mechanical and mechanochemical models of pattern formation in biological tissues
have been used to study a variety of biomedical systems, particularly in developmental
biology, and describe the physical interactions between cells and their local surround-
ings. These models in their original form consist of a balance equation for the cell
density, a balance equation for the density of the extracellular matrix (ECM), and a
force-balance equation describing themechanical equilibriumof the cell-ECMsystem.
Under the assumption that the cell-ECM system can be regarded as an isotropic linear
viscoelastic material, the force-balance equation is often defined using the Kelvin–
Voigt model of linear viscoelasticity to represent the stress–strain relation of the ECM.
However, due to the multifaceted bio-physical nature of the ECM constituents, there
are rheological aspects that cannot be effectively captured by this model and, there-
fore, depending on the pattern formation process and the type of biological tissue
considered, other constitutive models of linear viscoelasticity may be better suited.
In this paper, we systematically assess the pattern formation potential of different
stress–strain constitutive equations for the ECMwithin a mechanical model of pattern
formation in biological tissues. The results obtained through linear stability analysis
and the dispersion relations derived therefrom support the idea that fluid-like con-
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stitutive models, such as the Maxwell model and the Jeffrey model, have a pattern
formation potential much higher than solid-like models, such as the Kelvin–Voigt
model and the standard linear solid model. This is confirmed by the results of numeri-
cal simulations, which demonstrate that, all else being equal, spatial patterns emerge in
the case where the Maxwell model is used to represent the stress–strain relation of the
ECM, while no patterns are observed when the Kelvin–Voigt model is employed. Our
findings suggest that further empirical work is required to acquire detailed quantitative
information on the mechanical properties of components of the ECM in different bio-
logical tissues in order to furnish mechanical and mechanochemical models of pattern
formation with stress–strain constitutive equations for the ECM that provide a more
faithful representation of the underlying tissue rheology.

Keywords Pattern formation · Mechanical models · Murray–Oster theory ·
Biological tissues · Stress–strain constitutive equations · Linear viscoelasticity

1 Introduction

Pattern formation resulting from spatial organisation of cells is at the basis of a broad
spectrum of physiological and pathological processes in living tissues (Jernvall et al.
2003). While the first formal exploration of pattern and form from a mathemati-
cal (strictly speaking, geometrical) perspective goes back over a century to D’Arcy
Thompson’s “On Growth and Form” (Thompson 1917), the modern development
of mathematical models for this biological phenomenon started halfway through
the twentieth century to elucidate the mechanisms that underly morphogenesis and
embryogenesis (Maini 2005). Since then, a number of mathematical models for the
formation of cellular patterns have been developed (Urdy 2012). Amongst these, par-
ticular attention has been given to reaction–diffusion models and mechanochemical
models of pattern formation (Murray 2001).

Reaction–diffusion models of pattern formation, first proposed by Turing in his
seminal 1952 paper (Turing 1952) and then further developed by Gierer and Mein-
hardt (Gierer and Meinhardt 1972; Meinhardt 1982), apply to scenarios in which the
heterogeneous spatial distribution of some chemicals (i.e. morphogens) acts as a tem-
plate (i.e. a pre-pattern) according to which cells organise and arrange themselves in
different sorts of spatial patterns. These models are formulated as coupled systems of
reaction–diffusion equations for the space-time dynamics of the concentrations of two
morphogens, with different reaction kinetics depending on the biological problem at
stake. Such systems exhibit diffusion-driven instability whereby homogenous steady
states are driven unstable by diffusion, resulting in the formation of pre-patterns, pro-
vided that the diffusion rate of one of the morphogens is sufficiently higher than the
other (Maini et al. 1997; Maini and Woolley 2019; Maini et al. 2012; Murray 1981).

On the other hand, mechanochemical models of pattern formation, first proposed
by Murray, Oster and coauthors in the 1980s (Murray and Oster 1984a, b; Murray
et al. 1983; Oster et al. 1983), describe spatial organisation of cells driven by the
mechanochemical interaction between cells and the extracellular matrix (ECM)—i.e.
the substratum composed of collagen fibres and various macromolecules, partly pro-
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duced by the cells themselves, in which cells are embedded (Harris 1984; Harris et al.
1981). These models in their original form consist of systems of partial differential
equations (PDEs) comprising a balance equation for the cell density, a balance equa-
tion for the ECM density, and a force-balance equation describing the mechanical
equilibrium of the cell-ECM system (Murray and Maini 1989; Murray et al. 1988).
When chemical processes are neglected, these models reduce to mechanical models of
pattern formation (Byrne and Chaplain 1996; Murray and Maini 1989; Murray et al.
1988).

While reaction–diffusion models well explain the emergence and characteristics
of patterns arising during chemical reactions (Castets et al. 1990; Maini et al. 1997;
Maini andWoolley 2019), as well as pigmentation patterns found on shells (Meinhardt
2009) or animal coatings (Kondo and Asai 1995; Murray 2001), various observations
seem to suggest they may not always be the most suited models to study morphogenic
pattern formation (Bard and Lauder 1974; Brinkmann et al. 2018; Maini and Woolley
2019). For instance, experiments up to this day seem to fail in the identification of
appropriate morphogens and overall molecular interactions predicted by Turing mod-
els in order for de novo patterns to emerge may be too complex. In addition, unrealistic
parameter values would be required in order to reproduce experimentally observable
patterns and the models appear to be too sensitive to parameter changes, hence lack-
ing the robustness required to capture precise patterns. These considerations indicate
that other mechanisms, driven for instance by significant mechanical forces, should
be considered since solely chemical interactions may not suffice in explaining the
emergence of patterns during morphogenesis. Hence, mechanochemical models may
be better suited. Interestingly, this need to change modelling framework sometimes
arises within the same biological application as time progresses. For instance, supra-
cellular organisation in the early stages of embryonic development closely follows
morphogenic chemical patterns, but further tissue-level organisation requires addi-
tional cooperation of osmotic pressures and mechanical forces (Petrolli et al. 2019).
Similarly, pattern formation during vasculogenesis is generally divided into an early
stage highly driven by cell migration following chemical cues, and a later one domi-
nated bymechanical interactions between the cells and the ECM (Ambrosi et al. 2005;
Scianna et al. 2013; Tosin et al. 2006). Finally, purely mechanical models are a use-
ful tool for studying the isolated role of mechanical forces and can capture observed
phenomena without the inclusion of chemical cues (Petrolli et al. 2019; Serra-Picamal
et al. 2012; Tlili et al. 2018).

Over the years, mechanochemical and mechanical models of pattern formation in
biological tissues have been used to study a variety of biomedical problems, including
morphogenesis and embryogenesis (Brinkmann et al. 2018; Cruywagen and Murray
1992; Maini and Murray 1988; Murray and Maini 1986; Murray et al. 1988; Mur-
ray and Oster 1984a, b; Murray et al. 1983; Oster et al. 1983; Perelson et al. 1986),
angiogenesis and vasculogenesis (Manoussaki 2003; Scianna et al. 2013; Tranqui and
Tracqui 2000), cytoskeleton reorganisation (Alonso et al. 2017; Lewis and Murray
1991), wound healing and contraction (Javierre et al. 2009; Maini et al. 2002; Olsen
et al. 1995; Tranquillo and Murray 1992), and stretch marks (Gilmore et al. 2012).
These models have also been used to estimate the values of cell mechanical parame-
ters, with a particular focus on cell traction forces (Barocas et al. 1995; Barocas and
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Tranquillo 1994; Bentil and Murray 1991; Ferrenq et al. 1997; Moon and Tranquillo
1993; Perelson et al. 1986). The roles that different biological processes play in the
formation of cellular patterns can be disentangled via linear stability analysis (LSA) of
the homogenous steady states of the model equations—i.e. investigating what param-
eters of the model, and thus what biological processes, can drive homogenous steady
states unstable and promote the emergence of cell spatial organisation. Further insight
into certain aspects of pattern formation in biological tissues can also be provided by
nonlinear stability analysis of the homogenous steady states (Cruywagen and Murray
1992; Lewis and Murray 1991; Maini and Murray 1988).

These models usually rely on the assumption that the cell-ECM system can be
regarded as an isotropic linear viscoelastic material. This is clearly a simplification
due to the nonlinear viscoelasticity and anisotropy of soft tissues (Bischoff et al. 2004;
Huang et al. 2005; Liu and Bilston 2000; Nasseri et al. 2002; Snedeker et al. 2005;
Valtorta andMazza 2005; Verdier 2003), a simplification that various rheological tests
conducted on biological tissues have nonetheless shown to be justified in the regime of
small strains (Bilston et al. 1997; Liu andBilston 2000;Nasseri et al. 2002;Valtorta and
Mazza 2005), which is the one usually of interest in the applications of such models.
Under this assumption, the force-balance equation for the cell-ECM system is often
defined using the Kelvin–Voigt model of linear viscoelasticity to represent the stress–
strain relation of the ECM (Byrne and Chaplain 1996; Murray et al. 1988; Oster et al.
1983). However, due to the multifaceted bio-physical nature of the ECM constituents,
there are rheological aspects that cannot be effectively captured by the Kelvin–Voigt
model and, therefore, depending on the pattern formation process and the type of
biological tissue considered, other constitutive models of linear viscoelasticity may be
better suited (Barocas and Tranquillo 1994). In this regard, Byrne and Chaplain (1996)
demonstrated that, ceteris paribus, using the Maxwell model of linear viscoelasticity
to describe the stress–strain relation of the ECM in place of the Kelvin–Voigt model
can lead to different dispersion relationswith a higher pattern formation potential. This
suggests that a more thorough investigation of the capability of different stress–strain
constitutive equations of producing spatial patterns is required.

With this aim, here we complement and further develop the results presented in
Byrne and Chaplain (1996) by systematically assessing the pattern formation potential
of different stress–strain constitutive equations for theECMwithin amechanicalmodel
of pattern formation in biological tissues (Byrne and Chaplain 1996; Murray et al.
1988; Oster et al. 1983). Compared to the work of Byrne and Chaplain (1996), here
we consider a wider range of constitutive models, we allow cell traction forces to be
reduced by cell–cell contact inhibition, and undertake numerical simulations of the
model equations showing the formation of cellular patterns both in one and in two
spatial dimensions. A related study has been conducted by Alonso et al. (2017), who
considered a mathematical model of pattern formation in the cell cytoplasm.

The paper is structured as follows. In Sect. 2, we recall the essentials of viscoelastic
materials and provide a brief summary of the one-dimensional stress–strain constitu-
tive equations thatwe examine. In Sect. 3,we describe the one-dimensionalmechanical
model of pattern formation in biological tissues that is used in our study, which follows
closely the one considered in Byrne and Chaplain (1996); Murray et al. (1988); Oster
et al. (1983). In Sect. 4, we carry out a linear stability analysis (LSA) of a biologically
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relevant homogeneous steady state of the model equations, derive dispersion relations
when different stress–strain constitutive equations for the ECM are used and inves-
tigate how the model parameters affect the dispersion relations obtained. In Sect. 5,
we verify key results of LSA via numerical simulations of the model equations. In
Sect. 6, we complement these findings with the results of numerical simulations of
a two-dimensional version of the mechanical model of pattern formation considered
in the previous sections. Section 7 concludes the paper and provides an overview of
possible research perspectives.

2 Essentials of Viscoelastic Materials and Stress–Strain Constitutive
Equations

In this section, we first recall the main properties of viscoelastic materials (see
Sect. 2.1). Then, we briefly present the one-dimensional stress–strain constitutive
equations that are considered in our study and summarise the main rheological prop-
erties of linear viscoelastic materials that they capture (see Sect. 2.2). Most of the
contents of this section can be found in standard textbooks, such as Findley et al.
(1976) [chapters 1 and 5] and Mase (1970), and are reported here for the sake of com-
pleteness. Specific considerations of and applications to living tissues can be found in
Fung (1993).

2.1 Essentials of Viscoelastic Materials

As the name suggests, viscoelastic materials exhibit both viscous and elastic charac-
teristics, and the interplay between them may result in a wide range of rheological
properties that can be examined through creep and stress relaxation tests. During a
creep test, a constant stress is first applied to a specimen of material and then removed,
and the time dynamic of the correspondent strain is tracked. During a stress relaxation
test, a constant strain is imposed on a specimen of material and the evolution in time
of the induced stress is observed (Findley et al. 1976).

Here, we list the main properties of viscoelastic materials that may be observed
during the first phase of a creep test (see properties 1a–1c), during the recovery phase,
that is, when the constant stress is removed from the specimen (see properties 2a–2c),
and during a stress relaxation test (see property 3).

1a Instantaneous elasticity. As soon as a stress is applied, an instantaneous corre-
sponding strain is observed.

1b Delayed elasticity.While the instantaneous elastic response to a stress is a purely
elastic behaviour, due to the viscous nature of the material a delayed elastic
response may also be observed. In this case, under constant stress the strain slowly
and continuously increases at decreasing rate.

1c Viscous flow. In some viscoelastic materials, under a constant stress, the strain
continues to grow within the viscoelastic regime (i.e. before plastic deformation).
In particular, viscous flow occurs when the strain increases linearly with time and
stops growing at removal of the stress only.
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2a Instantaneous recovery. When the stress is removed, an instantaneous recovery
(i.e. an instantaneous strain decrease) is observed because of the elastic nature of
the material.

2b Delayed recovery.Upon removal of the stress, a delayed recovery (i.e. a continuous
decrease in the strain at decreasing rate) occurs.

2c Permanent set.While elastic strain is reversible, in viscoelasticmaterials a nonzero
strain, known as “permanent set” or “residual strain”, may persist even when the
stress is removed.

3 Stress relaxation. Under constant strain, gradual relaxation of the induced stress
occurs. In some cases, this may even culminate in total stress relaxation (i.e. the
stress decays to zero).

The subset of these properties exhibited by a viscoelastic material will depend on—
and hence define—the type of material being tested. Moreover, during each phase of
the creep test, more than one of the above properties may be observed. For instance, a
Maxwell material under constant stress will exhibit instantaneous elasticity followed
by viscous flow.

2.2 One-Dimensional Stress–Strain Constitutive Equations Examined in Our Study

In this section, we briefly describe the different constitutive equations that are used in
our study to represent the stress–strain relation of the ECM. In general, these equations
can be used to predict how a viscoelastic material will react to different loading con-
ditions, in one spatial dimension, and rely on the assumption that viscous and elastic
characteristics of the material can be modelled, respectively, via linear combinations
of dashpots and springs, as illustrated in Fig. 1. Different stress–strain constitutive
equations correspond to different arrangements of these elements and capture dif-
ferent subsets of the rheological properties summarised in the previous section (see
Table 2). In the remainder of this section, we will denote the stress and the strain at
position x and time t by σ(t, x) and ε(t, x), respectively.
Linear elastic model.When viscous characteristics are neglected, a linear viscoelastic
material can be modelled as a purely elastic spring with elastic modulus (i.e. Young’s
modulus) E > 0, as illustrated in Fig. 1a. In this case, the stress–strain constitutive
equation is given by Hooke’s spring law for continuous media, that is,

σ = Eε . (1)

Linear viscous model.When elastic characteristics are neglected, a linear viscoelastic
material can be modelled as a purely viscous damper of viscosity η > 0, as illustrated
in Fig. 1b. In this case, the stress–strain constitutive equation is given by Newton’s
law of viscosity, that is,

σ = η ∂tε . (2)

Kelvin–Voigt model.TheKelvin–Voigtmodel, also known as theVoigtmodel, relies on
the assumption that viscous and elastic characteristics of a linear viscoelastic material
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Fig. 1 Combinations of elastic springs and viscous dampers, together with the associated elastic (E , E1,
E2) and viscous moduli (η, η1, η2), for the models of linear viscoelasticity considered in this work: the
linear elastic model (a), the linear viscous model (b), the Kelvin–Voigt model (c), the Maxwell model (d),
the SLS model (e), and the Jeffrey model (f)

can simultaneously be captured by considering a purely elastic spring with elastic
modulus E and a purely viscous damper of viscosity η in parallel, as illustrated in
Fig. 1c. The corresponding stress–strain constitutive equation is

σ = Eε + η ∂tε . (3)

Maxwell model. The Maxwell model relies on the assumption that viscous and elastic
characteristics of a linear viscoelastic material can be captured by considering a purely
elastic spring with elastic modulus E and a purely viscous damper of viscosity η in
series, as illustrated in Fig. 1d. The corresponding stress–strain constitutive equation
is

1

E
∂tσ + σ

η
= ∂tε . (4)

123



   80 Page 8 of 38 C. Villa et al.

Standard linear solid (SLS) model. The SLS model, also known as the Kelvin model,
relies on the assumption that viscous and elastic characteristics of a linear viscoelastic
material can be captured by considering a Kelvin arm of elastic modulus E1 and
viscosity η in series with a purely elastic spring of elastic modulus E2, as illustrated
in Fig. 1e. The corresponding stress–strain constitutive equation is Mase (1970)

1

E2
∂tσ + 1

η

(
1 + E1

E2

)
σ = ∂tε + E1

η
ε . (5)

Jeffrey model.The Jeffreymodel, also known as the Oldroyd-B or 3-parameter viscous
model, relies on the assumption that viscous and elastic characteristics of a linear
viscoelastic material can be captured by considering a Kelvin arm of elastic modulus
E and viscosity η1 in series with a purely viscous damper of viscosity η2, as illustrated
in Fig. 1f. The corresponding stress–strain constitutive equation is

(
1 + η1

η2

)
∂tσ + E

η2
σ = η1∂

2
t tε + E∂tε . (6)

Generic 4-parameter model. The following stress–strain constitutive equation encom-
passes all constitutivemodels of linear viscoelasticitywhereby a combination of purely
elastic springs and purely viscous dampers, up to a total of four elements, and therefore
4 parameters, is considered

a2∂
2
t tσ + a1∂tσ + a0σ = b2∂

2
t tε + b1∂tε + b0ε . (7)

Here, the non-negative, real parameters a0, a1, a2, b0, b1, b2 depend on the elastic
moduli and the viscosities of the underlying combinations of springs and dampers.
When these parameters are defined as in Table 1, the generic 4-parameter constitu-
tive model (7) reduces to the specific stress–strain constitutive equations (1)–(6). For
convenience of notation, we define the differential operators

La := a2∂
2
t t + a1∂t + a0 and Lb := b2∂

2
t t + b1∂t + b0 (8)

so that the stress–strain constitutive equation (7) can be rewritten in the following
compact form

La[ σ ] = Lb[ ε ] . (9)

A summary of the rheological properties of linear viscoelastic materials listed in
Sect. 2.1 that are captured by the one-dimensional stress–strain constitutive Eqs. (1)–
(6) is provided in Table 2. These properties can be examined through mathematical
procedures that mimic creep and stress relaxation tests (Findley et al. 1976). Notice
that, for all these constitutive models, instantaneous elasticity correlates with instanta-
neous recovery, delayed elasticity correlates with delayed recovery, and viscous flow
correlates with permanent set. Materials are said to be more solid-like when their
elastic response dominates their viscous response, and more fluid-like in the opposite
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Table 1 Relations between the generic 4-parameter model (7) and the stress–strain constitutive Eqs. (1)–(6)

Generic 4-parameters model a2 a1 a0 b2 b1 b0

Linear elastic model 0 0 1 0 0 E

Linear viscous model 0 0 1 0 η 0

Kelvin-Voigt model 0 0 1 0 η E

Maxwell model 0 1
E

1
η 0 1 0

SLS model 0 1
E2

1
η

(
1 + E1

E2

)
0 1 E1

η

Jeffrey model 0 1 + η1
η2

E
η2

η1 E 0

case (Nargess and Yanlan 2021). For this reason, models of linear viscoelasticity that
capture viscous flow and, as a consequence, permanent set—such as the Maxwell
model and the Jeffrey model—are classified as “fluid-like models”, while those which
do not— such as the Kelvin–Voigt model and the SLSmodel—are classified as “solid-
like models”. In the remainder of the paper, we are going to include the linear viscous
model in the fluid-like class and the linear elastic model in the solid-like class, as they
capture—or do not capture—the relevant properties, even if they are not models of
viscoelasticity per se.

3 A One-Dimensional Mechanical Model of Pattern Formation

We consider a one-dimensional region of tissue and represent the normalised densi-
ties of cells and ECM at time t ∈ [0, T ] and position x ∈ [�, L] by means of the
non-negative functions n(t, x) and ρ(t, x), respectively. We let u(t, x) model the dis-
placement of a material point of the cell-ECM system originally at position x , which is
induced by mechanical interactions between cells and the ECM—i.e. cells pull on the
ECM in which they are embedded, thus inducing ECM compression and densification
which in turn cause a passive form of cell repositioning (Van Helvert et al. 2018).

3.1 Dynamics of the Cells

Following Murray et al. (1988); Oster et al. (1983), we consider a scenario where
cells change their position according to a combination of: (i) undirected, random
movement, which we describe through Fick’s first law of diffusion with diffusivity
(i.e. cell motility) D > 0; (ii) haptotaxis (i.e. cell movement up the density gradient
of the ECM) with haptotactic sensitivity α > 0; (iii) passive repositioning caused by
mechanical interactions between cells and the ECM,which ismodelled as an advection
with velocity field ∂t u. Moreover, we model variation of the normalised cell density
caused by cell proliferation and death via logistic growth with intrinsic growth rate
r > 0 and unitary local carrying capacity. Under these assumptions, we describe cell
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dynamics through the following balance equation for n(t, x)

∂t n = ∂x [ D ∂xn − n (α ∂xρ + ∂t u)] + r n(1 − n) (10)

subject to suitable initial and boundary conditions.

3.2 Dynamics of the ECM

As was done for the cell dynamics, in a similar manner we model compression and
densification of the ECM induced by cell-ECM interactions as an advection with
velocity field ∂t u. Furthermore, as in Murray et al. (1988); Oster et al. (1983), we
neglect secretion of ECMcomponents by the cells since this process occurs on a slower
time scale compared to mechanical interactions between cells and the ECM. Under
these assumptions, we describe the cell dynamics through the following transport
equation for ρ(t, x)

∂tρ = −∂x (ρ ∂t u) (11)

subject to suitable initial and boundary conditions.

3.3 Force-Balance Equation for the Cell-ECM System

FollowingMurray et al. (1988); Oster et al. (1983), we represent the cell-ECM system
as a linear viscoelastic material with low Reynolds number (i.e. inertial terms are
negligible compared to viscous terms) and we assume the cell-ECM system to be in
mechanical equilibrium (i.e. traction forces generated by the cells are in mechanical
equilibrium with viscoelastic restoring forces developed in the ECM and any other
external forces). Under these assumptions, the force-balance equation for the cell-
ECM system is of the form

∂x (σc + σm) + ρ F = 0 , (12)

where σm(t, x) is the contribution to the stress of the cell-ECM system coming from
the ECM, σc(t, x) is the contribution to the stress of the cell-ECM system coming
from the cells, and F(t, x) is the external force per unit matrix density, which comes
from the surrounding tissue that constitutes the underlying substratum to which the
ECM is attached.

The stress σc is related to cellular traction forces acting on the ECM and is defined
as

σc := τ f (n) n
(
ρ + β ∂2xxρ

)
with f (n) := 1

1 + λ n2
. (13)

Definition (13) relies on the assumption that the stress generated by cell traction on the
ECM is proportional to the cell density n and—in the short range—the ECM density
ρ, while the term β ∂2xxρ accounts for long-range cell traction effects, with β being
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the long-range traction proportionality constant. The factor of proportionality is given
by a positive parameter, τ , which measures the average traction force generated by a
cell, multiplied by a non-negative and monotonically decreasing function of the cell
density, f (n), which models the fact that the average traction force generated by a
cell is reduced by cell-cell contact inhibition (Murray 2001). The parameter λ ≥ 0
measures the level of cell traction force inhibition and assuming λ = 0 corresponds
to neglecting the reduction in the cell traction forces caused by cellular crowding.

The stress σm is given by the stress–strain constitutive equation that is used for the
ECM, which we choose to be the general constitutive model (9) with the strain ε(t, x)
being given by the gradient of the displacement u(t, x), that is, ε = ∂xu. Therefore,
we define the stress–strain relation of the ECM via the following equation

La[ σm ] = Lb[ ∂xu ] , (14)

where the differential operators La and Lb are defined according to (8).
Assuming the surrounding tissue to which the ECM is attached to be a linear elastic

material (Murray 2001), the external body force F can bemodelled as a restoring force
proportional to the cell-ECM displacement, that is,

F := −s u . (15)

Here, the parameter s > 0 represents the elastic modulus of the surrounding tissue.
In order to obtain a closed equation for the displacement u(t, x), we apply the

differential operator La[ · ] to the force-balance Eq. (12) and then substitute (13)–(15)
into the resulting equation. In so doing, we find

La [ ∂x (σm + σc) ] = −La [ ρ F ]
⇔La [ ∂x σm ] + La [ ∂x σc ] = La [ sρu ]
⇔ ∂x La [ σm ] = La [ sρu ] − La [ ∂x σc ]
⇔ ∂x Lb [ ∂xu ] = La [ sρu − ∂xσc ]
⇔Lb [ ∂2xxu ] = La [ sρu − ∂xσc ] ,

that is,

Lb [ ∂2xxu ] = La

[
sρu − ∂x

(
τn

1 + λn2
(ρ + β∂2xxρ)

)]
. (16)

Finally, to close the system, Eq. (16) needs to be supplied with suitable initial and
boundary conditions.
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3.4 Boundary Conditions

We close our mechanical model of pattern formation defined by the system of
PDEs (10), (11) and (16) with the following boundary conditions

⎧⎪⎨
⎪⎩

n(t, �) = n(t, L) , ∂xn(t, �) = ∂xn(t, L) ,

ρ(t, �) = ρ(t, L) , ∂2xxρ(t, �) = ∂2xxρ(t, L) ,

u(t, �) = u(t, L) , ∂xu(t, �) = ∂xu(t, L),

for all t ∈ [0, T ] . (17)

Here, the conditions on the derivatives of n, ρ and u ensure that the fluxes in
Eqs. (10) and (11), and the overall stress (σm + σc) in Eq. (16), are periodic on the
boundary, i.e. they ensure that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ D ∂x n − n (α ∂xρ + ∂t u)]x=� = [ D ∂x n − n (α ∂xρ + ∂t u)]x=L ,

[n ∂t u]x=� = [n ∂t u]x=L ,[
τ

n

(1 + λ2)
( ρ + β ∂2xxρ ) + σm

]
x=�

=
[
τ

n

(1 + λ2)
( ρ + β ∂2xxρ ) + σm

]
x=L

,

for all t ∈ [0, T ] ,

with σm given as a function of ∂xu in Eq. (14), according to the selected constitutive
model. The periodic boundary conditions (17) reproduce a biological scenario inwhich
the spatial region considered is part of a larger area of tissue whereby similar dynamics
of the cells and the ECM occur.

4 Linear Stability Analysis and Dispersion Relations

In this section, we carry out LSA of a biologically relevant homogeneous steady
state of the system of PDEs (10), (11) and (16) (see Sect. 4.1) and we compare the
dispersion relations obtained when the constitutive models (1)–(6) are alternatively
used to represent the contribution to the overall stress coming from the ECM, in order
to explore the pattern formation potential of these stress–strain constitutive equations
(see Sect. 4.2).

4.1 Linear Stability Analysis

Biologically relevant homogeneous steady state. All non-trivial homogeneous steady
states (n̄, ρ̄, ū)ᵀ of the system of PDEs (10), (11) and (16) subject to boundary condi-
tions (17) have components n̄ ≡ 1 and ū ≡ 0, and we consider the arbitrary non-trivial
steady state ρ̄ ≡ ρ0 > 0 amongst the infinite number of possible homogeneous steady
states of the transport Eq. (11) for the normalised ECM density ρ. Hence, we focus
our attention on the biologically relevant homogeneous steady state v̄ = (1, ρ0, 0)ᵀ.
Linear stability analysis to spatially homogeneous perturbations. In order to undertake
linear stability analysis of the steady state v̄ = (1, ρ0, 0)ᵀ to spatially homoge-
neous perturbations, we make the ansatz v(t, x) ≡ v̄ + ṽ(t), where the vector
ṽ(t) = (ñ(t), ρ̃(t), ũ(t))ᵀ models small spatially homogeneous perturbations and
linearise the system of PDEs (10), (11) and (16) about the steady state v̄. Assuming
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ñ(t), ρ̃(t) and ũ(t) to be proportional to exp (ψ t), with ψ �= 0, one can easily verify
that ψ satisfies the algebraic equation ψ(ψ + r)(ψ2a2 + ψa1 + a0) = 0. Since r is
positive and the parameters a0, a1 and a2 are all non-negative, the solution ψ of such
an algebraic equation is necessarily negative and, therefore, the small perturbations
ñ(t), ρ̃(t) and ũ(t) will decay to zero as t → ∞. This implies that the steady state v̄
will be stable to spatially homogeneous perturbations for any choice of the parameter
a0, a1, a2, b0, b1 and b2 in the stress–strain constitutive equation (14) (i.e. for all
constitutive models (1)–(6)).
Linear stability analysis to spatially inhomogeneous perturbations. In order to
undertake linear stability analysis of the steady state v̄ = (1, ρ0, 0)ᵀ to spatially
inhomogeneous perturbations, we make the ansatz v(t, x) = v̄ + ṽ(t, x), where the
vector ṽ(t, x) = (ñ(t, x), ρ̃(t, x), ũ(t, x))ᵀ models small spatially inhomogeneous
perturbations and linearise the system of PDEs (10), (11) and (16) about the steady
state v̄. Assuming ñ(t, x), ρ̃(t, x) and ũ(t, x) to be proportional to exp (ψ t + ikx),
with ψ �= 0 and k �= 0, we find that ψ satisfies the following equation

ψ
[
c3(k

2)ψ3 + c2(k
2)ψ2 + c1(k

2)ψ + c0(k
2)

]
= 0 , (18)

with

c3(k
2) := a2τλ1β k4 + [

b2 − a2τ(λ1 + λ2ρ0)
]
k2 + a2sρ0 (19)

c2(k
2) := a2τλ1Dβ k6 + [

b2D − a2τ(λ2ρ0α + Dλ1 − rλ1β) + a1τλ1β
]
k4

+ [
b2r + b1 + a2(Dsρ0 − rτλ1) − a1τ(λ1 + λ2ρ0)

]
k2 + (a1 + a2r)sρ0 (20)

c1(k
2) := a1τλ1Dβ k6 + [

b1D − a1τ(λ2ρ0α + Dλ1 − rλ1β) + a0τλ1β
]
k4

+ [
b1r + b0 + a1(Dsρ0 − rτλ1) − a0τ(λ1 + λ2ρ0)

]
k2 + (a0 + a1r)sρ0 (21)

and

c0(k
2) := a0τλ1Dβ k6 + [

b0D − a0τ(λ2ρ0α + Dλ1 − rλ1β)
]
k4

+ [
b0r + a0(Dsρ0 − rτλ1)

]
k2 + a0rsρ0

(22)

where

λ1 := 1

1 + λ
and λ2 := (1 − λ)

(1 + λ)2
.

Equation (18) has multiple solutions (ψ(k2)) for each k2, and we denote by Re(·)
the maximum real part of all these solutions. For cell patterns to emerge, we need
the non-trivial homogeneous steady state v̄ to be unstable to spatially inhomogeneous
perturbations, that is, we needRe(ψ(k2)) > 0 for some k2 > 0.Notice that a necessary
condition for this to happen is that at least one amongst c0(k2), c1(k2), c2(k2) and
c3(k2) is negative for some k2 > 0. Hence, the fact that if τ = 0, then c0(k2), c1(k2),
c2(k2) and c3(k2) are all non-negative for any value of k2 allows us to conclude that
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having τ > 0 is a necessary condition for pattern formation to occur. Thiswas expected
based on the results presented in Murray (2001) and references therein.

In the case, where the model parameters are such that c2(k2) = 0 and c3(k2) = 0,
solving Eq. (18) for ψ gives the following dispersion relation

ψ(k2) = −c0(k2)

c1(k2)
(23)

and for the condition Re(ψ(k2)) > 0 to be met it suffices that, for some k2 > 0,

c0(k
2) > 0 and c1(k

2) < 0 or c0(k
2) < 0 and c1(k

2) > 0 .

On the other hand, when the model parameters are such that only c3(k2) = 0, from
Eq. (18) we obtain the following dispersion relation

ψ(k2) = −c1(k2) ±
√(

c1(k2)
)2 − 4c2(k2)c0(k2)

2c2(k2)
, (24)

and for the condition Re(ψ(k2)) > 0 to be satisfied it is sufficient that one of the
following four sets of conditions holds

c2(k
2) > 0 and c0(k

2) < 0 or c2(k
2) > 0 , c1(k

2) < 0 and c0(k
2) > 0

or

c2(k
2) < 0 and c0(k

2) > 0 or c2(k
2) < 0 , c1(k

2) > 0 and c0(k
2) < 0 .

Finally, in the general case where the model parameters are such that c3(k2) �= 0
as well, from Eq. (18) we obtain the following dispersion relation

ψ(k2) =
{
q +

[
q2 + (

m − p2
)3]1/2}1/3

+
{
q −

[
q2 + (

m − p2
)3]1/2}1/3

+ p ,

(25)

where p ≡ p(k2), q ≡ q(k2) and m ≡ m(k2) are defined as

p := − c2
3c3

, q := p3 + c2c1 − 3c3c0
6c23

, m := c1
3c3

.

In this case, identifying sufficient conditions to ensure that the real part of ψ(k2)
is positive for some k2 > 0 requires lengthy algebraic calculations. We refer the
interested reader to Gilmore et al. (2012), where the Routh–Hurwitz stability criterion
was used to analyse this general case and obtain more explicit conditions on the model
parameters under which pattern formation occurs.
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4.2 Dispersion Relations

Substituting the definitions ofa0,a1,a2,b0,b1 andb2 corresponding to the stress–strain
constitutive equations (1)–(6), which are reported in Table 1, into definitions (19)–(22)
for c0(k2), c1(k2), c2(k2) and c3(k2), and then using the dispersion relation given by
formula (23), (24) or (25) depending on the values of c2(k2) and c3(k2) so obtained, we
derive the dispersion relation for each of the constitutive models (1)–(6). In particular,
we are interested in whether the real part of each dispersion relation is positive, so
whenever multiple roots are calculated—for instance using (24)—the largest root is
considered. In addition, dispersion relations throughout this section are plotted against
the quantity k/π , which directly correlates with perturbation modes and can therefore
better highlight mode selection during the sensitivity analysis.
Base-case dispersion relations. Figure 2 displays the dispersion relations obtained for
the stress–strain constitutive equations (1)–(6) under the following base-case param-
eter values

E = 1 , E1 = E2 = 1

2
E = 0.5 , η = 1 , η1 = η2 = 1

2
η = 0.5 , D = 0.01 ,

(26)

ρ0 = 1 , α = 0.05 , r = 1 , s = 10 , λ = 0.5 , τ = 0.2 β = 0.005 . (27)

The parameter values given by (26) and (27) are chosen for illustrative purposes,
in order to highlight the different qualitative behaviour of the dispersion relations
obtained using different models and are comparable with nondimensional parameter
values that can be found in the extant literature (see Appendix A for further details). A
comparison between the plots in Fig. 2 reveals that fluid-like models, that is, the linear
viscous model (2), the Maxwell model (4), and the Jeffrey model (6) (cf. Table 2),
have a higher pattern formation potential than solid-like models, since under the same
parameter set they exhibit a range—or, more precisely, they exhibit the same range—
of unstable modes (i.e. Re(ψ(k2)) > 0 for a range of values of k/π ), while the others
have no unstable modes.

We now undertake a sensitivity analysis with respect to the different model parame-
ters and discuss key changes that occur in the base-case dispersion relations displayed
in Fig. 2.
ECM elasticity. The plots in Fig. 3 illustrate how the base-case dispersion relations
displayed in Fig. 2 change when different values of the parameter E , and therefore
also E1 and E2 (i.e. the parameters modelling ECM elasticity), are considered. These
plots show that lower values of these parameters correlate with overall larger values
of Re(ψ(k2)) for all constitutive models, except for the linear viscous one, which
corresponds to speeding up the formation of spatial patterns, when these may form.
In addition, sufficiently small values of the parameters E , E1, and E2 allow the linear
elasticmodel (1), theKelvin–Voigtmodel (3), and theSLSmodel (5) to exhibit unstable
modes. However, further lowering the values of these parameters appears to lead to
singular dispersion relations (cf. the plots for the linear elastic model (1), the Maxwell
model (4), and the SLS model (5) in Fig. 3), which suggests that linear stability theory
may fail in the regime of low ECM elasticity.
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Fig. 2 Base-case dispersion relations. Dispersion relations corresponding to the stress–strain constitutive
equations (1)–(6) for the base-case set of parameter values given by (26) and (27)

ECM viscosity. The plots in Fig. 4 illustrate how the base-case dispersion relations
displayed in Fig. 2 change when different values of the parameter η, and therefore
also η1 and η2 (i.e. the parameters modelling ECM viscosity), are considered. These
plots show that larger values of these parameters leave the range of modes for which
Re(ψ(k2)) > 0 unchanged but reduce the values of Re(ψ(k2)). This supports the idea
that a higher ECM viscosity may not change the pattern formation potential of the
different constitutive models but may slow down the corresponding pattern formation
processes.
Cell motility. The plots in Fig. 5 illustrate how the base-case dispersion relations
displayed in Fig. 2 change when different values of the parameter D (i.e. the parameter
modelling cell motility) are considered. These plots show that larger values of this
parameter may significantly shrink the range of modes for which Re(ψ(k2)) > 0.
In particular, with the exception of the linear elastic model, all constitutive models
exhibit: infinitely many unstable modes when D → 0; a finite number of unstable
modes for intermediate values of D; no unstable modes for sufficiently large values
of D. This is to be expected due to the stabilising effect of undirected, random cell
movement and indicates that higher cell motility may correspond to lower pattern
formation potential.
Intrinsic growth rate of the cell density and elasticity of the surrounding tissue. The
plots in Figs. 6 and 7 illustrate how the base-case dispersion relations displayed in
Fig. 2 change when different values of the parameter r (i.e. the intrinsic growth rate
of the cell density) and the parameter s (i.e. the elasticity of the surrounding tissue)
are, respectively, considered. These plots show that considering larger values of these
parameters reduces the values of Re(ψ(k2)) for all constitutive models, and in par-
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ticular it shrinks the range of unstable modes for the linear viscous model (2), the
Maxwell model (4), and the Jeffrey model (6), which can become stable for values
of r or s sufficiently large. This supports the idea that higher growth rates of the cell
density (i.e. faster cell proliferation and death), and higher substrate elasticity (i.e.
stronger external tethering force) may slow down pattern formation processes and
overall reduce the pattern formation potential for all constitutive models. Moreover,
the plots in Fig. 7 indicate that higher values of s may in particular reduce the pattern
formation potential of the different constitutive models by making it more likely that
Re(ψ(k2)) < 0 for smaller values of k/π (i.e. low-frequency perturbation modes will
be more likely to vanish).
Level of contact inhibition of the cell traction forces and long-range cell traction
forces. The plots in Figs. 8 and 9 illustrate how the base-case dispersion relations
displayed in Fig. 2 change when different values of the parameter λ (i.e. the level
of cell-cell contact inhibition of the cell traction forces) and the parameter β (i.e. the
long-range cell traction forces) are, respectively, considered. Considerations similar to
those previously made about the dispersion relations obtained for increasing values of
the parameters r and s apply to the case where increasing values of the parameter λ and
the parameter β are considered. In addition to these considerations, the plots in Figs. 8
and 9 indicate that for small enough values of λ or β the SLS model (5) can exhibit
unstable modes, which further suggests that weaker contact inhibition of cell traction
forces and lower long-range cell traction forces foster pattern formation.Moreover, the
plots in Fig. 9 indicate that in the asymptotic regime β → 0 we may observe infinitely
many unstable modes (i.e. Re(ψ(k2)) > 0 for arbitrarily large wavenumbers), exiting
the regime of physically meaningful pattern forming instabilities (Moreo et al. 2010;
Perelson et al. 1986).
Cell haptotactic sensitivity and cell traction forces. The plots in Figs. 10 and 11 illus-
trate how the base-case dispersion relations displayed in Fig. 2 change when different
values of the parameter α (i.e. the cell haptotactic sensitivity) and the parameter τ (i.e.
the cell traction force) are, respectively, considered. As expected (Murray 2001), larger
values of these parameters overall increase the value of Re(ψ(k2)) and broaden the
range of values of modes for which Re(ψ(k2)) > 0, so that for large enough values of
these parameters the linear viscous model (2), the Kelvin–Voigt model (3) and the SLS
model (5) can exhibit unstable modes. However, sufficiently large values of τ appear
to lead to singular dispersion relations (cf. the plots for the linear elastic model (1),
the Maxwell model (4), and the SLS model (5) in Fig. 11), which suggests that linear
stability theory may fail in the regime of high cell traction for certain constitutive
models, as previously observed in (Byrne and Chaplain 1996).
Initial ECM density. The plots in Fig. 12 illustrate how the base-case dispersion rela-
tions displayed in Fig. 2 change when different values of the parameter ρ0 (i.e. the
initial ECM density) are considered. Considerations similar to those previously made
about the dispersion relations obtained for increasing values of the parameter α apply
to the case where increasing values of the parameter ρ0 are considered. In addition to
these considerations, the plots in Fig. 12 indicate that smaller values of the parameter
ρ0, specifically ρ0 < 1, correlate with a shift in mode selection towards lower modes
(cf. the plots for the linear viscous model (2), the Maxwell model (4) and the Jeffrey
model (6) in Fig. 12).
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Fig. 3 Effects of varying the ECM elasticity. Dispersion relations corresponding to the stress–strain consti-
tutive equations (1)–(6) for increasing values of the ECM elasticity, that is for E ∈ [0, 1]. The values of the
other parameters are given by (26) and (27). White regions in the plots related to the linear elastic model,
the Maxwell model and the SLS model correspond to Re(ψ(k2)) > 10 (i.e. a vertical asymptote is present
in the dispersion relation). Red dashed lines mark contour lines where Re(ψ(k2)) = 0

Fig. 4 Effects of varying the ECM viscosity. Dispersion relations corresponding to the stress–strain consti-
tutive equations (1)–(6) for increasing values of the ECM viscosity, that is for η ∈ [0, 1]. The values of the
other parameters are given by (26) and (27). Red dashed lines mark contour lines where Re(ψ(k2)) = 0
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Fig. 5 Effects of varying the cellmotility.Dispersion relations corresponding to the stress–strain constitutive
equations (1)-(6) for increasing values of the cell motility, that is for D ∈ [0, 0.1]. The values of the other
parameters are given by (26) and (27). Red dashed lines mark contour lines where Re(ψ(k2)) = 0

Fig. 6 Effects of varying the intrinsic growth rate of the cell density. Dispersion relations corresponding to
the stress–strain constitutive equations (1)–(6) for increasing values of the intrinsic growth rate of the cell
density, that is for r ∈ [0, 10]. The values of the other parameters are given by (26) and (27). Red dashed
lines mark contour lines where Re(ψ(k2)) = 0
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Fig. 7 Effects of varying the elasticity of the surrounding tissue. Dispersion relations corresponding to the
stress–strain constitutive equations (1)–(6) for increasing values of the elasticity of the surrounding tissue,
that is for s ∈ [0, 100]. The values of the other parameters are given by (26) and (27). Red dashed lines
mark contour lines where Re(ψ(k2)) = 0

Fig. 8 Effects of varying the level of cell–cell contact inhibition of the cell traction forces. Dispersion
relations corresponding to the stress–strain constitutive equations (1)–(6) for increasing levels of cell–cell
contact inhibition of the cell traction forces, that is for λ ∈ [0, 2]. The values of the other parameters are
given by (26) and (27). Red dashed lines mark contour lines where Re(ψ(k2)) = 0
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Fig. 9 Effects of varying the long-range cell traction forces.Dispersion relations corresponding to the stress–
strain constitutive equations (1)–(6) for increasing long-range cell traction forces, that is for β ∈ [0, 0.1].
The values of the other parameters are given by (26) and (27). Red dashed lines mark contour lines where
Re(ψ(k2)) = 0

Fig. 10 Effects of varying the cell haptotactic sensitivity. Dispersion relations corresponding to the stress–
strain constitutive equations (1)–(6) for increasing values of the cell haptotactic sensitivity, that is for
α ∈ [0, 0.5]. The values of the other parameters are given by (26) and (27). Red dashed lines mark contour
lines where Re(ψ(k2)) = 0
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Fig. 11 Effects of varying the cell traction forces. Dispersion relations corresponding to the stress–strain
constitutive equations (1)–(6) for increasing cell traction forces, that is for τ ∈ [0, 2]. The values of the
other parameters are given by (26) and (27). White and black regions in the plots related to the linear
elastic model, the Maxwell model and the SLS model correspond, respectively, to Re(ψ(k2)) > 20 and
Re(ψ(k2)) < −20 (i.e. a vertical asymptote is present in the dispersion relation). Red dashed lines mark
contour lines where Re(ψ(k2)) = 0

Fig. 12 Effects of varying the initial ECM density. Dispersion relations corresponding to the stress–strain
constitutive equations (1)–(6) for increasing values of the initial ECM density, that is for ρ0 ∈ [0, 10].
The values of the other parameters are given by (26) and (27). Red dashed lines mark contour lines where
Re(ψ(k2)) = 0
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5 Numerical Simulations of a One-Dimensional Mechanical Model of
Pattern Formation

In this section, we verify key results of LSA presented in Sect. 4 by solving numeri-
cally the system of PDEs (10), (11) and (16) subject to boundary conditions (17). In
particular, we report on numerical solutions obtained in the case where Eq. (16) is
complemented with the Kelvin–Voigt model (3) or the Maxwell model (4). A detailed
description of the numerical schemes employed is provided in the Supplementary
Material (see file ‘SuppInfo’).
Set-up of numerical simulations.We carry out numerical simulations using the param-
eter values given by (26) and (27). We choose the endpoints of the spatial domain to
be � = 0 and L = 1, and the final time T is chosen sufficiently large so that distinct
spatial patterns can be observed at the end of simulations. We consider the initial
conditions

n(0, x) = 1 + 0.01 ε(x) , ρ(0, x) ≡ ρ0 , u(0, x) ≡ 0 , (28)

where ε(x) is a normally distributed random variable with mean 0 and variance 1 for
every x ∈ [0, 1]. Initial conditions (28) model a scenario where random small pertur-
bations are superimposed to the cell density corresponding to the homogeneous steady
state of components n = 1, ρ = ρ0 and u = 0. This is the steady state considered in the
LSA undertaken in Sect. 4.1. Consistent initial conditions for ∂t n(0, x), ∂tρ(0, x) and
∂t u(0, x) are computed numerically—details provided in the SupplementaryMaterial
(see file ‘SuppInfo’). Numerical computations are performed in MATLAB.
Main results. The results obtained are summarised by the plots in Fig. 13, together
with the correspondingvideos provided as supplementarymaterial. The supplementary
video ‘MovS1’ displays the solution of the system of PDEs (10), (11) and (16) subject
to the boundary conditions (17) and initial conditions (28) for the Kelvin–Voigt model
and theMaxwell model from t = 0 until a steady state, displayed in Fig. 13, is reached.
The supplementary videos ‘MovS2’, ‘MovS3’, and ‘MovS4’ display the solution of the
same system of PDEs for the Maxwell model under alternative initial perturbations in
the cell density, i.e. randomly distributed (‘MovS2’), periodic (’MovS3’) or randomly
perturbed periodic (‘MovS4’) initial perturbations.
The results in Fig. 13 and the supplementary video ‘MovS1’ demonstrate that, in
agreement with the dispersion relations displayed in Fig. 2, for the parameter values
given by (26) and (27), small randomly distributed perturbations present in the initial
cell density:

– vanish in the case of the Kelvin–Voigt model, thus leading the cell density to relax
to the homogeneous steady state n = 1 and attain numerical equilibrium at t = 100
while leaving the ECM density unchanged;

– grow in the case of theMaxwellmodel, resulting in the formation of spatial patterns
both in the cell density n and in the ECM density ρ, which attain numerical
equilibrium at t = 500.

Notice that the formation of spatial patterns correlates with the growth of the cell-ECM
displacement u. In fact, the displacement remains close to zero (i.e. ∼ O(10−11))
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Fig. 13 Simulation results for the Kelvin–Voigt model (3) and the Maxwell model (4) under initial con-
ditions (28). Cell density n(t, x) (left), ECM density ρ(t, x) (centre) and cell-ECM displacement u(t, x)
(right) at t = 0 (first row) and at steady state obtained solving numerically the system of PDEs (10), (11)
and (16) complemented with the Kelvin–Voigt model (3) (second row) and with the Maxwell model (4)
(third row), respectively, subject to boundary conditions (17) and initial conditions (28), for the parameter
values given by (26) and (27)
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for the Kelvin–Voigt model, whereas it grows with time for the Maxwell model. In
addition, the steady state obtained for the Maxwell model in Fig. 13, together with
those obtained when considering alternative initial perturbations (see supplementary
videos ‘MovS2’, ‘MovS3’, and ‘MovS4’), demonstrate that, in agreement with the
dispersion relation displayed in Fig. 2 for the Maxwell model, for the parameter
values given by (26) and (27), under small perturbations in the cell density, be they
randomly distributed (cf. supplementary video ‘MovS2’), randomly perturbed periodic
(cf. supplementary video ‘MovS3’) or periodic (cf. supplementary video ‘MovS4’),
the fourth mode is the fastest growing one within the range of unstable modes (cf.
Re(ψ(k2)) > 0 for k/π between 2 and 6, with max

(
Re(ψ(k2))

) ≈ 4 in Fig. 2
for the Maxwell model). In addition, the cellular pattern observed at steady state
exhibits 4 large and equally spaced peaks independently of the initial perturbation (cf.
supplementary videos ‘MovS1’, ‘MovS2’, ‘MovS3’, and ‘MovS4’). Moreover, all the
obtained cellular patterns at steady state exhibit the same structure—up to a horizontal
shift—consisting of four large peaks, independently of the initial conditions that is
used (cf. left panel in the bottom row of Fig. 13 and supplementary videos ‘MovS2’,
‘MovS3’, and ‘MovS4’). This indicates robustness and consistency in the nature of
the saturated nonlinear steady state under specific viscoelasticity assumptions and
parameter choices.

6 Numerical Simulations of a Two-Dimensional Mechanical Model of
Pattern Formation

In this section, we complement the results presented in the previous sections with the
results of numerical simulations of a two-dimensional mechanical model of pattern
formation in biological tissues. In particular, we report on numerical solutions obtained
in the case where the two-dimensional analogue of the system of PDEs (10), (11)
and (16) is complemented with a two-dimensional version of the one-dimensional
Kelvin–Voigtmodel (3) or a two-dimensional version of the one-dimensionalMaxwell
model (4).
A two-dimensional mechanical model of pattern formation. The mechanical model
of pattern formation defined by the system of PDEs (10), (11) and (12) posed on a
two-dimensional spatial domain represented by a bounded set � ⊂ R

2 with smooth
boundary ∂� reads as

⎧⎪⎨
⎪⎩

∂t n = div [D ∇n − n (α ∇ρ + ∂tu)] + r n(1 − n) ,

∂tρ = − div(ρ ∂tu) ,

div(σm + σ c) + ρF = 0 ,

(29)

with t ∈ (0, T ], x = (x1, x2)ᵀ ∈ � and u = (u1, u2)ᵀ. We close the system of
PDEs (29) imposing the two-dimensional version of the periodic boundary condi-
tions (17) on ∂�. Furthermore, we use the following two-dimensional analogues of
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Table 3 Relations between the parameters in the generic two-dimensional stress–strain constitutive equa-
tion (31) and those in the two-dimensional constitutive equations for the Kelvin–Voigt model and the
Maxwell model.

Generic two-dimensional model a1 a0 b1 b0 c1 c0

Kelvin-Voigt model 0 1
η 1 E ′

η ν′ E ′ν′
η

Maxwell model 1
E ′ 1

η 1 0 ν′ 0

definitions (13) and (15)

σ c := τn

1 + λn2

(
ρ + β�ρ

)
I and F := −s u , (30)

where I is the identity tensor. Moreover, in analogy with the one-dimensional case, we
define the stress tensor σm via the two-dimensional constitutive model that is used to
represent the stress–strain relation of the ECM. In particular, we consider the following
generic two-dimensional constitutive equation

a1∂tσ + a0σ = b1∂tε + b0ε + c1∂tθ I + c0θ I . (31)

This constitutive equation, together with the associated parameter choices reported
in Table 3, summarises the two-dimensional version of the one-dimensional Kelvin–
Voigt model (3) and the two-dimensional version of the one-dimensional Maxwell
model (4) that are considered, which are derived in Appendix B.

Here, the strain ε(t, x) and the dilation θ(t, x) are defined in terms of the displace-
ment u(t, x) as

ε = 1

2

(∇u + ∇uᵀ)
and θ = ∇ · u . (32)

Notice that both ε and θ reduce to ε = ∂xu in the one-dimensional case. Amongst the
parameters in the stress–strain constitutive equation (31) reported in Table 3 for the
two-dimensional Kelvin–Voigt and Maxwell models, η is the shear viscosity,

E ′ := E

1 + ν
and ν′ := ν

1 − 2ν
, (33)

where ν is Poisson’s ratio and E is Young’s modulus. As clarified in Appendix B,
the two-dimensional Maxwell model in the form (31) holds under the simplifying
assumption that the quotient between the bulk viscosity and the shear viscosity of the
ECM is equal to ν′.
Set-up of numerical simulations.Wesolve numerically the systemof PDEs (29) subject
to the two-dimensional version of the periodic boundary conditions (17) and comple-
mented with (30)-(33). Numerical simulations are carried out using the following
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parameter values

E = 1 , η = 1 , D = 0.01 , ν = 0.25 , (34)

α = 0.05 , r = 1 , s = 10 , λ = 0.5 , τ = 0.2 β = 0.005 , (35)

which are chosen for illustrative purposes and are comparable with nondimensional
parameter values that can be found in the extant literature (see Appendix A for further
details). We choose � = [0, 1] × [0, 1] and the final time T is chosen sufficiently
large so that distinct spatial patterns can be observed at the end of simulations. We
consider first the following two-dimensional analogue of initial conditions (28)

n(0, x1, x2) = 1 + 0.01 ε(x1, x2) , ρ(0, x1, x2) ≡ 1 , u(0, x1, x2) ≡ 0 , (36)

where ε(x1, x2) is a normally distributed random variable with mean 0 and variance
1 for each (x1, x2) ∈ [0, 1] × [0, 1]. Consistent initial conditions for ∂t n(0, x1, x2),
∂tρ(0, x1, x2) and ∂tu(0, x1, x2) are computed numerically, as similarly done in the
one-dimensional case, and numerical computations are performed in MATLAB with
a numerical scheme analogous to that employed in the one-dimensional case— details
provided in the Supplementary Material (see file ‘SuppInfo’).
Main results. The results obtained are summarised by the plots in Figures 14 and 15,
together with the corresponding videos provided as supplementary material. Solutions
of the system of PDEs (29), together with (30)-(33), subject to initial conditions (36)
and periodic boundary conditions, for the parameter values given by (34) and (35), are
calculated both for the Kelvin–Voigt model (see supplementary video ‘MovS5’) and
the Maxwell model (see supplementary video ‘MovS6’) according to the parameter
changes summarised in Table 3. The randomly generated initial perturbation in the
cell density, together with the cell density at t = 200 both for the Kelvin–Voigt and the
Maxwell model are displayed in Fig. 14, while the solution to the Maxwell model is
plotted at a later time in Fig. 15. Overall, these results demonstrate that, in the scenarios
considered here, which are analogous to those considered for the corresponding one-
dimensional models, small randomly distributed perturbations present in the initial
cell density (cf. first panel in Fig. 14):

– vanish in the case of the Kelvin–Voigt model, thus leading the cell density to
relax to the homogeneous steady state n = 1 and attain numerical equilibrium at
t = 260 (cf. second panel of Fig. 14) while leaving the ECM density unchanged
(see supplementary video ‘MovS5’);

– grow in the case of theMaxwell model, leading to the formation of spatio-temporal
patterns both in the cell density n and in the ECM density ρ (cf. third panel of
Figure 14, Fig. 15 and supplementary video ‘MovS6’), capturing spatio-temporal
dynamic heterogeneity arising in the system.

Similarly to the one-dimensional case, the formation of spatial patterns correlates
with the growth of the cell-ECM displacement u. In fact, the displacement remains
close to zero (i.e. ∼ O(10−11)) for the Kelvin–Voigt model (see supplementary video
‘MovS5’), whereas it grows with time for the Maxwell model (see Figure 15 and
supplementary video ‘MovS6’).
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Fig. 14 Simulation results for the two-dimensional Kelvin–Voigt and Maxwell models (31) under initial
conditions (36). Cell density n(t, x1, x2) at t = 0 (left panel) and at t = 260 for the Kevin–Voigt model
(central panel) and the Maxwell model (right panel) obtained solving numerically the system of PDEs (29)
subject to the two-dimensional version of the periodic boundary conditions (17) and initial conditions (36),
complemented with (30)–(33), for the parameter values given by (34) and (35)

Fig. 15 Simulation results for the two-dimensional Maxwell model (31) under initial conditions (36). Cell
density n(t, x1, x2) (top row, left panel), ECM density ρ(t, x1, x2) (top row, right panel), first and second
components of the cell-ECMdisplacement u(t, x1, x2) (bottom row, left panel and right panel, respectively)
at t = 1000 for the Maxwell model obtained solving numerically the system of PDEs (29) subject to the
two-dimensional version of the periodic boundary conditions (17) and initial conditions (36), complemented
with (30)–(33), for the parameter values given by (34) and (35). The random initial perturbation of the cell
density is displayed in the left panel of Fig. 14
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7 Conclusions and Research Perspectives

Conclusions.We have investigated the pattern formation potential of different stress–
strain constitutive equations for the ECM within a one-dimensional mechanical
model of pattern formation in biological tissues formulated as the system of implicit
PDEs (10), (11), and (16).

The results of linear stability analysis undertaken in Sect. 4 and the dispersion
relations derived therefrom support the idea that fluid-like stress–strain constitutive
equations (i.e. the linear viscous model (2), the Maxwell model (4) and the Jeffrey
model (6)) have a pattern formation potential much higher than solid-like constitutive
equations (i.e. the linear elastic model (1), the Kelvin–Voigt model (3) and the SLS
model (5)). This is confirmed by the results of numerical simulations presented in
Sect. 5, which demonstrate that, all else being equal, spatial patterns emerge in the
case where the Maxwell model (4) is used to represent the stress–strain relation of the
ECM, while no patterns are observed when the Kelvin–Voigt model (3) is employed.
In addition, the structure of the spatial patterns presented in Sect. 5 for the Maxwell
model (4) is consistent with the fastest growing mode predicted by linear stability
analysis. In Sect. 6, as an illustrative example, we have also reported on the results of
numerical simulations of a two-dimensional version of the model, which is given by
the system of PDEs (29) complemented with the two-dimensional Kelvin–Voigt and
Maxwell models (31). These results demonstrate that key features of spatial pattern
formation observed in one spatial dimension carry through when two spatial dimen-
sions are considered, thus conferring additional robustness to the conclusions of our
work.

Our findings corroborate the conclusions of Byrne and Chaplain (1996), suggesting
that prior studies on mechanochemical models of pattern formation relying on the
Kelvin–Voigt model of viscoelasticity may have underestimated the pattern formation
potential of biological tissues and advocating the need for further empirical work
to acquire detailed quantitative information on the mechanical properties of single
components of the ECM in different biological tissues, in order to furnish such models
with stress–strain constitutive equations for the ECM that provide a more faithful
representation of tissue rheology, cf. Fung (1993).
Research perspectives.The dispersion relations given in Sect. 4 indicate that theremay
be parameter regimes whereby solid-like constitutive models of linear viscoelasticity
give rise to dispersion relations which exhibit a range of unstable modes, while the
dispersion relations obtained using fluid-like constitutive models exhibit singularities,
exiting the regime of validity of linear stability analysis. In this regard, it would be
interesting to consider extended versions of themechanical model of pattern formation
defined by the system of PDEs (10), (11) and (16), in order to re-enter the regime of
validity of linear stability analysis for the same parameter regimes and verify that in
such regimes all constitutivemodels can produce patterns. For instance, it is known that
including long-range effects, such as long-range diffusion or long-range haptotaxis,
can promote the formation of stable spatial patterns (Moreo et al. 2010; Oster et al.
1983), which could be explored through nonlinear stability analysis, as previously
done for the case in which the stress–strain relation of the ECM is represented by the
Kelvin–Voigt model (Cruywagen and Murray 1992; Lewis and Murray 1991; Maini
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and Murray 1988). In particular, weakly nonlinear analysis could provide information
on the existence and stability of saturated nonlinear steady states, supercritical bifurca-
tions or subcritical bifurcations, which may exist even when the homogeneous steady
states are stable to small perturbations according to linear stability analysis (Cross
and Greenside 2009). Nonlinear analysis would further enable exploring the existence
of possible differences in the spatial patterns obtained when different stress–strain
constitutive equations for the ECM are used—such as amplitude of patterns, perturba-
tion mode selection, and geometric structure in two spatial dimensions. In particular,
the base-case dispersion relations given in Sect. 4 for different fluid-like models of
viscoelasticity displayed the same range of unstable modes. This suggests that the
investigation of similarities and differences in mode selection between the various
models of viscoelasticity could yield interesting results. It would also be interesting
to construct numerical solutions for the mechanical model defined by the system of
PDEs (10), (11) and (16) complemented with the Jeffrey model (6). For this to be
done, suitable extensions of the numerical schemes presented in the Supplementary
Material (see file ‘SuppInfo’) need to be developed.
It would also be relevant to systematically assess the pattern formation potential of
different constitutive models of viscoelasticity in two spatial dimensions. This would
require to relax the simplifying assumption (A.4) on the shear and bulk viscosities of
the ECM, which we have used to derive the two-dimensional Maxwell model in the
form of (31), and, more in general, to find analytically and computationally tractable
stress–strain-dilation relations, which still remains an open problem (Birman et al.
2002; Haghighi-Yazdi and Lee-Sullivan 2011). In order to solve this problem, new
methods of derivation and parameterisation for constitutive models of viscoelasticity
might need to be developed (Valtorta and Mazza 2005).
As previously mentioned, the values of the model parameters used in this paper have
been chosen for illustrative purposes only. Hence, it would be useful to re-compute
the dispersion relations and the numerical solutions presented here for a calibrated
version of the model based on real biological data. On a related note, there exists a
variety of interesting applications that could be explored by varying parameter values
in the generic constitutive equation (16) both in space and time. For instance, cell
monolayers appear to exhibit solid-like behaviours on small time scales, whereas
they exhibit fluid-like behaviours on longer time scales (Tlili et al. 2018), and spatio-
temporal changes in basement membrane components are known to affect structural
properties of tissues during development or ageing, as well as in a number of genetic
and autoimmune diseases (Khalilgharibi and Mao 2021). Amongst these, remarkable
examples are Alport’s syndrome, characterised by changes in collagen IV network due
to geneticmutations associatedwith the disease, diabetesmellitus, whereby high levels
of glucose induce significant basement membrane turnover, and cancer. In particular,
cancer-associated fibrosis is a disease characterised by an excessive production of
collagen, elastin, and proteoglycans, which directly affects the structure of the ECM
resulting in alterations of viscoelastic tissue properties (Ebihara et al. 2000). Such
alterations in the ECM may facilitate tumour invasion and angiogenesis. Considering
a calibrated mechanical model of pattern formation in biological tissues, whereby
the values of the parameters in the stress–strain constitutive equation for the ECM
change during fibrosis progression, may shed new light on the existing connections
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between structural changes in the ECM components and higher levels of malignancy
in cancer (Chandler et al. 2019; Park et al. 2001).

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-021-00912-5.
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AChoiceof theParameterValues for theBaselineParameter Sets (26)–
(27) and (34)–(35)

In order not to limit the conclusions of our work by selecting a specific biological
scenario, we identified possible ranges of values for each parameter of our model on
the basis of the existing literature on mechanochemical models of pattern formation
and then define our baseline parameter set by selecting values in the middle of such
ranges. In the sensitivity analysis presented in Section 4.2, we then consider the effect
of varying the parameter values within an appropriate range. We first consider the
parameters appearing in equations (10), (11) and (16), as well as in the initial condi-
tions (28) and then consider additional parameters appearing in the two-dimensional
system (29)–(33), and the associated initial conditions (36).
Parameters in the balance equation (10) Nondimensional parameter values for the
cell motility coefficient D in the literature appear as low as D = 10−8 (Gilmore et al.
2012), and as high as D = 10 (Murray and Oster 1984b), but are generally taken in
the range [10−5, 1] (Bentil and Murray 1991; Byrne and Preziosi 2003; Cruywagen
and Murray 1992; Ferrenq et al. 1997; Maini et al. 2002; Murray et al. 1988; Namy
et al. 2004; Olsen et al. 1995; Perelson et al. 1986). Hence, we take D = 0.01 for
our baseline parameter set. The nondimensional haptotactic sensitivity of cells α takes
values in the range [10−5, 5] (Bentil and Murray 1991; Cruywagen and Murray 1992;
Gilmore et al. 2012; Murray et al. 1988; Namy et al. 2004; Olsen et al. 1995; Perelson
et al. 1986), and we take α = 0.05 for our baseline parameter set. While most authors
ignore cell proliferation dynamics, i.e. consider r = 0 (Ambrosi et al. 2005; Byrne
and Preziosi 2003; Gilmore et al. 2012;Murray et al. 1988; Perelson et al. 1986), when
present, the rate of cell proliferation takes nondimensional value in the range [0.02, 5]
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(Cruywagen and Murray 1992; Olsen et al. 1995; Perelson et al. 1986). Hence, we
choose r = 1 for our baseline parameter set.
Parameters in the balance equation (11) While no parameters appear in the balance
equation (11), the value of the parameter ρ0 introduced in Sect. 4 as the spatially
homogenous steady state ρ̄ = ρ0, and successively specified to be the initial ECM
density in (28) for our numerical simulations, stems from neglected terms in Eq. (11).
With the exception of Cruywagen and Murray (1992) and Maini et al. (2002) who,
respectively, have ρ0 = 100.2 and ρ0 = 0.1, this parameter is usually taken to be
ρ0 = 1 in mechanochemical models ignoring additional ECM dynamics (Bentil and
Murray 1991; Cruywagen and Murray 1992; Harris et al. 1981; Manoussaki 2003;
Moreo et al. 2010; Murray and Oster 1984a, b; Olsen et al. 1995; Oster et al. 1983;
Perelson et al. 1986).This is generally justified by assuming the steady state ρ0 of
equation (11) that is introduced by the additional term, say S(n, ρ), is itself used to
nondimensionalise ρ, before assuming the dynamics modelled by S(n, ρ) to occur on
a much slower timescale than convection driven by the cell-ECM displacement, thus
neglecting this term (Murray 2001, p.328), resulting in the nondimensional parameter
ρ̂0 = 1. Hence, we take ρ0 = 1.
Parameters in the force balance Eq. (16) The elastic modulus, or Young modulus, E
is usually itself used to nondimensionalise the other parameters in the dimensional
correspondent of equation (16) and, therefore, does not appear in the nondimensional
system (Bentil and Murray 1991; Gilmore et al. 2012; Murray and Oster 1984b,b;
Murray et al. 1988; Olsen et al. 1995; Perelson et al. 1986). This corresponds to the
nondimensional value E = 1, which is what we take for our baseline parameter set.
The viscosity coefficient η has been taken with nondimensional values in low orders of
magnitude, such asη ∼ 10−3−10−1 (Bentil andMurray1991;Cruywagen andMurray
1992; Gilmore et al. 2012; Perelson et al. 1986), as well as in high orders of magnitude,
such as η ∼ 102−103 (Gilmore et al. 2012; Olsen et al. 1995). It is, however, generally
taken to be η = 1 (Bentil andMurray 1991; Byrne and Chaplain 1996; Cruywagen and
Murray 1992;Murray andOster 1984b;Murray et al. 1988; Perelson et al. 1986),which
iswhatwe choose for our baseline parameter set.When the constitutivemodel includes
two elastic moduli, i.e. for the SLS model (5), or two viscosity coefficients, i.e. for the
Jeffrey model (6), we take E1 = E2 = E/2 = 0.5 and η1 = η2 = η/2 = 0.5 as done
by Alonso et al. (2017). The cell traction parameter τ takes nondimensional values
spanning many orders of magnitude: it can be found as low as τ = 10−5 (Ferrenq
et al. 1997) and as high as τ = 10 (Bentil and Murray 1991; Cruywagen and Murray
1992; Perelson et al. 1986), but it is generally taken to be of order τ ∼ 1 (Bentil
and Murray 1991; Byrne and Chaplain 1996; Gilmore et al. 2012; Murray et al. 1988;
Perelson et al. 1986) and many works consider τ ∼ 10−2−10−1 (Byrne and Chaplain
1996; Ferrenq et al. 1997; Murray and Oster 1984b; Olsen et al. 1995). Hence, for our
baseline parameter set we choose τ = 0.2. The cell–cell contact inhibition parameter
λ generally takes nondimensional values in the range [10−2, 1] (Bentil and Murray
1991; Byrne and Chaplain 1996; Murray et al. 1988; Perelson et al. 1986), so we
choose λ = 0.5 for our baseline parameter set. The long-range cell traction parameter
β, when present, takes nondimensional values in the range [10−3, 10−2] (Bentil and
Murray 1991; Cruywagen and Murray 1992; Gilmore et al. 2012; Moreo et al. 2010;
Murray et al. 1988; Perelson et al. 1986) so we choose β = 0.005 for our baseline
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parameter set. The elasticity of the external elastic substratum s, which is sometimes
ignored or substituted with a viscous drag, has been taken to have nondimensional
values as low as s ∈ [10−1, 1] (Byrne and Chaplain 1996; Murray and Oster 1984b;
Olsen et al. 1995) but is generally chosen in the range [10, 400] (Bentil and Murray
1991; Gilmore et al. 2012; Murray et al. 1988; Perelson et al. 1986). Hence, we take
s = 10 for our baseline parameter set.
Parameters in the 2D system (29)–(33) For the parameters in the 2D system (29)–(33)
and initial condition (36) that also appear in the equations (10), (11), (16) and ini-
tial conditions (28), we make use of the same nondimensional values selected in the
one-dimensional case (see previous paragraphs). The Poisson ratio ν, which can only
take values in the range [0.1, 9.45], has been estimated to be in the range [0.2, 0.3]
for the biological tissue considered in mechanochemical models in the current liter-
ature (Ambrosi et al. 2005; Cruywagen and Murray 1992; Manoussaki 2003; Moreo
et al. 2010). Hence, we choose ν = 0.25 for our baseline parameter set. This results
in E ′ = E/(1+ ν) = 0.8 and ν′ = ν/(1− 2ν) = 0.5 according to definitions (33). In
addition, under the simplifying assumption (A.4) introduced in Appendix B, the bulk
viscosity takes the value μ = ν′η = 0.5η = 0.5, which is in agreement with the fact
that the bulk and shear viscosities are usually assumed to take values of a similar order
of magnitude in the extant literature (Ambrosi et al. 2005; Manoussaki 2003; Moreo
et al. 2010; Murray 2003).

B Derivation of the Two-Dimensional Kelvin–Voigt andMaxwell Mod-
els (31)

Landau & Lifshitz derived from first principles the stress–strain relations that give
the two-dimensional versions of the linear elastic model (1) and of the linear viscous
model (2) in isotropic materials (Landau and Lifshitz 1970), which read, respectively,
as

σ e = E

1 + ν

(
εe + ν

1 − 2ν
θe I

)
and σ v = η ∂tεv + μ∂tθv I . (A.1)

Here, E is Young’s modulus, ν is Poisson’s ratio, I is the identity tensor, η is the shear
viscosity and μ is the bulk viscosity. Moreover, εe and θe are the strain and dilation
under a purely elastic deformation ue while εv and θv are the strain and dilation under
a purely viscous deformation uv , which are all defined via (32).

In the case of a linearly viscoelastic material satisfying Kelvin–Voigt model, the
two-dimensional analogue of (3) is simply given by

σ = σ e + σ v = E ′ε + E ′ν′θ I + η ∂tε + μ∂tθ I . (A.2)

Here, E ′ and ν′ are defined via (33) and there is no distinction between the strain or
dilation associated with each component (i.e. ε = εe = εv and θ = θe = θv), as
the viscous and elastic components are connected in parallel. This is the stress–strain
constitutive equation that is typically used to describe the contribution to the stress of
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the cell-ECM system coming from the ECM in two-dimensional mechanochemical
models of pattern formation (Cruywagen and Murray 1992; Ferrenq et al. 1997;
Javierre et al. 2009;Maini andMurray 1988;Manoussaki 2003;Murray 2001;Murray
et al. 1988; Murray and Oster 1984a, b; Murray et al. 1983; Olsen et al. 1995; Oster
et al. 1983; Perelson et al. 1986).

On the other hand, deriving the two-dimensional analogues of Maxwell model (4),
of the SLS model (5) and of the Jeffrey model (6) is more complicated due to the
presence of elements connected in series. In the case of Maxwell model, using the fact
that the overall strain and dilation will be distributed over the different components
(i.e. ε = εe+εv and θ = θe+θv) along with the fact that the stress on each component
will be the same as the overall stress (i.e. σ = σ e = σ v), one finds

1

η
σ + 1

E ′ ∂tσ = ∂tε + ν′∂tθ I +
(

μ

η
− ν′

)
∂tθv I , (A.3)

with E ′ and ν′ being defined via (33). Under the simplifying assumption that

μ

η
= ν′ (A.4)

the stress–strain constitutive equation (A.3) can be rewritten in the form given by
the generic two-dimensional constitutive equation (31) under the parameter choices
reported in Table 3. Dividing (A.2) by η, under the simplifying assumption (A.4), the
stress–strain constitutive equation for the Kelvin–Voigt model (A.2) can be rewritten
as

1

η
σ = E ′

η
ε + E ′ν′

η
θ I + ∂tε + ν′ ∂tθ I ,

which is in the form given by the generic two-dimensional constitutive equation (31)
under the parameter choices reported in Table 3.
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