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Abstract
Stigma toward people living with HIV/AIDS (PLWHA) has impeded the response
to the disease across the world. Widespread stigma leads to poor adherence of pre-
ventative measures while also causing PLWHA to avoid testing and care, delaying
important treatment. Stigma is clearly a hugely complex construct. However, it can
be broken down into components which include internalized stigma (how people with
the trait feel about themselves) and enacted stigma (how a community reacts to an
individual with the trait). Levels of HIV/AIDS-related stigma are particularly high in
sub-Saharan Africa, which contributed to a surge in cases in Kenya during the late
twentieth century. Since the early twenty-first century, the United Nations and govern-
ments around the world have worked to eliminate stigma from society and resulting
public health education campaigns have improved the perception of PLWHA over
time, but HIV/AIDS remains a significant problem, particularly in Kenya. We take a
data-driven approach to create a time-dependent stigma function that captures both
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the level of internalized and enacted stigma in the population. We embed this within
a compartmental model for HIV dynamics. Since 2000, the population in Kenya has
been growing almost exponentially and so we rescale our model system to create a
coupled system for HIV prevalence and fraction of individuals that are infected that
seek treatment. This allows us to estimate model parameters from published data. We
use the model to explore a range of scenarios in which either internalized or enacted
stigma levels vary from those predicted by the data. This analysis allows us to under-
stand the potential impact of different public health interventions on key HIV metrics
such as prevalence and disease-related death and to see how close Kenya will get to
achieving UN goals for these HIV and stigma metrics by 2030.

Keywords HIV · Stigma · Kenya · Mathematical model · UN goals

1 Introduction

HIV/AIDS-related stigma and discrimination continue to impede the progress of
responses to HIV/AIDS across the world (Chesney and Smith 1999). While the
percentage of people expressing discriminatory attitudes toward people living with
HIV/AIDS has decreased over time, on average more than half of adults in 36 coun-
tries across the globe still express discriminatory attitudes (ICF 2018). People living
with HIV/AIDS (PLWHA) who experience high levels of HIV/AIDS-related stigma
avoid testing and delay initiating HIV/AIDS care and treatment (Golub and Gamarel
2013; Price et al. 2019; Remien et al. 2015; Ti et al. 2013; Treves-Kagan et al. 2017).
Further, individuals living with HIV/AIDS avoid frequenting hospitals for treatment
or collecting antiretroviral therapy (ART) drugs for fear of health workers disclosing
their HIV/AIDS status to the communities (Kagee et al. 2011;Mills et al. 2006). Avail-
able data across 19 countries confirm that one in four PLWHA face discrimination in
health care (Global Network of People with HIV/AIDS and International Community
of Women living with HIV/AIDS 2017), and one in five avoid healthcare treatment
due to fear of discrimination (King et al. 2013; Nyblade et al. 2017). Approximately
one in every eight PLWHA are denied health care due to stigma regarding their sta-
tus, and women living with HIV/AIDS face greater discrimination in health care than
their male counterparts (Global Network of People with HIV/AIDS and International
Community of Women living with HIV/AIDS 2017). Stigma or fear of stigma results
in poor adherence to pre-exposure prophylaxis and antiretroviral therapy, leading to
high HIV/AIDS viral loads (Buregyeya et al. 2017; Croome et al. 2017; Katz et al.
2013; Patel et al. 2016). Stigmatized PLWHA are also less likely to disclose their
HIV/AIDS status to their sex partner(s) (McKay and Mutchler 2011).

In sub-Saharan Africa, rates of HIV/AIDS-related stigma remain particularly high,
and so do infection levels. InKenya, a peak in newHIV infections in 1995was followed
by a peak in deaths attributed to HIV/AIDS in 2004, and although numbers of new
HIV infections are falling, the decrease has been no more than 1000 individuals per
year since 2010 (Global Burden of Disease Collaborative Network 2018).

At the United Nations (UN) General Assembly Special Session on HIV/AIDS
in 2001, African governments agreed to combat all forms of discrimination against
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PLWHA and subsequently the UN released the “Getting to Zero” initiative in 2011.
The goals of this initiative were to get new infections, discrimination, and deaths
from HIV/AIDS to zero by 2030, clearly recognizing the importance of reductions
in both infection and stigma levels in order to achieve the ambitious goal. How-
ever, HIV/AIDS-related stigma and discrimination are difficult to overcome solely
through top-down initiatives and messaging campaigns (Campbell and Cornish 2010;
Johnny andMitchell 2006; Parkhurst 2014) andwhile there has been progress, it seems
unlikely that the zero goals will be achieved.

Many researchers have formulated mathematical models to understand the dynam-
ics of HIV/AIDS. We are aware of work on epidemiological models for HIV infection
levels and spread in Africa (Nyabadza et al. 2011; Simwa and Pokhariyal 2003),
including some models that consider interventions such as treatment, use of condoms,
and contact tracing (Hyman et al. 2003; Moghadas et al. 2003; Granich et al. 2009).
Some models include features representing information that causes changes in the
behavior of individuals living in a society with strong HIV prevalence (Joshi et al.
2008; Ronoh et al. 2020). However, there are very few examples that include stigma
explicitly within infectious disease dynamic models. We call attention to a system
of four ODEs used for showing dynamics and game theoretical results illustrating
interactions of stigmatization and prevalence in a generic infectious disease (Reluga
et al. 2019). Two recent papers used structural equation modeling and cohort scenario
analysis to examine the effects of stigma on African women with HIV (Logie et al.
2016; Prudden et al. 2017).

Here, we seek to investigate the effects of HIV/AIDS-related stigma on the dynam-
ics of an HIV infection model which includes a class of infected individuals that are
receiving treatment. We specifically focus on understanding the effects of stigma on
HIV/AIDS dynamics in Kenya which has some of the highest estimated prevalence of
HIV/AIDS in the world (UNAIDS 2018). Our model approach has two strands. First
we use survey data to create a time-varying measure of stigma in the adult population
of Kenya; we use that to build a model for stigma which feeds into our compartmental
model for HIV infection dynamics.

We begin in Sect. 2, by establishing a model for population stigma, parameter-
izing it using data from Kenya Demographic and Health surveys (CBS et al. 2004;
Kenya National Bureau of Statistics (KNBS) and ICF Macro 2010, 2014). This feeds
into a compartmental model for HIV infection in Kenya and the associated parameter
estimation in Sect. 3. Our results, presented in Sect. 4, explore how baseline stigma
parameters impact infection prevalence andHIV-related deaths.Wemodify the param-
eter estimates to undertake a numerical exploration focussed on understanding how
changes to internalized versus enacted stigma would have impacted HIV infection
measures; we complement this with a simple steady-state analysis to gain insight into
how the infection dynamics evolve. In the final section, we discuss our results in the
context of the impact of stigma on HIV dynamics in Kenya highlighting the urgent
need to gather more data on stigma and its associated impact on HIV dynamics.
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2 Modeling Population Stigma

Stigma is a socially devalued attribute that gives rise to social inequality in the form of
labeling, stereotyping, devaluation, status loss, or discrimination arising from the social
judgment applied to a person or group who possesses the devalued attribute (Earnshaw
and Chaudoir 2009; Van Brakel 2006). It keeps those with a socially devalued attribute
in a position of relative subordination to those without the devalued attribute (Link
and Phelan 2001; Parker and Aggleton 2003).

One of the main approaches to measuring HIV/AIDS-related stigma is the assess-
ment of discriminatory attitudes, including measures calculated from questions
regarding a person’s potential actions toward a PLWHA (Van Brakel 2006; Earnshaw
and Chaudoir 2009). Select studies have also measured stigma through interviews
with PLWHA asking how many times or how often they have experienced various
forms of discrimination over the past year (Neuman and Obermeyer 2013). Indices
for HIV/AIDS-related stigma have been developed previously, however most were
intended for use in the USA and few have been broadly deployed (Van Brakel 2006).

PLWHA experience stigma through three mechanisms (Earnshaw and Chaudoir
2009; Van Brakel 2006):

• enacted or experienced stigma;
• anticipated or perceived stigma; and
• internalized stigma.

There are two stages to our modeling activity. Firstly, we estimate population-level
stigma in Kenya using data from the Kenya Demographic andHealth Surveys (KDHS)
from 2003, 2009, and 2014. This results in only three data points which are insufficient
to make accurate predictions. However, the points allow us to predict parameters of
our dynamic model for stigma. In the second stage, we create a simple linear model
to describe the change in stigma over time using mechanistic principles and guided
by Occam’s Razor.

2.1 Obtaining Data Points for Stigma in Kenya

TheKDHS from2003, 2009, and 2014 provide data onHIV/AIDSknowledge, relevant
behavior, and attitudes toward PLWHA captured at the national level and for demo-
graphically homogeneous subpopulations (CBS et al. 2004; Kenya National Bureau
of Statistics (KNBS) and ICF Macro 2010, 2014). The questionnaire module on atti-
tudes toward PLWHA asks survey respondents familiar with AIDS the following four
questions:

1. Would you buy fresh vegetables from a shopkeeper or vendor if you knew that this
person had HIV?

2. If a member of your family became sick with AIDS, would you be willing to care
for her or him in your own household?

3. In your opinion, if a female teacher has the AIDS virus, but is not sick, should she
be allowed to continue teaching in the school?

4. If a member of your family got infected with the AIDS virus, would you want it
to remain a secret or not?
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The first three questions capture the stigma mechanism of social distancing from
PLWHA, while the fourth question aims to measure perceived or anticipated stigma
enacted by others should the respondent be associated with HIV/AIDS (Chan and Tsai
2016). Question 2 in the DHS has been found to be interpreted very differently by men
and women and so is unreliable for inclusion in our estimation of stigma (Cordes et al.
2017). Stigmatizing responses for the three remaining questions were as follows:

1A. “No, I would not buy fresh vegetables from a shopkeeper or vendor if I knew that
this person had HIV.”

3A. “No, a female teacher who has the AIDS virus, but is not sick, should not be
allowed to continue teaching in the school.”

4A. “Yes, I would want my family member’s AIDS virus infection to remain a secret.”

Women exhibit higher levels of internalized and enacted stigma than men in Sub-
Saharan Africa (Geary et al. 2014;Mugoya and Ernst 2014) and are considered critical
pathways to reducing community-level stigma (Kelly et al. 2017). Additionally, stigma
is likely to be underestimated by surveys (Kalichman et al. 2019; Maughan-Brown
2010). We therefore constructed a measure of stigma as the proportion of female
respondents across Kenya who answered at least two questions of the remaining three
(Questions 1, 3, and 4) in a stigmatizing manner, resulting in the time-ordered pairs
of data:

(2003, 0.3622), (2008, 0.2654), (2014, 0.2654).

We interpret these values as the fraction of Kenyans that have a stigmatizing view
of HIV/AIDS irrespective of infection status and consider this to be a measure
of population-wide stigma. Raw data used to calculate these values are given in
“Appendix 1.”

We acknowledge the difficulty in accurately measuring stigma through surveys and
the limitations of theKDHSquestions, including bias from respondents indicating they
do not engage in stigmatizing behaviors and concerns over how some questions may
be understood by respondents (Cordes et al. 2017; USAIDS 2005; Yoder and Nyblade
2004). However, the KDHS questionnaire is the only study gathering standardized,
national-level information on attitudes toward PLWHA for many countries at regular
intervals over time and therefore allows us to consider the effects of stigmaon anational
population of PLWHA. Our estimates of stigma were validated by comparing our
estimated values with findings of smaller studies withinKenya between 2003 and 2014
usingmore comprehensive instruments formeasuring stigma (National Empowerment
Network of People Living With HIV and AIDS in Kenya (NEPHAK) et al. 2011;
Neuman and Obermeyer 2013).

2.2 Creating aMechanistic Model for Stigma in Kenya

We let σ(t) represent population-level stigma as defined above andmake the following
model assumptions:

• There is a lower bound σi for σ(t) which corresponds to population levels of
internalized stigma at equilibrium;
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• The rate at which stigma changes in the population is directly proportional to the
difference between current levels of stigma and the lower bound.

Combining these assumptions gives rise to the model equation:

dσ

dt
= ν(σi − σ) (1)

where ν and σi are positive constants and σ(0) is specified. While simple in structure,
this model still provides a caricature of the three components of stigma—internalized,
enacted, and perceived—and allows us to determine the impact of interventions on
each of these components:

• At equilibrium, σ = σi . Therefore, we interpret σi as the population-level inter-
nalized stigma;

• The rate ν atwhich stigma changes over time represents how enacted and perceived
stigma change due to external drivers such as advertising campaigns for HIV
treatment.

Taking our starting point to correspond to the year 2000, we use the Curve Fitting
Toolbox in MATLAB to obtain parameter estimates ν = 0.24, σi = 0.23 and σ(0) =
0.5. Using these values, we find the solution to (1),

σ(t) = 0.27e−0.24(t−2000) + 0.23. (2)

See Fig. 1 for the fit of this function to the three data points from the KDHS. We
consider this function of σ(t) to be the primary analytical scenario representative of
the observed levels of stigma in Kenya during 2003–2014. In the Results section,
we use this fit as our baseline from which to consider alternative parameter values
corresponding to different levels of internalized or enacted/perceived stigma.

3 Modeling Infection Dynamics

Since 2000, the adult population inKenya (16–64-year olds) has been growing just over
3% per annum and so we cannot make the commonly used assumption for infectious
disease modeling that there is a constant population. Rather, we assume that the adult
population is growing exponentially (a good fit with the data as shown in the following
section) and let N (t) denote the adult population in Kenya at time t (t measured in
years). We use a compartmental structure for the population, assuming that there are
two infected classes:

• I1(t) denotes individuals who are infected with HIV that are seeking treatment
(individuals experiencing little or no impact from population-level stigma); and

• I2(t) denotes individuals with HIV that are not seeking treatment because they
experience and are impacted by the population level stigma.

With this structure, we note that the number of individuals in the population that are not
infected with HIV, the susceptibles S(t) can be calculated using the simple relation:

S(t) = N (t) − I1(t) − I2(t).
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Fig. 1 Fitted curve for σ(t) (blue line) shown with data points (orange stars) from the three Kenya Demo-
graphic and Health Surveys. The starting point was chosen to correspond to the year 2000

Following standard practice, we assume a frequency-dependent infection rate with
individuals joining class I1 or I2 depending on the level of population stigma σ .
Individuals may move between the two infected classes at rates dependent on σ and
may die from natural and/or disease related causes. Using these simple assumptions,
together with (1), we obtain the model system of ODEs, shown also in the schematic
presented in Fig. 2:

dN

dt
= r N (3a)

dI1
dt

=
(
1 − σ

σmax

)
(β1 I1 + β2 I2)

(N − I1 − I2)

N
− γ1(σ )I1 + γ2(σ )I2 − μ1 I1,

(3b)

dI2
dt

= σ

σmax
(β1 I1 + β2 I2)

(N − I1 − I2)

N
+ γ1(σ )I1 − γ2(σ )I2 − μ2 I2, (3c)

dσ

dt
= ν(σi − σ). (3d)

with associated positive initial conditions for each variable. The parameter r represents
the intrinsic growth rate of the population. The parameters βi , i = 1, 2 denote the
transmission rates from individuals in compartment Ii , and μi is the corresponding
death rate from those compartments (due to natural and disease-related causes). The
parameter σmax denotes the maximum impact of stigma on newly infected individuals,
i.e., if σ = σmax then all newly infected individuals will move into the I2 class and
will not seek treatment. Our model system is positively invariant and so our solution
set will remain positive throughout, given the positivity of the initial conditions.
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Fig. 2 Schematics of the compartmental model

Movement between the two infected classes is represented by the rate functions γi
which satisfy the following properties:

• γ1 is a convex increasing function of σ such that as stigma increases in the popu-
lation, the rate at which individuals move from the treated I1 class to the untreated
I2 class increases;

• γ2 is a convex, decreasing function of σ such that as stigma increases in the
population, the rate at which individuals move from untreated I2 to treated I1
decreases.

These choices were made in the absence of empirical data as parsimonious, based
on the principle that the more prevalent stigma is within a population then the more
likely individuals are to try and avoid seeking treatment for HIV and that this behavior
would become more pronounced the higher the level of stigma (hence the assumption
of convexity).

Our data-driven choice of exponential growth for the total population means that
the model system (3) does not admit any non-trivial steady-state solutions. Moreover,
the infection classes are not easily linked to infection data from Kenya and they do not
correspond to standard measures of infection, such as infection prevalence. With this
inmind, we chose to transform themodel system to consider infection prevalence P(t)
and the fraction of infected individuals seeking treatment V (t) using the relations:

P = I1+I2
N , V = I1

I1+I2
.

This transformation gives rise to the transformed (P, V ) model system:

dP

dt
= P[(1 − P)(β1V + β2(1 − V )) − μ1V − μ2(1 − V ) − r ], (4a)

dV

dP
=

(
1 − σ

σmax
− V

)
(β1V + β2(1 − V ))(1 − P) − γ1V + γ2(1 − V )

+ (μ2 − μ1)V (1 − V ) (4b)
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dσ

dt
= ν(σi − σ) (4c)

which we use in our model analysis, and simulations. Note that positivity of the values
of I1 and I2 guarantees that V is well defined. We simulate our system using the
parameters estimated in the next section, taking our starting point to correspond to the
year 2004.

3.1 Parameter Estimation

Data indicating that individuals did not begin to take up treatment for HIV/AIDS in
Kenya until 2004 motivated us to set t = 0 corresponding to the year 2004. We used
published data (TheWorld Bank,World Development Indicators 2019; Global Burden
of Disease Collaborative Network 2018; The World Bank 2019), given in “Appendix
A.1,” to estimate initial conditions:

N (0) = 19,881,691, P(0) = 1,556,539

19,881,691
≈ 0.08, V (0) = 2,

and the average yearly growth rate for the adult population in Kenya over this period,

r ≈ 0.032.

Since there is evidence that antiretroviral therapy can reduce transmission of HIV
by up to 96% (Cohen et al. 2013, 2016), we take

β1 = 0.1β2.

Studies also agree that antiretroviral treatment reduces the likelihood of death due to
the disease by more than 50% (Kasamba et al. 2012; Violari et al. 2008), and so we
impose the constraint

μ1 ≤ 0.5μ2.

Movement between I1 and I2 depends on the level of stigma that exists in society
and therefore also change over time. As a result, we assume that γ1(t) and γ2(t) are
both functions of σ(t). For the purpose of parameter estimation and simulations, we
chose

γ1(t) = bσ(t)2 and γ2(t) = c(1 − √
σ(t))

both of which satisfy the qualitative characteristics described in Sect. 3. A second,
distinct pair of functions was also used to validate model results; details can be found
in “Appendix A.3.1.”

Including the parameters embedded within the γi (t) functions (i = 1, 2), we have 6
unknown values to estimate: β2, μ1, μ2, σmax, b, and c. To do this, we used data from

123



   55 Page 10 of 25 B. Levy et al.

Table 1 Parameters used in our
model. We obtained the estimate
for r ≈ 0.032 and the
relationship β1 ≈ 0.1β2 from
the literature (Gapminder 2016;
United Nations, Department of
Economic and Social Affairs,
Population Division 2019;
Cohen et al. 2013). In cases
where a parameter was
estimated from data, we have
provided the bounds used in the
optimization problem

Parameter Bounds Estimated Value Units

r 0.032 Years−1

β1 0.0082 Years−1

β2 [0 0.2] 0.082 Years−1

μ1 [0.021 0.2] 0.021 Years−1

μ2 [0.021 0.2] 0.068 Years−1

σmax [0 0.5] 0.50 None

b [0 100] 2.09 × 10−7 Years−1

c [0 50] 0.133 Years−1

Kenya (2004–2017) given in “Appendix A.1” (The World Bank, World Development
Indicators 2019; Global Burden of Disease Collaborative Network 2018; The World
Bank 2019).

Details of the fitting algorithm and its goodness of fit are provided in “Appendix
A.2.” The resulting parameter estimates (together with those obtained directly from
the literature) are given in Table 1.

From the estimated parameters in Table 1, we note that our estimated death rates
satisfy

μ1 ≈ 0.31μ2,

which agrees with findings that antiretroviral treatment reduces death in adults by
around 34% (Kasamba et al. 2012).

The parameter b was estimated as 2.09 × 10−7 (Table 1), resulting in very little
flow from the treated class (I1) to the untreated class (I2).

4 Results

Figure 3 presents our model output using the estimated parameters together with the
epidemiological data fromKenya.We explore how sensitive ourmodel is to changes in
“Appendix A.3,” which includes model simulation using alternative functional forms
for γ1(t) and γ2(t). That work gives us confidence in the values of our disease-related
parameters and confirms that the behaviors seen in the baseline case are qualitatively
similar for alternative functional choices where we have no evidence or data on which
to make our choices. Using our parameter estimates, the number of treated individuals
(I1) surpasses the number of non-treated individuals (I2) in 2014, which agrees with
the data. As time progresses, σ(t) decreases allowing for an increasing percentage
of new infections to begin treatment immediately. This accurately reflects what took
place historically as the obtained data indicate that individuals in Kenya did not seek
treatment for HIV/AIDS prior to 2000.

There are three distinct components of this results section. Firstly, we compare
model outputs when parameter estimates associated with σ(t) are varied from those
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Fig. 3 Model output compared to data after parameter estimation process

described in Sect. 3.1. This allows us to understand better how stigma has impacted
the HIV dynamics observed in Kenya over the period of interest. Next, we use model
predictions to see how close Kenya might be to the UN “Getting to Zero” goal in
2030 and finally we undertake a standard steady-state analysis to explore the impact
of long-term stigma on the fraction of PLWHA who seek treatment.

4.1 Alternative Stigma Scenarios

Wecomparemodel predictions for the number of new cases each year, the total number
of people being treated for HIV and deaths of people with HIV in the time interval
2004–2017, and we determine the time at which the models predict more infected
people are seeking treatment than those who are not. We consider four scenarios that
maintain σ at a constant value; this can be interpreted as ignoring enacted stigma
(ν = 0) but allowing population-wide internalized stigma to assume different levels,
including the best-case scenario of no stigma. We consider one case in which ν is
increased above the value estimated in Sect. 3.1 to explore the potential for a greater
impact on reducing enacted stigma, and finally we compare these results to the case in
which there is no internalized stigma assumed in the population σi = 0. Results from
these numerical explorations are presented in Fig. 4 and Table 2.
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Fig. 4 New cases 2004–2017 from the 7 scenarios described in Sect. 4. The baseline simulation uses our
estimated parameters. We also simulated four scenarios where σ(t) is constant over time, a case where σ(t)
decays twice as fast (ν = 0.48), and a scenario where we refit our σ(t) function fixing internalized stigma
as zero (σi = 0 and σ(t) = 0.4e−0.04t )

Table 2 Results of various scenarios all using the initial conditions from Sect. 3.1

Scenario Switching month Total deaths(millions) Total treated(millions)

Baseline 113 1.13 1.04

σ(t) = σmax = 1/2 298 1.31 0.60

σ(t) = 0.615/2 104 1.09 1.02

σ(t) = σmin = 0.23/2 60 0.91 1.25

σ(t) = 0 41 0.79 1.34

σ(t) decays faster (ν = 0.48) 99 1.08 1.09

σi = 0 (σ(t) = .4e−.04t ) 113 1.12 1.04

Simulations are from 2004 through 2017. The switchingmonth is defined as themonth after January 2004 in
which the percent of individuals that are being treated surpasses the percent of those not receiving treatment
(I1(t) > I2(t)). Columns 3 and 4 display total values at the end of each simulation

4.1.1 Constant Stigma

Scenario 1 fixes the stigma level at its level in 2000 by setting

σ = σmax = 1/2.

This scenario considers what would occur if the National AIDS Control Council
(NACC) was never formed in Kenya, resulting in a sustained stigma toward PLWHA.
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In the second scenario, we let

σ = σmin = 0.23/2.

This corresponds to the stigma level starting and remaining at its lowest level, i.e., at
its internalized stigma level.

The third scenario we considered corresponds to the midpoint of the previous two
scenarios,

σ = 0.615/2.

In this case, 1
σmax

∗0.615/2 = 0.615. According to our estimate of σ(t), this midpoint

occurred in 2005 and represents a scenario where the NACC formed, but did not
effectively reduce stigma in Kenya resulting in 61.5% of new cases flowing into the
untreated class for the duration of the simulation.

Lastly, we simulate the case where σ = 0, representing a scenario where all stigma
toward PLWHA is eliminated from society in Kenya so that all new cases immediately
begin treatment. This hypothetical scenario may not be feasible, but it represents a
“best case.”

There are clear differences in the results from the scenarios where stigma is constant
over time. Note that in the case where σ = σmax, even though all new cases flowing
into I2 there is still movement from the untreated class (I2) into the treated class (I1).
This simulation represents a “worst case” scenario where it takes nearly 300months
for the number of treated to surpass the number of untreated and over 1.31 million
deaths occur after the 14-year simulation. In the simulations where σ = 0.615/2,
model output remains most similar to the baseline scenario of σ(t) given in (2). In
the cases where σ = 0.23 and σ = 0, we see significant decreases in the switching
month and total deaths, as well as noticeable increases in the number of treated.

4.1.2 Stigma Decays Faster

Here, we simulate a scenario in which the rate at which stigma decays is twice that
predicted using the stigma data from Kenya. Specifically, we set

ν = 2 × 0.24 = 0.48.

This represents a situation where public health education was more effective allowing
for the perception of PLWHA to improve at a more rapid rate and can be thought of
as a reduction in enacted stigma.

Although there was not a dramatic difference in most metrics from this scenario
compared to the baseline simulation, allowing stigma to decay at a faster rate does
result in slightly improved metrics across the board. We also note how the decrease in
total deaths in this scenario is the same value as the increase in total treated. Thus, even
though the number of yearly cases does not see a significant decline in this scenario (see
Fig. 4), this highlights how a more rapid improvement in the perception of PLWHA
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(i.e., a reduction in enacted stigma) can save lives through more individuals seeking
antiretroviral treatment.

4.1.3 No Internalized Stigma

Finally, we simulate a scenario where there is no internalized stigma, σi = 0. In this
case, we must first re-fit the function σ(t) to the KDHS survey data using σi = 0
because the solution trajectory that best fits the three data points we have estimated
but for which σi = 0, cannot be derived from our existing solution (2). The best fit
solution gives

σ(t) = 0.4e−0.04t .

This case has similar output to the baseline scenario shown in Fig. 4, producing
the same switching month and a slight reduction in total deaths. The reason for the
similarity is that even though σ(t) → 0 as t → ∞, the baseline σ(t) function (2) is
not dramatically different during the simulated time frame. Having said that, the level
of stigma at t = 0 for this function is lower than that predicted with our baseline,
data-driven estimate for σ(t) and so more infected individuals move into the treated
class early in the simulation resulting in a reduction in total cases and therefore also
total deaths. Considering the clear importance of receiving treatment, allowing stigma
to entirely dissipate from society would undoubtedly have a more significant impact
when considering extended time frames.

4.2 Meeting UN Goals

As described in the introduction, the UN initiative “Getting to Zero” aimed to reduce
the number of new infections, the level of discrimination, and deaths from HIV/AIDS
to zero by 2030. Our model predictions for these three measures are given in Table
3, where row 1 shows model output where an internalized level of stigma is assumed
while row 2 assumes σi = 0.

It should be noted that our model continues to assume exponential growth for the
whole population until 2030 which certainly over-estimates the likely population in
Kenya in 2030. That not with-standing, it is clear that there is likely to be a shortfall in
achieving these goals. This is supported by our baseline model as output suggests that
in 2030 about 23% of the population will stigmatize PLWHA, resulting in over 24,000
new cases and over 38,000 deaths that year. We obtain similar, though slightly lower,
estimates in the case where the σi = 0. Having said that, this is over 70% reduction
since 2003 and the reductions in the number of new cases and deaths by 2030 are
considerable.

4.3 Understanding the Dynamics

Figure 5 shows the long term predictions of our model system using the parameter
set fitted to Kenyan data. Our simulation predicts that as prevalence decays toward
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Table 3 Model output in 2030 Stigma level Yearly new cases Yearly deaths

0.231 24,427 38,448

0.120 21,500 36,364

Row 1 displays output from our baseline model while row 2 considers
the case where σi = 0 and σ(t) = 0.4e−0.04t

Fig. 5 Simulation showing the long-termmodel predictions for (P, V )demonstrating themonotonic decline
in prevalence to zero with around 96% of PLWHA seeking treatment

zero, the fraction of PLWHA seeking treatment stabilizes to a nonzero level. We use
steady-state analysis as a proxy to explore this observation and find that it predicts that
an infection-free equilibrium (zero prevalence) may arise under a range of conditions.
At steady state, σ ∗ = σi . When P∗ = 0, the corresponding equilibrium V ∗ solves the
quadratic equation:

AV 2 + BV + C = 0

where

A = β2 − β1 + μ1 − μ2

B = β1

(
1 − σi

σmax

)
− β2

(
2 − σi

σmax

)
+ μ2 − μ1 − γ1 − γ2

C = β2

(
1 − σi

σmax

)
+ γ2.

Of course, it is entirely unrealistic to assume that model parameters would remain
unchanged over an extended period. What is interesting to glean from this analysis
is a model estimate for the fraction of individuals infected with HIV that will seek
out treatment (around 96 % in our particular parameter set for V ∗ from that quadratic
equation, and also matching with numerical predictions shown in Fig. 5). More details
of our brief analysis are given in “Appendix A.4.”
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5 Discussion and Conclusions

Ourmotivation in undertaking thework presented herewas to understand the impact of
stigmaonHIVprevalence inKenyabydeveloping and analyzing amathematicalmodel
that could be adapted easily to explore HIV dynamics in other countries.Wewere care-
ful to invoke Occam’s Razor such that the model parameters could be estimated using
data readily available in the literature andwherewe did employmodel assumptions, for
example in determining how the population measure of stigma affected the movement
of infected individuals between the treated and untreated classes, we validated the
model outcomes by checking our results were independent of the particular functional
form (provided it satisfied our baseline assumption).

Since the population in Kenya is growing at around 3% per annum, one of our
first challenges was to think about how to understand infection dynamics within a
growing population. We addressed this by transforming the model system into one in
which the state variables measured infection prevalence and the fraction of infected
individuals seeking treatment. The next was to consider how stigma should impact
the dynamics. With a paucity of data available to validate assumptions, we chose a
parsimonious approach and decoupled the time evolution of stigma from the infec-
tion dynamics. Although the resulting model was simple in form, we were able to
identify three critical components of stigma—internalized stigma and enacted plus
perceived stigma—within the model. We used this to good effect in our analysis when
we explored how changes to these two elements would have changed the amount of
HIV infection in Kenya under a range of different scenarios. What emerged from that,
as shown in Fig. 4, is that a reduction in internalized stigma (measured in the model
by σi ) would not have had a big impact on reducing incidence of infection in Kenya in
the period 2004–2017; by contrast, reductions in enacted stigma would have reduced
incidence by around 8%. Figure 4 also shows that if there was no stigma associated
with HIV infections, then incidence of HIV infection would be lowest. This is hardly
surprising. However, even in that scenario, the UN goal of Zero in 2030 would not be
achieved according to our model predictions.

The model prediction that reducing enacted stigma might have more impact on
reducing incidence of HIV than reducing internalized stigma provides a potential
recommendation to those working in public health in Kenya. With limited resources
available to tackle stigma, our model suggests that activities that target enacted stigma
might be of greater benefit in the current situation than those targeting internalized
stigma. This may be a welcome message—persuading communities to alter their view
of HIV infection may provide a more tangible target for public health campaigns than
initiatives that focus on individuals within those community.

It is clear that our model representation of stigma is simplistic. That was inten-
tional for two reasons. Firstly, we did not find data-driven evidence in the literature
that would link stigma dynamically to HIV infection dynamics. This meant that we
could have chosen stigma to depend on infection prevalence, on HIV-related death,
infection prevalence, and/or some combination of all of these. Our results may have
been interesting but they may not have been relevant to Kenya. Secondly, we wanted
to highlight the potential importance of incorporating stigma into our HIV model in
order to support the argument that a focus on gathering data on sociological processes
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that impact infectious disease dynamics should start to take priority. While we move
toward that goal, Kenya may not achieve the UN goal “Getting to Zero in 2030,” but
it is certainly moving in the right direction.
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A Appendix

A.1 Data for Kenya

Data used to estimate key parameters β2,μ1,μ2, σmax,b, and c include the fractions of
Kenyanswith a stigmatizing viewofHIV/AIDS, i.e., the number of female respondents
answering at least two questions in a stigmatizing manner divided by the total number
of responses to all three questions (Table 4; CBS et al. 2004; Kenya National Bureau of
Statistics (KNBS) and ICF Macro 2010, 2014), along with the total adult population,
total number of HIV/AIDS cases, number of yearly HIV/AIDS-related deaths, and
percent of PLWHA that are receiving antiretroviral therapy treatment for HIV/AIDS
for Kenya from 2004 through 2017 (Table 5).

Table 4 Data for stigma used to estimate parameters in our model

Year TFR for all three questions SR for at least two questions

2003 8037 2911

2008 8349 2216

2014 14,633 3509

TFR total number of female responses, SR stigmatized responses
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Table 5 Data for adult population (The World Bank, World Development Indicators 2019), total cases
(Global Burden of Disease Collaborative Network 2018), yearly deaths (Global Burden of Disease Col-
laborative Network 2018), and percent treated (The World Bank 2019) used to estimate parameters in our
model

Year Adult population Total cases Yearly deaths Percent treated

2004 19,881,691 1,556,539 109,769 2

2005 20,500,063 1,555,886 108,881 4

2006 21,134,459 1,556,425 106,011 9

2007 21,756,530 1,552,905 100,971 12

2008 22,384,120 1,549,630 92,753 17

2009 23,050,075 1,551,573 86,497 23

2010 23,771,983 1,564,451 78,894 29

2011 24,525,795 1,585,198 71,528 37

2012 25,345,229 1,607,145 65,842 41

2013 26,216,858 1,630,997 62,910 44

2014 27,117,617 1,657,895 59,355 50

2015 28,036,000 1,689,424 56,188 59

2016 28,988,590 1,727,026 52,482 66

2017 29,957,102 1,772,350 48,502 73

A.2 Parameter EstimationMethodology

The total population togetherwith the total cases gives the percentage of the population
that is PLWHA. Using these data, we fit our model to the percent of the population
that are a PLWHA (P I ∗), the percent of the population that is a PLWHA and is
receiving antiretroviral treatment (PT ∗), and the number of yearly deaths caused by
HIV/AIDS (Y D∗). The asterisk represents data points while we use the equivalent
notation without an asterisk to represent model output.
We estimate parameters by minimizing the objective function:

minimize J (x) = ||P I (x) − P I ∗||2
||P I ∗||2 + ||PT (x) − PT ∗||2

||PT ∗||2 + ||Y D(x) − Y D∗||2
||Y D∗||2 ,

where xT = [β2, μ1, μ2, σmax, b, c] is the vector of unknown parameters fromTable 1
(which also provides parameter boundswhere these are known). Each vector comprises
14 components corresponding to the years, 2004–2017. We divide by the magnitude
of the data to normalize each term.

The optimization problem was implemented in MATLAB using the fmincon func-
tion in the Optimization Toolbox. Parameter bounds and constraints that were imposed
are detailed in the main text. Since fmincon is a local solver, we used MATLAB mul-
tistart to choose 200 starting points to fully explore the parameter space. All starting
points converged to one of two local minimums, with the optimal set of parameters
resulting in an objective function output of J = 0.24 and the parameter values shown
in Table 1. The second local minimum produced an objective function value twice as
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Table 6 Model sensitivity
analysis results for three
outcomes of interest: Total
Cases after the 14-year
simulation (TC), Yearly Cases
in final year of the simulation
(YC), and Yearly Deaths in final
year of the simulation (Y D)

TC YC Y D

β2 0.991∗ 0.981∗ 0.956∗
μ1 − 0.043 0.044 0.842∗
μ2 − 0.880∗ − 0.893∗ 0.152

σmax 0.833∗ 0.809∗ 0.835∗
b − 0.050 − 0.053 0.117

c − 0.727∗ − 0.821∗ − 0.866∗

Each entry represents the corresponding partial rank correlation coef-
ficient (PRCC) and statistically significant values (p < 0.0001) have
an asterisk

large at J = 0.48 and resulted in the same parameter values as the optimal set except
that b ≈ 40 rather than b = 2.09 × 10−7 and c ≈ 5 rather than c = 0.133. These
values of b and c at the second minimum are unreasonably large, especially b ≈ 40.
More specifically, since bσ(t)2 determines the percent of individuals moving from I1
to I2 per unit time, our model requires that 0 ≥ b ∗ σ(t)2 ≤ 1 where 0 ≥ σ(t)2 ≤ 1.
Thus, if b ≈ 40 then 40σ(t)2 > 1 for σ(t) > 1/

√
40 ≈ 0.16, which is problematic.

Thus, the optimal set of parameters values are those given in Table 1.

A.3 Sensitivity Analysis

We performed a global sensitivity analysis for our model using Latin Hypercube Sam-
pling (LHS) to sample the parameter space and Partial Rank Correlation Coefficients
(PRCC) to evaluate the sensitivity outcome variables of interest to changes in our 6
estimated parameter values. We created intervals for each parameters to sample from
by extending 50% above and below the estimated values shown in Table 1. Uniform
probability distributions were used for each parameter interval and we drew 100 sam-
ples from each interval. PRCC provides us with a way to evaluate the monotonicity of
relationship of a parameter with each outcome variable of interest while holding all the
remaining parameters constant, even when the relationship is not linear. We chose to
evaluate the sensitivity of three outcome variables to changes in our parameters: Total
Cases after the 14-year simulation, Yearly Cases in final year of the simulation, and
Yearly Deaths in final year of the simulation (Blower and Dowlatabadi 1994; Marino
et al. 2008). Results from this process are given in Table 6.

Regardless of the variable of interest, our model is sensitive to changes in β2, σmax,
and c. While β2 will determine the number of new infections per unit time, σmax
and c control the number of individuals that are in the treated (I1) and untreated (I2)
classes. Death rate μ1 has a statistically significant impact on yearly deaths while μ2
is statistically significant with respect to the two outcome variables associated with
number of cases.
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Table 7 Parameters used to test
how sensitive our parameter
estimation results are to the
functional forms of γ1(t) and
γ2(t)

Parameter Bounds Estimated Value Units

r 0.032 Years−1

β1 0.0082 Years−1

β2 [0 0.2] 0.082 Years−1

μ1 [0.021 0.2] 0.021 Years−1

μ2 [0.021 0.2] 0.068 Years−1

σmax [0 0.5] 0.50 None

b [0 100] 2.09 × 10−7 Years−1

c [0 50] 9.22 Years−1

d [0 500] 200 Years−1

We obtained the estimate for r ≈ 0.032 and the relationship β1 ≈
0.1β2 from the literature (Gapminder 2016; United Nations, Depart-
ment of Economic and Social Affairs, Population Division 2019;
Cohen et al. 2013). In cases where a parameter was estimated from
data, we have provided the bounds used in the optimization problem

A.3.1 Fitting Alternate Forms of �1(t) and �2(t)

To determine how sensitive our parameter estimation results are to the functional forms
of γ1(t) and γ2(t), we refit the model with the following functions that also satisfy the
qualitative requirements stated in Sect. 3.1:

γ1(t) = bσ(t),

γ2(t) = c

1 + dσ(t)
.

We followed exactly the process described in Sect. 3.1 and obtained the same
parameter estimates as shown in Table 7 for the parameters not in the γ1 and γ2
functions. The corresponding simulation plots are depicted in Fig. 6. Additionally, we
performed a sensitivity analysis on these parameters as described in “Appendix A.3.”
The magnitude of the resulting PRCC values, their signs, and statistical significance
closely aligned with those depicted in Table 6. The consistency of these results with
those using the initial pair of functions suggests that we have reasonable estimates for
our model parameters.

A.4 Steady State and Stability Calculations

At steady state, σ ∗ = σi , and solutions of the transformed (P, V ) system (4) satisfy
the coupled algebraic equations:

P[(1 − P)(β1V + β2(1 − V )) − μ1V − μ2(1 − V ) − r ] = 0 (5a)(
1 − σi

σmax
− V

)
(β1V + β2(1 − V ))(1 − P) − γ1V + γ2(1 − V )

123



Modeling the Effect of HIV/AIDS Stigma on HIV Infection… Page 21 of 25    55 

Fig. 6 Model output compared to data after parameter estimation process using alternate forms for γ1(t)
and γ2(t)

+ (μ2 − μ1)V (1 − V ) = 0. (5b)

Solving (5) gives either P∗ = 0 or

P∗ = 1 − μ1V ∗ + μ2(1 − V ∗) + r

(β1V ∗ + β2(1 − V ∗))
. (6)

We are interested in the equilibrium with P∗ = 0. This satisfies the first equation in
(5); substituting into the second, we find that V must satisfy the quadratic equation:

AV 2 + BV + C = 0 (7)

where

A = β2 − β1 + μ1 − μ2

B = β1

(
1 − σi

σmax

)
− β2

(
2 − σi

σmax

)
+ μ2 − μ1 − γ1 − γ2

C = β2

(
1 − σi

σmax

)
+ γ2. (8)
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Solving (7) gives the standard quadratic solutions

V ∗
1 = −B + √

B2 − 4AC

2A
,

V ∗
2 = −B − √

B2 − 4AC

2A
.

Since C > 0, the existence of equilibrium points is determined by the sign of
A. Local stability of this infection-free equilibrium is determined by analysis of the
Jacobian matrix

J =
[
a11 0
a21 a22

]
(9)

where

a11 = β1V
∗ + β2(1 − V ∗) − μ1V

∗ − μ2(1 − V ∗) − r

a21 = −
(
1 − σi

σmax
− V ∗

)
(β1V

∗ + β2(1 − V ∗))

a22 = −(β1V
∗ + β2(1 − V ∗)) +

(
1 − σi

σmax
− V ∗

)
(β1 − β2) − γ1 − γ2

+(μ2 − μ1)(1 − 2V ∗).

Local stability is determined by the sign of the trace and determinant of J . Since this
matrix is lower triangular, the stability conditions simplify to

a11 < 0, and a22 < 0.

For the parameter estimates, we have for Kenya, A = β2 − β1 + μ1 − μ2 > 0.
The scenario A > 0 gives two possible positive roots for V ∗. We can show, by
contradiction, that V ∗

1 > 1 as follows. Assuming that V ∗
1 ≤ 1, then

−B +
√
B2 − 4AC < 2A

and hence

B2 − 4AC < 4A2 + 4AB + B2.

Substituting for A, B and C into this inequality gives

σi

σmax
β1 + γ1 ≤ 0

which is a contradiction.
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A direct manipulation on V ∗
2 shows that 0 < V ∗

2 < 1, which gives the meaningful
root for our model to get an equilibrium point (0, V ∗

2 ). Using the parameters values in
Table 7, we obtain V ∗

2 = 0.9588 with a11 < 0 and a22 < 0 and so we conclude that
this equilibrium is locally stable.

Remark 1 The case for A < 0 leads to existence of one positive root of equation (5).
An interior equilibrium point also exists when P∗ 	= 0 and given by (6). Details for
existence and stability of these equilibria have intentionally been omitted as we focus
on the relevant equilibrium point predicted by fitting the model to data.
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