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Abstract
Viral diseases of honey bees are important economically and ecologically and have
beenwidelymodelled. Themodels reflect the fact that, in contrast to the typical case for
vertebrates, invertebrates cannot acquire immunity to a viral disease, so they are of SIS
or (more often) SI type. Very often, these diseasesmay be transmitted vertically as well
as horizontally, by vectors as well as directly, and through the environment, although
models do not generally reflect all these transmission mechanisms. Here, we shall
consider an important additional complication the consequences of which have yet to
be fully explored in a model, namely that both infected honey bees and their vectors
may best be described usingmore than one infection class. For honey bees, we consider
three infection classes. Covert infections occur when bees have the virus under control,
such that they do not display symptoms of the disease, and are minimally or not at all
affected by it. Acutely overtly infected bees often exhibit severe symptoms and have
a greatly curtailed lifespan. Chronically overtly infected bees typically have milder
symptoms and a moderately shortened lifespan. For the vector, we consider just two
infection classes which are covert infected and overt infected as has been observed
in deformed-wing virus (DWV) vectored by varroa mites. Using this structure, we
explore the impact of spontaneous transition of both mites and bees from a covertly to
an overtly infected state, which is also a novel element in modelling viral diseases of
honey bees made possible by including the different infected classes. The dynamics of
these diseases are unsurprisingly rather different from the dynamics of a standard SI or
SIS disease. In this paper, we highlight how our compartmental structure for infection
in honey bees and their vectors impact the disease dynamics observed, concentrating
in particular on DWV vectored by varroa mites. If there is no spontaneous transition,
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then a basic reproduction number R0 exists. We derive a condition for R0 > 1 that
reflects the complexities of the system, with components for vertical and for direct
and vector-mediated horizontal transmission, using the directed graph of the next-
generation matrix of the system. Such a condition has never previously been derived
for a honey-bee–mite–virus system. When spontaneous transitions do occur, then R0
no longer exists, but we introduce a modification of the analysis that allows us to
determine whether (i) the disease remains largely covert or (ii) a substantial outbreak
of overt disease occurs.

Keywords Apis mellifera · Deformed-wing virus · Varroa mites · Covert and overt
infections · Spontaneous transition · Directed graph

1 Introduction

Colonies of thewestern honey beeApismellifera are almost always infected by viruses,
with infection transmitted via various routes, including horizontally, vertically (from
queen to egg), venereally, by physical or biological vectors, and through the environ-
ment (particularly stored food resources). One of the most common is deformed-wing
virus (DWV), found in more than 80% of colonies in the latest USDA-APHIS sur-
vey in the USA. Until recently DWV was considered a minor problem (Rosenkranz
et al. 2010), with infections usually without obvious pathology, called covert (Evans
and Schwarz 2011). This is no longer the case, at least in temperate climates. Overt
infection, either acute or chronic, is now common (Martin et al. 2013). Acute overt
infection (with deformed wings and early death) may be seen in honey bees infected
as pupae, while those infected as adults may exhibit chronic overt infection (with
some cognitive deficit and possible reduced longevity). Three infectious classes of
honey bees should therefore be distinguished, (i) covert, (ii) acutely overt, and (iii)
chronically overt. Note that alternative terms for these different classes of infection
are in wide use in the literature, but we follow the usage recommended by DeMiranda
and Genersch (2010) in their definitive review of DWV. A table in that paper (adapted
from Hails et al. (2008)) contains a helpful summary of DWV transmission routes and
outcomes.

Wilfert et al. (2016) describe the recent spread of DWV as a global epidemic.
Schroeder and Martin (2012) and Martin et al. (2013) state that DWV is ‘the most
likely candidate responsible for the majority of the colony losses that have occurred
across the world over the last 50 years’, and ‘the key pathogen involved in colony
collapse’, a conclusionbackedupbyother studies (Highfield et al. 2009;Genersch et al.
2010). The transformation of the disease from predominantly covert to substantially
overt has been crucial. This transformation may have been exacerbated by the use of
neonicotinoid pesticides (Di Prisco et al. 2013), but a likely more fundamental cause
is the parasitic varroa mite Varroa destructor (Highfield et al. 2009; Genersch et al.
2010). Thesemiteswere originally found only in colonies of the eastern honey beeApis
cerana, but invaded western honey bee Apis mellifera populations from the middle of
the 20th century onwards, probably as a consequence of commercial transportation of
western honey bees to the natural range of the eastern honey bee. Colonies of western
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honey bees worldwide (except in Australia) are now typically infested. Compared
to Apis cerana, which employs hygienic methods to defend itself effectively against
infestations, Apis mellifera are badly affected, and significant infestations often lead
to the death of the colony (Dietemann et al. 2012). The mites have two life stages,
phoretic and reproductive. At the phoretic stage, they attach themselves to adult bees
and feed on their haemolymph, occasionally moving from one host bee to the next. At
the reproductive stage, theymove to the brood cells of the colonywhere they reproduce
and feed on larval bees.

Modelling the effect of pathogens on the population dynamics of invertebrates has
a long history (Anderson and May 1981) and includes previous work specifically in
the context of honey bees, mites and/or virus. Sumpter and Martin (2004) created a
model to consider DWV assuming a fixed mite population size. Eberl’s group has
concentrated on modelling acute bee paralysis virus (ABPV) (Eberl et al. 2010; Ratti
et al. 2012, 2015, 2017). Others have not been specific about the virus concerned
(Kang et al. 2016; Bernardi and Venturino 2016; Dénes and Ibrahim 2019), although
DWV and ABPV are usually considered as examples. Dénes and Ibrahim (2019) take
a different approach from others in modelling honey bees according to whether they
are infested by mites, and if so whether those mites are infected by virus or not.

We shall consider the effect of the varroa mite and DWV together on the population
dynamics of the western honey bee. To do this, we require some insight into the
interaction between mites and DWV. There is strong evidence that the virus replicates
within the mite (Kevan et al. 2006; Gisder et al. 2009). So the virus may be ingested by
a mite at the phoretic stage (in the haemolymph of a covertly or overtly infected adult
bee), may replicate within the mite, and may be passed on at high levels to a larval bee
in a brood cell when the mite is at the reproductive stage (Yue and Genersch 2005).
Typically, the larval bee then shows acute overt symptoms of DWV at the adult stage,
with characteristically deformed wings, and dies within 2 or 3 days of emergence
(Gisder et al. 2009). The mite acts not simply as a physical vector but as a biological
vector for the virus (Kevan et al. 2006), and amplifies the effects of the pathogen from
covert to overt. The mites themselves may be infected with DWV at a low or at a
high level, depending on whether replication has occurred or not. This determines
the effect that they have on their honey-bee hosts, and it is necessary in a model to
distinguish these two infectious classes. We shall call infections at a low-level covert,
and at a high-level overt, although the mite does not seem to suffer symptoms even
from high-level infections.

The most important quantity for an infectious disease is R0, the basic reproduction
number, which determines whether and how widely disease will spread if introduced
into an initially disease-free population. For the first time, we shall derive expressions
to determine whether R0 > 1 in a dynamically varying honey-bee–mite–virus sys-
tem, when a disease-free steady state exists. When there is no such steady state we
shall introduce a new analysis that determines whether a disease remains predom-
inantly covert (as DWV did before varroa mites became established) or breaks out
and becomes a substantially overt disease, leading in the case of DWV to widespread
colony losses. To do this, we build our mathematical model sequentially. In the follow-
ing section, we propose a model to describe the interaction between honey bees and
mites. Having established the key dynamic properties of that system, we extend our
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model to incorporate viral infection which allows us to derive expressions for R0 as
described above. In the conclusions, we discuss the significance of the work presented,
both the approach to calculating R0 and the results in the context of understanding
the importance of overt and covert infections and associated spontaneous transitions
from covert to overt infections within mite and honey-bee populations.

2 Modelling Interactions Between Honey Bees andMites

In the absence of viral infection, we define N (t) and M(t) to be the number of honey
bees in a colony andmites in that colony at time t . Following previous published work,
we make the following model choices and assumptions:

• Bee production depends on the number of workers in the colony since they are
necessary to care for the brood and to gather resources for the colony.Consequently,
we assume that production h(N ) is a saturating function of colony size following
(Eberl et al. 2010; Khoury et al. 2011, 2013; Kang et al. 2016) and choose the
functional form to follow Eberl’s group (Ratti et al. 2012, 2015, 2017):

h(N ) = N 2

A2 + N 2

where A2 is a positive constant.
• We assume that the death rate of bees in a colony due to parasitism by mites is
directly proportional to the number of mites in the environment. This differs from
previous authors who have used a mass action assumption (Ratti et al. 2012, 2015,
2017; Kang et al. 2016). It was chosen such that the per capita honey-bee death
rate due to parasitism is proportional to the number of mites per honey bee which
we interpret as a measure of stress on the bee that leads to its increased death rate.

• Mites physically attach themselves to their hosts and so we follow Eberl’s group
and use a Leslie–Gower approach (Pielou 1977) by assuming that mites grow
logistically during the summermonths with a carrying capacity that is proportional
to the size of the host colony (Ratti et al. 2012, 2015, 2017). In the winter, we
assume that mites die at a constant per capita rate.

Using these assumptions, our model for the honey-bee–mite interactions is:

dN

dt
= f (N , M) = αh(N ) − μN − γ M,

dM

dt
=g(N , M) =

{
rM(1 − M/(kN )) if r > 0,

−sM if r = 0,

(1)

with α > 0 and r > 0 in the growing season, α = r = 0 in the winter. The remaining
model parameters μ, γ , k and s are all positive constants which take the following
meaning: μ is the per capita natural death rate of honey bees; γ M is the parasite-
related death rate of the bees; r is the intrinsic growth rate of the mites which grow
logistically with a carrying capacity kN ; the parameter s denotes the per capita death
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Fig. 1 The function f0, describing the growth rate of honey bees within a colony in the absence of mites
as given in (2). The solid line corresponds to the case α > 2μA while the dashed line is for α < 2μA

rate ofmites in thewinter period. The parameters varywith time in a temperate climate,
even within the growing season, however for the work presented here, we assume that
the parameters are constant and focus on the summer period.

2.1 Honey-Bee Dynamics in the Absence of Mites

If M(0) = 0, then M(t) = 0 for all t , so the N equation becomes

dN

dt
= f0(N ) = f (N , 0) = αh(N ) − μN

= − N
μN 2 − αN + μA2

N 2 + A2 .

(2)

The function f0 is as shown in Fig. 1, for α < 2μA and α > 2μA.
The bifurcation structure for this system is easy to analyse. It has a stable steady

state at N = 0. Two other steady states, 0 < N̂1 < N̂2, the first unstable and the second
stable, appear by a saddle–node bifurcation for α > 2μA. Wemaywrite N̂i = Ani (β)

for i = 1, 2, where β = α/(μA), and

n1(β) = 1

2
(β −

√
β2 − 4), n2(β) = 1

2
(β +

√
β2 − 4), (3)

real and positive for β > 2, or α > 2μA. The bifurcation diagram is as shown in
Fig. 2.
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Fig. 2 Bifurcation diagram showing how the equilibrium values, Ne , of (2) and their stability vary as the
parameter α (corresponding to the growth in colony size) increases. For small α the colony cannot be
maintained; once the critical threshold α = 2μA is exceeded, the colony exhibits bistable dynamics. The
solid line corresponds to locally stable equilibria, Ne = 0 and Ne = N̂2 while the dotted line represents an
unstable equilibrium, Ne = N̂1

2.2 Analysis of the Full System

During the growing season, our model system (1) can be written as,

dN

dt
= f (N , M) = αh(N ) − μN − γ M,

dM

dt
=g(N , M) = rM

(
1 − M

kN

)
.

(4)

The system has a singularity at N = 0. But the transformation to N , ϕ = M/N
leads to

dN

dt
=αh(N ) − μN − γ Nϕ,

dϕ

dt
=rϕ(1 − ϕ/k) − αϕh(N )/N + μϕ − γ ϕ2,

which has no singularities and is in Kolmogorov form, so that the positive quadrant
of (N , ϕ) space is positively invariant. It follows that the positive quadrant of (N , M)

space is positively invariant, despite the singularity in g and the −γ M term in the N
equation.

The nullclines and steady states for this system are as follows. For g(N , M) = 0,
either M = Ĝ(N ) = 0 or M = G∗(N ) = kN . For f (N , M) = 0, M = F(N ) =
(1/γ ) f0(N ), where f0 is as in (2). The nullclines M = F(N ) and M = Ĝ(N ) = 0
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intersect where

Q̂(N ) = μN 2 − αN + μA2 = 0.

The roots of the quadratic Q̂(N ) = 0 are given as before by N̂i = Ani (β), where
β = α/(μA) and the functions ni are defined in (3), real and positive if β > 2,
α > 2μA. The nullclines M = F(N ) and M = G∗(N ) = kN intersect where

Q∗(N ) = (μ + kγ )N 2 − αN + (μ + kγ )A2 = 0.

This quadratic is the same as Q̂ above but with μ replaced by μ + kγ . Its roots
are given by N∗

i = Ani (β), where the functions ni are again as in (3) but now
β = α/((μ + kγ )A), and are real and positive if β > 2, α > 2(μ + kγ )A.

There are therefore three cases.

(i) α < 2μA: the curve M = F(N ) never enters the positive quadrant.
(ii) 2μA < α < 2(μ + kγ )A: the curve M = F(N ) is in the positive quadrant

between N̂1 and N̂2, but never intersects the straight line M = G∗(N ) = kN .
(iii) α > 2(μ + kγ )A: the curve M = F(N ) is in the positive quadrant between N̂1

and N̂2, and intersects the straight line M = G∗(N ) at N∗
1 and N∗

2 . It is clear that
N̂1 < N∗

1 < N∗
2 < N̂2.

We shall consider each case in turn.
Case (i), α < 2μA.

The set D given by

D = {(N , M) | 0 < N < C, 0 < M < kC }

is positively invariant for any positive constant C , so that the origin is globally
asymptotically stable. The honey-bee production rate is not under any circumstances
sufficient to outweigh the death rate. Henceforth, we shall assume that α > 2μA.
Case (ii), 2μA < α < 2(μ + kγ )A

There are no periodic solutions in R
2+ (since there are no steady states there). No

trajectories approach (N̂1, 0) and the only trajectories to approach (N̂2, 0) do so along
the N axis. The set D given by

D = {(N , M) | 0 < N < C, 0 < M < kC }

is positively invariant for any constant C > N̂2 (and for 0 < C < N̂1). By the
Poincaré–Bendixson theorem, the origin is globally asymptotically stable (in the
strictly positive quadrant). This case is shown graphically in Fig. 3.
Case (iii), α > 2(μ + kγ )A.

There are semi-trivial (mite-free) steady states at (N̂1, 0) and (N̂2, 0), and non-
trivial steady states at (N∗

1 , M∗
1 ) and (N∗

2 , M∗
2 ), where M∗

1 = kN∗
1 and M∗

2 = kN∗
2 .

The character of each steady state is determined by the Jacobian matrix J , where

J (N , M) =
(

αh′(N ) − μ −γ

(rM2)/(kN 2) r (1 − (2M)/(kN ))

)
.
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Fig. 3 The phase plane for Case (ii) with medium honey-bee production rate, 2μA < α < 2(μ + kγ )A.
The dashed lines represent the M nullclines along which g(N , M) = 0 and the solid line represents the
N nullcline along which f (N , M) = 0. The red arrows show the direction of solution trajectories as time
increases. The origin is globally asymptotically stable in the strictly positive quadrant

For (N̂1, 0) and (N̂2, 0),

J (N̂ , 0) =
(

αh′(N̂ ) − μ −γ

0 r

)
,

with eigenvalues αh′(N̂ ) − μ and r . The slope of the curve M = F(N ) is F ′(N ) =
(αh′(N )−μ)/γ . Hence,αh′(N̂1)−μ > 0, (N̂1, 0) is an unstable node.Andαh′(N̂2)−
μ < 0, (N̂2, 0) is a saddle point.

For (N∗
1 , M∗

1 ) and (N∗
2 , M∗

2 ),

J ∗ = J (N∗, M∗) =
(

αh′(N∗) − μ −γ

rk −r

)
.

At (N∗
1 , M∗

1 ), the slope of the curve M = F(N ) is greater than k, αh′(N∗
1 )−μ > kγ ,

so

det J ∗
1 = det J (N∗

1 , M∗
1 ) = −r(αh′(N∗

1 ) − μ) + rkγ < 0,

and (N∗
1 , M∗

1 ) is a saddle point.
Similarly αh′(N∗

2 ) − μ < kγ , so det J ∗
2 = det J (N∗

2 , M∗
2 ) > 0, and (N∗

2 , M∗
2 )

is a stable or unstable node or focus. Also, tr J ∗
2 = αh′(N∗

2 ) − μ − r < kγ − r ,
so tr J ∗

2 < 0 and (N∗
2 , M∗

2 ) is stable as a solution of the disease-free system if r is
sufficiently large, and in particular if

r > kγ. (5)
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Fig. 4 The phase plane for Case (iii) with high honey-bee production rate, 2(μ + kγ )A < α. As above,
the dashed lines represent the M nullclines along which g(N , M) = 0 and the solid line represents the N
nullcline along which f (N , M) = 0. The phase plane exhibits bistable properties such that there are two
locally stable equilibrium points, the origin and N∗

2 , separated by an unstable equilibrium N∗
1

It is not globally stable because of the Allee effect built into the model. In fact, the
analysis of case (ii) restricted to the positively invariant set D given by

D = {(N , M) | 0 < N < C, 0 < M < kC }

with 0 < C < N̂1 shows that the origin is still asymptotically stable (but of course no
longer globally asymptotically stable). This case is shown graphically in Fig. 4.

3 Modelling Viral Infection within the Honey-Bee andMite Ecosystem

Central to our assumption that infection classes in the bee populations should be
compartmentalised we divide the bee colony according to infection status using the
empirical evidence that very few bees in a virus-infected colony are uninfected (Yue
and Genersch 2005). At time t , individual bees may be in one of three states: covertly
infected X(t), chronically overtly infected Y (t) or acutely infected Z(t) such that

X + Y + Z = N .

Similarly, very fewmites in a DWV-infected colony are virus-free (Anguiano-Baez
et al. 2016), and we neglect them. The virus titre in infected mites varies from around
108 particles to 1010 or as much as 1012 viral genome equivalents (Gisder et al. 2009),
depending on whether or not virus replication has taken place in the mite. Therefore,
we create two compartments for the mite population at time t : covert infected U (t)
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and overt infected V (t) such that

U + V = M .

Once overtly infected, bees and mites remain overtly infected throughout their life.
Figure 5a and b shows the transfer between these classes separately for the bees and
the mites and should be used as an aide memoire as we now describe the demographic
and infection processes that we combine together to describe viral infection within the
honey-bee and mite ecosystem.
Honey-bee production The infection status of adult bees emerging from brood cells
will clearly impact the model dynamics. Several different approaches have been taken
in the literature each arising from different underlying assumptions (Sumpter and
Martin 2004; Eberl et al. 2010; Ratti et al. 2012, 2017; Bowen-Walker et al. 1999;
Bernardi and Venturino 2016; Kang et al. 2016). We follow an approach that is closest
to Sumpter and Martin (2004) who model the infection status of adult bees emerging
from brood cells phenomenologically, using data suggesting that phoretic mites enter-
ing the reproductive stage (whose infection status is part of the model) are Poisson
distributed among brood cells (Martin 1995; Salvy et al. 1999). This phenomenon
directly impacts the class into which newborn bees emerge: with probability e−cV ,
where c is a positive constant, a newborn is covertly infected and contributes to pop-
ulation X and with probability 1 − e−cV , they are acutely infected and contribute to
population Z . In the case of acute infection, there is an additional chance of mortality
and so the birth rate of acutely infected bees is reduced by a factor p, 0 ≤ p < 1,
compared with the covertly infected newborns.

We also assume that infection status of the queen and workers impacts their ability
to produce viable eggs in the following ways:

• The queen bee is covertly infected, and transmits the covert but not the overt disease
to her offspring;

• Acutely overtly infected bees do not contribute to production;
• Chronically overtly infected bees make a reduced contribution with parameter κ

(Hails et al. 2008; Sumpter and Martin 2004).

Honey-bee mortality The natural per capita death rates μ, ν and ζ of X , Y and Z
bees depend on the bee’s infection status, such that μ < ν < ζ (Hails et al. 2008).
Mite-related honey-bee death is assumed to be independent of infection status of the
bee with rate parameter γ and assuming a frequency-dependent functional form.
Mite production and mortality There is no evidence in the literature that mites are
affected by DWV and so we assume that there is no negative impact on mites that
have the virus. Consequently, mite dynamics are assumed to follow those described
in Sect. 2 with an intrinsic growth rate r , carrying capacity kN and winter mortality
rate s, independent of infection status. Overt disease may be transmitted vertically and
so we assume that a fraction θ of new infections from overtly infected mites produce
overtly infected mites; the remainder are covertly infected.
Rates of infection transmission for adult bees and mites Transmission of infection
for both adult bees and mites results in movement between covert and overt infected
status both due to interactions between individuals and as a result of spontaneous
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Fig. 5 Transfer diagrams showing the flow between infection classes separately for the honey bees, shown
in (a), and mites, shown in (b). Justification of the different components and their functional forms is given
in the text

transition where growth in viral load within an individual results in a change in the
status. We assume the following transmission routes:

• Horizontal transmission of chronic overt infection from one adult bee to another
does occur (Hails et al. 2008). Disease may be transmitted in its chronic overt
form from a chronically overtly or an acutely overtly infectious bee to a covertly
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infectious bee, with frequency-dependent infectious contact parameter τ and τ ′,
respectively. This may be a minor route of transmission.

• Disease may be transmitted from mites to bees and vice versa, with ϕ the infec-
tious contact parameter from mites to bees, ψ (respectively, ψ ′ for acutely overtly
infected bees) that from bees to mites, with frequency-dependent transmission.

• Spontaneous transition from covert to chronic overt disease may occur in an adult
bee (Sumpter and Martin 2004; Nazzi et al. 2012; Di Prisco et al. 2013), by viral
replication. We assume this happens at a per capita rate ρ. Such transitions may
be rare. We assume that spontaneous transitions from covert to acute overt disease
in larval bees do not occur, as acutely overtly infected bees are not observed in
mite-free colonies.

• Spontaneous transition from covert to overt infection has been observed in mites
(Kevan et al. 2006; Yue and Genersch 2005; Gisder et al. 2009). We include them
in our model assuming a per capita rate of transition σ . Autonomous spontaneous
transitions in the opposite direction may possibly occur but the evidence for them
is less clear and we have not included them. We note that spontaneous transition
in bees in particular may be rare.

Combining thesemodel components and assumptions,we present ourmodel system
(for the spring, summer and autumn periods) takes the form:

dX

dt
=αe−cV h(X + κY ) − μX − γ M

X

N
− ρX − τ X

Y

N
− τ ′X Z

N
− ϕ

X

N
V ,

dY

dt
=ρX + τ X

Y

N
+ τ ′X Z

N
− νY − γ M

Y

N
+ ϕ

X

N
V ,

dZ

dt
=α p(1 − e−cV )h(X + κY ) − ζ Z − γ M

Z

N
,

dU

dt
=rU + r(1 − θ)V − rU

M

kN
− σU − ψU

Y

N
− ψ ′U Z

N
,

dV

dt
=rθV − rV

M

kN
+ σU + ψU

Y

N
+ ψ ′U Z

N
,

(6)

where h(N ) = N 2/(A2 + N 2) and μ < ν < ζ .
In winter, there is no brood, so α = 0, r = 0, and the equations for U and V are

replaced by

dU

dt
= −sU ,

dV

dt
= −sV .
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3.1 Analysis of theMite-Free Model for Bees and Disease

Acutely overtly infected (Z) bees are only produced by vector-borne transmission, so
we take Z = 0. The X and Y equations are given by

dX

dt
=αh(X + κY ) − μX − ρX − τ X

Y

N
,

dY

dt
= − νY + ρX + τ X

Y

N
.

(7)

We seek steady states (X∗,Y ∗), with X∗+Y ∗ = N∗, and x∗ = X∗/N∗, y∗ = Y ∗/N∗,
and x∗ + y∗ = 1. Then, from the Y equation,

0 = −νy∗ + ρ(1 − y∗) + τ y∗(1 − y∗), (8)

a quadratic equation with one negative root and one root between 0 and 1. From now
on, let y∗ denote the root between 0 and 1 and let x∗ = 1− y∗, also between 0 and 1.
The sum of the equations in (7) at steady state then gives

αh(ξN∗) = μηN∗, (9)

where ξ = x∗ + κ y∗ < 1, μη = μx∗ + νy∗ > μ, or η > 1, since κ < 1, ν > μ.
(Note that the expressions ξ and η may be given explicitly in terms of the parameters
of the system.) This is just a rescaled version of the standard equation αh(N ) = μN ,
from (2), with solutions given by (3). We can therefore immediately give the solutions
as

N∗
i = A

ξ
ni

(
αξ

μηA

)
, (10)

positive and realistic for αξ > 2μηA. The expression simplifies if Y bees are not
dysfunctional compared to X bees, κ = 1 and ν = μ, since then ξ = 1 and η = 1.
Unsurprisingly, the more dysfunctional Y bees are compared to X bees, in other words
the smaller κ is and/or the larger ν is, the larger the production rate α has to be to
prevent the colony collapsing to zero. We shall now consider three special cases.

3.1.1 Case (i): No Horizontal Transmission from Bee to Bee, � = 0

The assumption that τ = 0 is an assumption that all previous models except Kang et
al. (2016) have made. The resulting Y equation is given by

dY

dt
= ρX − νY ,

so that X∗ = νN∗/(ν + ρ), Y ∗ = ρN∗/(ν + ρ). There is no Y-free steady state,
except (0, 0). Every colony with ρ > 0 contains bees with overt disease, although if ρ
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is small (see cases (ii) and (iii) below) there are very few of them, and if ρ = 0 there
are none.

3.1.2 Case (ii): No Spontaneous Transition in Bees,� = 0

All previous models have made this assumption, usually with τ = 0 as well. It is
likely to be at least a good approximation, unless the bees’ immune system has been
compromised by mites or neonicotinoids (Di Prisco et al. 2013). The transition from
X to Y occurs by contact instead of spontaneously, and the equations are

dX

dt
=αh(X + κY ) − μX − τ X

Y

N
= f (X ,Y ),

dY

dt
= − νY + τ X

Y

N
= g(X ,Y ).

(11)

Seeking steady states (X∗,Y ∗) = (N∗x∗, N∗y∗), as before, Eq. (8) becomes −νy∗ +
τ y∗(1−y∗) = 0, so (a) y∗ = 0 or (b) x∗ = 1−y∗ = ν/τ , y∗ = 1−ν/τ , realistic if and
only if ν < τ . For alternative (b), the quantity N∗ may then be calculated from the sum
of theX and theY equation in the usualway, leading to Eq. (9)with ξ = κ+(1−κ)ν/τ ,
μη = μν/τ + ν(1− ν/τ), and two solutions given by Eq. (10), positive and realistic
for αξ > 2μηA. Let us now consider alternative (a), with Y ∗ = y∗ = 0. The steady-
state X equation then becomes very familiar, αh(X∗) = μX∗, with two solutions
X∗ = N∗ = N̂i = Ani (α/(μA)) for i = 1, 2, realistic for α > 2μA.

One overt-disease-free steady state always exists, the trivial steady state (0, 0), and
there are two more given by (N̂1, 0) and (N̂2, 0) as long as α > 2μA. There are
also two steady states with overt disease, (X∗

1,Y
∗
1 ) = (N∗

1 x
∗, N∗

1 y
∗) and (X∗

2,Y
∗
2 ) =

(N∗
2 x

∗, N∗
2 y

∗), described above, as long as both ν < τ and αξ > 2μηA.
The overt-disease-free steady states appear by a saddle–node bifurcation at α =

2μA, and we know from bifurcation theory (as in Sect. 2.1) that (N̂1, 0) is unstable
and (N̂2, 0) stable as solutions of the Y-free system.We wish to test whether (N̂2, 0) is
stable as a solution of the full system (11). So consider introducing an overtly infected
Y bee (a primary) into the system at the steady state (N̂2, 0). While the primary is
in the Y compartment it makes infectious contacts at rate τ X/N = τ at the steady
state. Bees in the Y compartment leave it at per capita rate ν, so they spend time 1/ν
in the compartment on average. Hence, the primary makes an expected R−

0 = τ/ν

infectious contacts. R−
0 is called the basic reproduction number. There is a threshold

R−
0 = 1 for spread of overt disease: it spreads if R−

0 > 1 but not if R−
0 < 1. So

the disease spreads if τ > ν, but not if τ < ν. If τ < ν there is no steady state
with overt disease. If τ > ν and αξ < 2μηA, there is still no steady state with overt
disease. The trajectory starting with a perturbation from (N̂2, 0) must tend to (0, 0). If
τ > ν and αξ > 2μηA there are two steady states with overt disease. The trajectory
starting with a perturbation from (N̂2, 0) tends either to (0, 0) or to (X∗

2,Y
∗
2 ), unless

there is a Hopf bifurcation allowing periodic solutions about (X∗
2,Y

∗
2 ). This system

is essentially an SI model, and its bifurcation behaviour is quite different from the
system with spontaneous transition, ρ > 0. In particular, there is a threshold value
R−
0 = τ/ν = 1 below which overt disease cannot exist. The notation R−

0 emphasises
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that this is the basic reproduction number in the absence of mites. The difference
between this and the corresponding basic reproduction number R0 with mites present
that we shall discuss in the next section is the basis for the different behaviours of
infected bee colonies with and without mites, and for an explanation of the grievous
effect of mites on bee colonies.

3.1.3 Case (iii): Very Little Spontaneous Transition in Bees,� Small

This is likely to be a good assumption unless the bees’ immune systems are compro-
mised, which could be because of high levels of infestation bymites (Nazzi et al. 2012)
or because of high levels of neonicotinoid pesticides in the environment (Di Prisco
et al. 2013). Equation (8) still holds, with solutions y∗ = ρ/(ν − τ) + O(ρ2),
y∗ = 1 − ν/τ + O(ρ). If ν > τ the first of these is realistic, and the corresponding
steady states have low (O(ρ)) prevalence of overt disease, while if ν < τ the second
is, and the steady states have O(1) prevalence. Strictly speaking there is no basic
reproduction number, but R0 = τ/ν still has a role to play: overt disease is maintained
at a low level for R−

0 < 1 but not for R−
0 > 1.

3.2 The Complete System

We shall now analyse the complete system (6), with honey bees, varroa mites, and
DWV. We recall that in spring, summer and autumn, the model equations are given
by

dX

dt
=αe−cV h(X + κY ) − μX − γ M

X

N
− ρX − τ X

Y

N
− τ ′X Z

N
− ϕ

X

N
V ,

dY

dt
=ρX + τ X

Y

N
+ τ ′X Z

N
− νY − γ M

Y

N
+ ϕ

X

N
V ,

dZ

dt
=α p(1 − e−cV )h(X + κY ) − ζ Z − γ M

Z

N
,

dU

dt
=rU + r(1 − θ)V − rU

M

kN
− σU − ψU

Y

N
− ψ ′U Z

N
,

dV

dt
=rθV − rV

M

kN
+ σU + ψU

Y

N
+ ψ ′U Z

N
.

3.2.1 Case (i): No Spontaneous Transition in Bees andMites,� = � = 0

Motivated by our analysis of themite-free system, we shall start by assuming that there
is no spontaneous transition to overt disease, ρ = σ = 0. Let α > 2A(μ + kγ ) (so
N∗
2 exists) and let r be so large that (N∗

2 , M∗
2 ) is stable as a solution of the disease-free

system (e.g. r > kγ , see Eq. (5)).
We shall analyse this system using the next-generation matrix method (Diekmann

et al. 1990; Van den Driessche and Watmough 2008). The next-generation matrix K
is a generalisation of the basic reproduction number R0. In this case, it is 3×3, with
rows and columns related to the three overt disease classes Y, Z, and V, which are
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zero in an overt-disease-free steady state. It is given by K = FD−1, where F is the
matrix whose component Fi j gives the rate at which individuals in overtly infected
class i arise through infection by those in class j near the steady state, and Dii denotes
the rate at which those in class i leaves that class through death. (In general, we
would have to consider those that entered a particular infected class by transition from
another infected class, and those that left an infected class other than through death,
but there are no such processes in this system.) Then, Ki j denotes the number of
disease offspring a primary of class j produces in class i throughout the life-time of
its disease. It may be shown that the basic reproduction number R0 for the system
at the steady state is given by the largest eigenvalue of K . Here, the next-generation
matrix K about the overt-disease-free steady state S∗

2 is given by

K =
⎛
⎝KYY KY Z KYV

KZY KZZ KZV

KVY KV Z KVV

⎞
⎠

=
⎛
⎝ τ τ ′ ϕ

0 0 α pch∗
2

kψ 0 rθ

⎞
⎠

⎛
⎝1/(ν + kγ ) 0 0

0 1/(ζ + kγ ) 0
0 0 1/r

⎞
⎠

=
⎛
⎝ τ/(ν + kγ ) τ ′/(ζ + kγ ) ϕ/r

0 0 α pch∗
2/r

kψ/(ν + kγ ) kψ ′/(ζ + kγ ) θ

⎞
⎠ , (12)

where we have written h∗
2 = h(N∗

2 ). The characteristic polynomial P of K is given
by

P(λ) = − λ(λ − θ)

(
λ − τ

ν + kγ

)
+

(
kϕψ

r(ν + kγ )
+ α pch∗

2kψ
′

r(ζ + kγ )

)
λ

+ α pch∗
2

r

(
kψτ ′ − kψ ′τ

(ν + kγ )(ζ + kγ )

)
. (13)

The roots of the characteristic equation P(λ) = 0 are the eigenvalues of K . This is
a cubic with a negative λ3 coefficient, so it has at least one root greater than 1 (and
hence R0 > 1) if P(1) > 0. Hence, P(1) > 0 is sufficient for R0 > 1, but it is not
necessary: a cubic P with P(1) < 0 may have two roots greater than 1. In that case,
it may be easier to check whether R0 > 1 by considering circuits of transmission of
overt infection in a directed graph.

Arcs of transmission are shown in Fig. 6. We shall define a (single-generation)
circuit of transmission as a sequence of arcs starting from node i and ending at node i
but not otherwise visiting node i . The simplest circuits of transmission are arcs direct
from a node to itself: mites V infecting other mites (which then enter V) vertically,
V→V; and bees Y infecting other bees (which then enter Y) horizontally, Y→Y. We
shall denote the partial basic reproduction numbers for these processes as

RV
0 = KVV = θ
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Fig. 6 Arcs of transmission for overt infection. There is an arc (or directed edge) from i to j if the
component Ki j in the next-generation matrix K is positive. The arc weights (not shown in the diagram) are
the components Ki j

and

RY
0 = KYY = τ/(ν + kγ ).

The circuits of length 2 are Y bees infecting mites (which then enter V) infecting other
bees (which then enter Y), Y→V→Y, and Z bees infecting mites (which then enter
V) infecting other bees (which then enter Z), Z→V→Z. We shall denote the partial
basic reproduction numbers for these processes as RYV

0 and RV Z
0 , where

(RYV
0 )2 = KYV KVY = (kϕψ)/(r(ν + kγ ))

and

(RV Z
0 )2 = KV Z KZV = (α pch∗

2kψ
′)/(r(ζ + kγ )).

Finally, there is a circuit of length 3, mites V infecting bees (which then enter Z)
infecting other bees (which then enter Y) infecting mites (which then enter V),
V→Z→Y→V.We shall denote the partial basic reproduction number for this process
as RV ZY

0 , where

(RYV Z
0 )3 = KYV KV Z KZY = (α pch∗

2kψτ ′)/(r(ν + kγ )(ζ + kγ )).

Howmany secondaries in class Y does a primary in class Y produce?We need to count
the circuits in the graph in Fig. 6 that start at Y and end at Y. First, there is the circuit
Y→Y,with partial basic reproduction number RY

0 . Then, there is the circuitY→V→Y,
but before returning from V to Y one may traverse the circuits V→V and V→Z→V
an indefinite number of times and in any order. The partial basic reproduction number
for all these circuits is

(RYV
0 )2

(
1 + (RV

0 + (RV Z
0 )2) + (RV

0 + (RV Z
0 )2)2 + · · ·

)
.
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If RV
0 + (RV Z

0 )2 > 1, then this is unbounded and the disease invades whatever the
other parameters of the system, while if RV

0 + (RV Z
0 )2 < 1 we may write this as

(RYV
0 )2/(1− RV

0 − (RV Z
0 )2). Finally, there is the circuit Y→V→Z→Y, where from

V one may again traverse the circuits V→V and V→Z→V an indefinite number of
times and in any order, to obtain invasion if RV

0 + (RV Z
0 )2 > 1 and (RYV Z

0 )3/(1 −
RV
0 − (RV Z

0 )2) if RV
0 + (RV Z

0 )2 < 1. The condition for growth, that there are more
secondaries than primaries, should be that either (i)

RV
0 + (RV Z

0 )2 > 1 (14)

or (ii) RV
0 + (RV Z

0 )2 < 1 and

RY
0 + (RYV

0 )2 + (RYV Z
0 )3

1 − RV
0 − (RV Z

0 )2
> 1. (15)

Note that this second inequality is always satisfied if RY
0 > 1. The expression on the

left-hand side is not R0, which is defined as the leading eigenvalue of a linear operator,
but is the number of secondaries in class Y produced by a primary in class Y, and hence
gives the same condition for growth that R0 does. Indeed, the characteristic equation
P(λ) = 0 reduces to

P(λ) = − λ(λ − RV
0 )(λ − RY

0 )

+ ((RYV
0 )2 + (RV Z

0 )2)λ + ((RYV Z
0 )3 − RY

0 (RV Z
0 )2) = 0,

and the condition P(1) > 0, equivalent to R0 > 1, reduces to

(RY
0 − 1)(1 − RV

0 − (RV Z
0 )2) + (RYV

0 )2 + (RYV Z
0 )3 > 0,

or (15) if RV
0 + (RYV

0 )2 < 1.
Case (i)(a): ρ = σ = 0, τ = τ ′ = 0.

The parameters τ and τ ′ for horizontal transmission from bee to bee are small (so
small that such transmission has not been included in most previous models). Let us
assume that they are negligible, τ = τ ′ = 0, while maintaining the assumption that
there is no spontaneous transition, ρ = σ = 0. The edges Y→Y and Z→Y in the
graph disappear (so that RY

0 = (RYV Z
0 )3 = 0), and it is easier to count the circuits

from V back to V rather than from Y back to Y. They are V→V, V→Y→V and
V→Z→V. The condition that there are more secondaries than primaries, equivalent
to the condition that R0 > 1, is therefore

RV
0 + (RV Z

0 )2 + (RYV
0 )2 > 1.

This is the inequality (15) with RY
0 = (RYV Z

0 )3 = 0. All the terms are mite-related,
and it is therefore the mites that drive overt disease in honey-bee colonies in this case,
as we might have inferred from Sect. 3.1.1.
Case(i)(b): ρ = σ = 0, ζ large.
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Here, we exploit the fact that the parameter ζ is large (since Z bees only survive 2
or 3 days compared to more than 20 days for X and Y bees). Then, the characteristic
equation (13) has a root close to zero, λ1 = α pch∗

2(ψτ ′ − ψ ′τ)/(ϕψ(ζ + kγ )). To
leading order, the other two roots are the solutions of the quadratic

Q(λ) = (λ − θ)

(
λ − τ

ν + kγ

)
− kϕψ

r(ν = kγ )
,

which are λ2 < min {θ, τ/(ν + kγ )} and λ3 = R0 > max {θ, τ/(ν + kγ )}. The
characteristic equation has a single root greater than 1 if and only if Q(1) < 0, or, in
terms of partial basic reproduction numbers,

RY
0 + (RYV

0 )2

1 − RV
0

> 1. (16)

3.2.2 Case (ii):� and � Small, � Large

Now let us relax the assumption that ρ = σ = 0, so spontaneous transition to overt
disease does occur in bees and mites, as is realistic. To simplify the algebra, we shall
retain the realistic assumption that ζ is large, so that we can neglect the Z class and
the associated equation. Then, seeking steady states (X∗,Y ∗,U∗, V ∗) of the X, Y, U
and V equations in (6), we obtain M = kN as before, and from the V equation

(r(1 − θ) + σ + ψ y∗)v∗ = σ + ψ y∗,

where y∗ = Y ∗/N∗, v∗ = V ∗/M∗, as usual. Then, from the Y equation, using
x∗ + y∗ = 1,

ρ(1 − y∗) − νy∗ − kγ y∗ + kϕ(1 − y∗)v∗ + τ y∗(1 − y∗) = 0.

Eliminating v∗ between these two equations, we obtain C(y∗) = 0, where

C(y) = (r(1 − θ) + (σ + ψ y)) (−τ y(1 − y) − ρ(1 − y) + (ν + kγ )y)

− kϕ(1 − y)(σ + ψ y) = 0.

This is a cubic with C(0) = −(r(1− θ) + σ)ρ − kϕσ < 0, C(1) = (r(1− θ) + σ +
ψ))(ν + kγ ) > 0, and there is a root y∗ of C(y) = 0 in (0, 1). If ρ and σ are small,
then so is C(0), so there is a root near zero, given by

y = r(1 − θ)ρ + kϕσ

r(1 − θ)(−τ + ν + kγ ) − kϕψ
,

to leading order in ρ and σ . If this expression is positive, it is the root in (0, 1), and
is O(ρ, σ ), so the steady state has low prevalence of overt infection Y (and hence V).
If it is negative on the other hand it is not the root in (0, 1), the root in (0, 1) is not
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small, and there is an outbreak, high levels of overt infection Y and V. The condition
for an outbreak is therefore

r(1 − θ)(−τ + ν + kγ ) − kϕψ < 0,

or (1 − θ)(1 − τ/(ν + kγ )) − kϕψ/(r(ν + kγ )) < 0, or, in terms of partial basic
reproduction numbers after dividing by 1 − θ ,

RY
0 + (RYV

0 )2

1 − RV
0

> 1,

exactly the condition for R0 > 1 derived in (16). There is no standard basic reproduc-
tion number for this system, since there is no overt-disease-free steady state. However,
the basic reproduction number R0 for the system with ρ = σ = 0 still has a role to
play: there is an outbreak of overt infection if R0 > 1. The condition for an outbreak
without mites is the unrealistic condition RY

0 > 1, and overt disease is again mite
driven.

4 Conclusions

There are many differences in detail between our model and previously published
ones. However there is one key difference driven by the biology that allows us new
insight into the bee-mite-virus system. This is our distinction between covert and overt
infection in bees and between low- and high-level infections in mites together with
the associated possibility of spontaneous transitions between infected classes caused
by replication of the virus within the bee or the mite population. These transitions
have been widely reported in the literature, and the transition in mites in particular
is recognised as crucial to the recent epidemiology of DWV. For DWV, it is also
necessary to distinguish between those bees that gained their overt infection in brood
cells and those that gained it in the hive, which are acutely and chronically overtly
infected, respectively.

We have focussed our analysis on insights gained from exploring the dependence
of R0, the basic reproduction number, on model parameters and the origin of its
constituent components. This presented particular challenges when the model system
included spontaneous transition in bees or mites, but we addressed that by considering
our model as a perturbation from a baseline system with no spontaneous transition,
for which R0 could be calculated.

We found it easier to determine the size of R0 by analysing the weighted directed
graph associated with K , the next-generation matrix. From this graph, we were able to
extract expressions for the number of secondaries of class i produced by a primary of
class i , and hence determine conditions for growth of the epidemic after a perturbation
from the steady state, equivalent to R0 > 1. These conditions are given in terms of
the weights of the arcs in the directed graph, or equivalently in terms of partial basic
reproduction numbers for circuits in the graph.
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Further exploration of the conditions suggests that simple transmission of overt
virus between adult bees could theoretically be sufficient to maintain overt infection
in a colony (if RY

0 > 1), but this is unlikely with realistic parameters. Alternatively,
it could be maintained solely by vertical transmission in mites coupled with their
interactions with acutely overtly infected bees (if RV

0 + RV Z
0 )2 > 1), but this is also

unlikely given that vertical transmission RV
0 is a probability and therefore less than

1, and acutely infected adult bees die so quickly that their role in infecting mites is
unlikely to be important. Therefore, it seems that circuits of transmission involving
mites and chronically overtly infected bees (RYV

0 )2 + (RYV Z
0 )3) must be involved.

If there are no mites, the condition for overt infection reduces to RY
0 > 1, which is

unrealistic, in agreement with observations of DWV in colonies before the arrival of
varroa.

In the perturbed systemwith spontaneous transitions (from covert to overt infection
for bees andmites), if these transitions are rare, andmaking the realistic assumption for
simplicity that acutely overtly infected bees are also rare, then the basic reproduction
number R0 for the unperturbed system still has a role to play. If R0 < 1, then overt
infection is rare, while if R0 > 1 then there is an outbreak of overt infection. As in
the unperturbed system, the condition for an outbreak without mites is the unrealistic
condition RY

0 > 1, and overt disease is again mite driven.
Finally, if spontaneous transitions lead to high rates of overt infection in either bees

or mites or both, then it is clear that overt disease will be prevalent independently
of other processes. Spontaneous transitions in mites may be reasonably common.
Spontaneous transitions in bees are in general rare, but neonicotinoids can lead to
compromised immune systems and hence an outbreak of overt disease, even in the
absence of mites.

Our work demonstrates the impact of distinct infection classes for both honey bees
and their infection vector in maintaining viral infections within a honey-bee colony. It
also highlights the importance of spontaneous transition between infection classes in
both populations. As such, it provides an important theoretical contribution to inform
future studies both theoretical and practical as we strive to find new approaches to
preserve honey-bee populations worldwide.
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