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Abstract
In a recent paper by one of the authors and collaborators, motivated by the Olive Quick
Decline Syndrome (OQDS) outbreak, which has been ongoing in Southern Italy since
2013, a simple epidemiological model describing this epidemic was presented. Beside
the bacteriumXylella fastidiosa, themain players considered in themodel are its insect
vectors,Philaenus spumarius, and the host plants (olive trees and weeds) of the insects
and of the bacterium. The model was based on a system of ordinary differential equa-
tions, the analysis of which provided interesting results about possible equilibria of
the epidemic system and guidelines for its numerical simulations. Although the model
presented there was mathematically rather simplified, its analysis has highlighted
threshold parameters that could be the target of control strategies within an integrated
pest management framework, not requiring the removal of the productive resource
represented by the olive trees. Indeed, numerical simulations support the outcomes
of the mathematical analysis, according to which the removal of a suitable amount
of weed biomass (reservoir of Xylella fastidiosa) from olive orchards and surround-
ing areas resulted in the most efficient strategy to control the spread of the OQDS.
In addition, as expected, the adoption of more resistant olive tree cultivars has been
shown to be a good strategy, though less cost-effective, in controlling the pathogen. In
this paper for a more realistic description and a clearer interpretation of the proposed
control measures, a spatial structure of the epidemic system has been included, but, in
order to keep mathematical technicalities to a minimum, only two players have been
described in a dynamical way, trees and insects, while the weed biomass is taken to
be a given quantity. The control measures have been introduced only on a subregion
of the whole habitat, in order to contain costs of intervention. We show that such a
practice can lead to the eradication of an epidemic outbreak. Numerical simulations
confirm both the results of the previous paper and the theoretical results of the model
with a spatial structure, though subject to regional control only.
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1 Introduction

The etiological agent of olive tree disease known as olive quick decline syndrome
(OQDS) is the plant pathogenic bacterium Xylella fastidiosa, which is a vector-borne
bacterium.

The main vector of Xylella fastidiosa in Southern Italy has been identified in the
so-called meadow spittlebug, i.e., the Philaenus spumarius, a xylem sap-feeding spe-
cialist. Their juvenile form (nymphs) develops onweeds or ornamental plants, confined
in a foam produced by themselves for protection from predators and temperature,
while their adult form moves to olive tree canopies. Experiments have shown a larger
infection prevalence of adults on olive trees than on weeds; this fact may lead to the
assumption of infection of adults from infected olive trees more than from weeds.

X. fastidiosa transmission is the result of four events [see e. g. Almeida et al. (2005),
Redak et al. (2004) and references cited therein]:

(a) acquisition from a source plant;
(b) attachment and retention to the vector’s foregut;
(c) inoculation into a new host;
(d) development of the infection in a plant after inoculation.
A successful transmission also includes bacterial multiplication.
Once a plant is infected, bacteria multiply within the xylem vessels inducing the

productionof a gel in the plant xylem,whichoccludes the xylemvessels, thus inhibiting
the flux of water through the lymph vessels eventually blocking the nutrition of the
plant. Typical symptoms are leaf scorch, dieback of twigs, branches and even of the
whole plant (Carlucci et al. 2013).

Sanitation of infected olive trees is unfeasible; the scope of our research is the
mathematical modeling of the population dynamics of the ecosystem in the presence
of infection. The availability of a sound mathematical model may lead to predictive
analysis of the relevant populations, so as to suggest possible eradication strategies,
or at least possible optimal control strategies.

In a previous paper (Brunetti et al. 2020), based on the outbreak of OQDS in
Southern Italy, a model describing the epidemic was presented. It consists of a system
of ordinary differential equations (ODEs) describing the evolution of the main three
players, i.e., the insect vector, Philaenus spumarius, the olive trees, and weeds. A
preliminary mathematical analysis and related numerical simulations have shown that
“the removal of a significant amount ofweeds (acting as a reservoir for juvenile insects)
from olive orchards and surrounding areas has resulted in the most efficient strategy
to control the spread of the OQDS. In addition, as expected, the adoption of more
resistant olive tree cultivars has been shown to be a good strategy, though less cost
effective, in controlling the pathogen.”

The scope of the present paper is to extend the above results to a spatially structured
model and to show in a more rigorous way that the spatial expansion of an OQDS
outbreak can indeed be stopped by acting either on the weed biomass or on the choice
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of the olive cultivar. We have adopted a deterministic reaction–diffusion model. We
recall that reaction–diffusion models can be interpreted as mean-field approximations
of individual based models, which are more appropriate at the micro scale. Of course,
in our case individual behaviors and possible randomness are lost. On the other hand,
our approach allows a mathematical “qualitative” analysis of the system, including
the derivation of eradicability theorems. Such a “qualitative” analysis has driven on
the one side, our numerical experiments and, on the other side, anticipates future
investigations on optimal control problems in a variety of scenarios.

In order to keep mathematical technicalities to a minimum, here the weed biomass
is taken as a given field parameter and as in Brunetti et al. (2020), the insect life
cycle has not been taken into account [more information about this last aspect can
be found in Rossini et al. (2020)]. As possible control actions, insect traps, weed cut,
choice of the cultivar, and reduction of contact rates have been taken into account. In
the numerical simulations, particular attention has been paid to weed cut and choice
of the cultivar, the other control measures being more difficult to implement. It is
worth mentioning that, in recent investigations presented in Schneider et al. (2020),
the authors, by means of a cellular automaton simulator, have confirmed the relevance
of the olive cultivar as a possible effective control strategy.

A relevant contribution of our approach consists of the restriction of measures of
intervention (control) only to a subregion of the whole habitat of interest. Due to
diffusion, any point of the domain Ω is strongly connected to any other point of Ω,

so that any action taken in a subregion ω ⊂ Ω will eventually propagate to the whole
habitat. This is the “leit motiv” of our proposal concerning regional control: “think
globally, act locally” [see Aniţa and Capasso (2009)]. This practice may contribute
in a significant way to improve the ratio cost/effectiveness of real control strategies.
Mathematical analysis and numerical simulations have been carried out showing that
it is indeed possible to eradicate the disease by such local action. Our aim is to analyze
optimal control problems in future investigations, which may possibly lead to the
identification of an optimal choice of the subregion of intervention.

The paper is organized as follows. In Sect. 2, the mathematical model is presented.
In Sect. 3, possible control strategies are proposed, based on which an eradicability
result is shown. Finally, in Sect. 4, numerical simulations are presented which confirm
the analytical results. In the numerical simulations, the relevant parameters have been
taken from Brunetti et al. (2020).

2 Our Model

Since the feeding behavior and metabolic processes are qualitatively similar for both
nymphs and adults (Janse and Obradovic 2010), we will consider only one stage of
active vectors of the infection. We will consider a spatially structured model which
includes the population of vector insects and the population of infected olive trees.

We will denote by CI (x, t) the spatial density of the total population of insects, by
s1(x, t) the spatial density of susceptible insects, and by i1(x, t) the spatial density of
infected insects:
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CI (x, t) = s1(x, t) + i1(x, t).

CT (x, t) will denote the spatial density of the total biomass of olive trees, s2(x, t)
the spatial density of the biomass of healthy trees, i2(x, t) the spatial density of the
biomass of infected trees:

CT (x, t) = s2(x, t) + i2(x, t).

All the parameters in the model are nonnegative quantities.

• INSECTS

Due to the fact that bacteria reside only in the foregut of an adult insect, the latter
generate only healthy offspring [see, e.g., Almeida et al. (2005), Redak et al. (2004),
and references cited therein]. The parameter r denotes the birth rate of new insects.

Reproduction, however, can occur only if bushes and other plants, whether healthy
or infected, are present, explaining the presence of a “carrying capacity” M(x) in the
logistic term, describing the biomass of all such plants, which we simply call weeds.

Both healthy and infected insects experience natural mortality at a rate n; χ is a
scale parameter.

Finally, we assume that insects may diffuse in the habitat (with constant diffusion
coefficient to avoid purely technical complications).

As far as the local incidence of infection for insects, at point x ∈ Ω , and time
t ≥ 0, as in previous models (Capasso 1984; Aniţa and Capasso 2009), we assume
that it arises due to biting of infected olive trees at any point x ′ ∈ Ω of the habitat,
within a spatial neighborhood of x represented by a suitable probability kernel k(x, x ′),
depending on the specific structure of the local ecosystem [see also Shcherbacheva
et al. (2018)]; as a trivial simplification, one may assume k(x, ·) as a Gaussian density
centered at x; hence, the “local incidence rate (i.r.)” for insects, at point x ∈ Ω , and
time t ≥ 0, is taken as

(i .r .)I (x, t) = βs1(x, t)
∫

Ω

k(x, x ′)i2(x ′, t)dx ′.

Hence, the spatial dynamics of susceptible insects is expressed by the following
equation

∂s1
∂t

(x, t) = dΔs1(x, t) + rCI (x, t)[M(x) − χs1(x, t)] − ns1(x, t)

−βs1(x, t)
∫

Ω

k(x, x ′)i2(x ′, t)dx ′, (1)

while the spatial dynamics of infective insects is expressed by the following equation

∂i1
∂t

(x, t) = dΔi1(x, t) − ni1(x, t) − rχ i1(x, t)CI (x, t)

+βs1(x, t)
∫

Ω

k(x, x ′)i2(x ′, t)dx ′. (2)
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Table 1 Model parameters

Symbol Description

r Insect birth rate

χ Insect intraspecific competition rate

n Insect mortality rate

q Healthy tree (canopy) regrowth rate

C Tree carrying capacity parameter

� Elimination rate of trees by pruning or logging

b Infection rate of trees by infected tools

μ Infected tree mortality rate

α Infected tree recovery rate

β Insect infection rate by infected trees

ζ Tree infection rate by infected insects

Both Eqs. (1) and (2) act in a spatial domain Ω ⊂ R
2, at times t ∈ (0,+∞).

They are subject to suitable initial conditions, and we assume homogeneous Neumann
boundary conditions.

• OLIVE TREES

For the olive trees, it is better to refer to their canopies, so that we may consider
pruning and regrowth. Healthy trees (canopy) are produced at constant net regrowth
rate q, get infected by contact with infected insects at rate ζ or by human activities,
such as budding and grafting, at rate b. For trees, in view of their long survival, we can
neglect natural mortality. Infected trees experience disease-related mortality μ and
human-induced mortality � due to pruning and logging.

Hence, the spatial dynamics of trees is expressed by the following equations

∂s2
∂t

(x, t) = (q − �)s2(x, t) − s2(x, t)
CT (x, t)

C
− (ζ i1(x, t) + b�i2(x, t))s2(x, t) + αi2(x, t), (3)

∂i2
∂t

(x, t) = −μi2(x, t) − �i2(x, t) − i2(x, t)
CT (x, t)

C
+ (ζ i1(x, t) + b�i2(x, t))s2(x, t) − αi2(x, t). (4)

Both Eqs. (3) and (4) act in the spatial domain Ω ⊂ R
2, at times t ∈ (0,+∞).

They are subject to suitable initial conditions.
Assumptions:

• Ω ⊂ R
2 is a bounded domain with a smooth boundary;

• M ∈ L∞(Ω), M(x) ≥ 0 a.e. in Ω;
• k ∈ L∞(Ω × Ω), k(x, x ′) ≥ 0 a.e. in Ω × Ω; normalized to β;
• d, r , χ, n, q, �, C, μ, ζ, b, α, β are positive constants.
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3 Control and Eradicability

By summing Eqs. (1) and (2), we obtain an equation for the total insect population
CI (x, t)

∂CI

∂t
(x, t) = dΔCI (x, t) + rCI (x, t)[M(x) − χCI (x, t)] − nCI (x, t).

For M constant, pure Neumann boundary conditions allow constant in space and
time solutions, satisfying the following equilibrium equation

rC∗
I (M − χC∗

I ) − nC∗
I = 0,

that we may rewrite as

[r(M − χC∗
I ) − n]C∗

I = 0.

This equation may admit two solutions

C∗
I = 0,

and the solution of

r(M − χC∗∗
I ) − n = 0.

This shows that for M ≤ n

r
, no other nonnegative solutions are feasible, but the

trivial one. Otherwise, another equilibrium is feasible

C∗∗
I = 1

χ

(
M − n

r

)
, (5)

provided

M >
n

r
.

From the above simple reasoning, we may conjecture that a way to eradicate the
disease is to eliminate the insect population by a significant reduction of the carry-
ing capacity M, which may be obtained by eliminating weeds in the relevant olive
orchards. Equation (5) shows the quantitative role of the scale parameter χ; a smaller

value of χ allows a larger value of C∗∗
I , so that we may say that

M

χ
plays the role of

an “effective carrying capacity” of insects. Numerical simulations, reported in Sect. 4,
illustrate these facts.

A more accurate analysis follows. Assume that certain constant controls are con-
sidered in a non-empty open subset ω ⊂ Ω .

Possible regional controls (acting in ω) are the following:

C1: Traps : n → n + γ1; increase insect death rate by insecticides and/or treated
nets.
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C2: Weed cut : M → M(1 − γ21); decrease carrying capacity of insects by elimi-
nating weeds in the olive orchards.

C3: Choice of the cultivar: ζ → ζ(1− γ22); decrease infection rate of trees, acting
on the cultivar.

C4: Reduce contacts: β → β(1 − γ23); decrease contact rate of trees with insects
by installing treated nets.

C5: Clean tools: b → b(1 − γ3); decrease infection rate from tools to trees by
disinfection.

For various reasons, including cost reduction, we may consider the possibility of
implementing the proposed control measures only on a suitable subregion ω ⊂ Ω of
the whole habitat, including areas already affected by the epidemic, augmented by a
preventive confinement area.

Let Iω denote the characteristic function of ω. Then, the controlled system is

∂s1
∂t

(x, t) = dΔs1(x, t) + rCI (x, t)[M(x)(1 − γ21Iω(x)) − χs1(x, t)]

− (n + γ1Iω(x))s1(x, t) − β(1 − γ23Iω(x))s1(x, t)
∫

Ω

k(x, x ′)i2(x ′, t)dx ′,

(6)

∂i1
∂t

(x, t) = dΔi1(x, t) − (n + γ1Iω(x))i1(x, t) − rχ i1(x, t)CI (x, t)

+ β(1 − γ23Iω(x))s1(x, t)
∫

Ω

k(x, x ′)i2(x ′, t)dx ′, (7)

∂s2
∂t

(x, t) = (q − �)s2(x, t) − s2(x, t)
CT (x, t)

C
− (ζ(1 − γ22Iω(x))i1(x, t) + b(1 − γ3Iω(x))�i2(x, t))s2(x, t) + αi2(x, t),

(8)

∂i2
∂t

(x, t) = −μi2(x, t) − �i2(x, t) − i2(x, t)
CT (x, t)

C
+ (ζ(1 − γ22Iω(x))i1(x, t) + b(1 − γ3Iω(x))�i2(x, t))s2(x, t) − αi2(x, t).

(9)

We assume that there is no flux of insects through the boundary of Ω (the domain
is isolated):

∂s1
∂ν

(x, t) = ∂i1
∂ν

(x, t) = 0, x ∈ ∂Ω, t > 0, (10)

and that the following initial conditions are satisfied

s j (x, 0) = s j0(x), i j (x, 0) = i j0(x), x ∈ Ω, j ∈ {1, 2}. (11)
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Assumptions:

• s10, i10 ∈ L∞(Ω), s10(x), i10(x) ≥ 0, a.e. x ∈ Ω ;
• s20, i20 ∈ L∞(Ω), s20(x), i20(x) ≥ 0, a.e. x ∈ Ω ;
• γ1 ≥ 0, γ21, γ22, γ23 ∈ [0, 1], γ3 ∈ [0, 1] are constants.
Let (s1, i1, s2, i2) be the solution to (6)–(11), satisfying

s j , i j ∈ L∞
loc(Ω × [0,+∞)),

s j (x, t), i j (x, t) ≥ 0, a.e. (x, t) ∈ Ω × (0,+∞),

j ∈ {1, 2}. We postpone, for the time being, the proof of the existence and uniqueness
of such a solution.

As far as the trees are concerned, we may easily obtain an upper bound for the total
canopy.

If we now add Eqs. (8) and (9) and take into account the initial conditions, we find
that CT = s2 + i2 satisfies

{
∂CT

∂t
= (q − �)CT − 1

C
C2
T − (μ + q)i2, x ∈ Ω, t > 0

CT (x, 0) = CT 0(x) = s20(x) + i20(x), x ∈ Ω.
(12)

If we denote by C̃T the solution to

⎧⎨
⎩

dC̃T

dt
= (q − �)C̃T − 1

C
C̃2
T , t > 0

C̃T (0) = ‖CT 0‖∞ + 1,
(13)

we may state that

CT (x, t) ≤ C̃T (t), a.e. (x, t) ∈ Ω × (0,+∞) (14)

(here, and throughout this paper, ‖·‖p denotes the usual norm in L p(Ω)); it is obvious
that C̃T is space independent.

To prove this inequality, we set y(x, t) := C̃T (t) − CT (x, t) and note that y is the
solution to

{
∂ y

∂t
(x, t) = θ(x, t)y(x, t) + g(x, t), x ∈ Ω, t > 0

y(x, 0) = y0(x), x ∈ Ω,

where y0(x) = C̃T (0)−CT (x, 0), θ(x, t) = q − �− 1
C (C̃T (t)+CT (x, t)), g(x, t) =

(μ + q)i2(x, t), if x ∈ Ω , t > 0. Since y0 and g are nonnegative, we have that
y(x, t) ≥ 0, a.e. x ∈ Ω , ∀t ≥ 0, and the inequality (14) follows.

As a consequence of (13)

(j) if q ≤ �, then C̃T (t) → 0, as t → +∞; hence, CT (x, t) → 0, a.e. x ∈ Ω, as
t → +∞;
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(jj) if q > �, then C̃T (t) → C(q − �), as t → +∞.

We note that the quantity C(q − �)+ is the carrying capacity of the tree population.
We may now also note that if we denote by CT the solution to

⎧⎨
⎩

dCT

dt
= (q − �)CT , t > 0

CT (0) = ‖CT 0‖∞ + 1,

by similar arguments as for the previous inequality, we may also state that

C̃T (t) ≤ CT (t), t > 0.

It is evident that CT is space independent too. Altogether we may state

CT (x, t) ≤ C̃T (t) ≤ CT (t), a.e. (x, t) ∈ Ω × (0,+∞),

For the insect population, we may add Eqs. (6) and (7) and take into account the
boundary and initial conditions, to obtain that CI = s1 + i1 satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂CI

∂t
= dΔCI + r [M(x)(1 − γ21Iω(x)) − χCI ]CI − (n + γ1Iω(x))CI , x ∈ Ω, t > 0

∂CI

∂ν
(x, t) = 0, x ∈ ∂Ω, t > 0

CI (x, 0) = CI0(x) = s10(x) + i10(x), x ∈ Ω.

(15)
ByBanach’sfixedpoint theoremandusing the comparison result for the solutions to the
linear parabolic equations [see Friedman (1964) and Protter and Weinberger (1994)],
the existence and uniqueness of a nonnegative solution to (15) follow. Moreover, the
solution satisfies

CI (x, t) ≤ C I (x, t), a.e. (x, t) ∈ Ω × (0,+∞),

where C I is the solution to the linear parabolic equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂C I

∂t
= dΔC I + rM(x)(1 − γ21Iω(x))C I − (n + γ1Iω(x))C I , x ∈ Ω, t > 0

∂C I

∂ν
(x, t) = 0, x ∈ ∂Ω, t > 0

C I (x, 0) = CI0(x) = s10(x) + i10(x), x ∈ Ω.

Turning back to (6)–(11), it follows via Banach’s fixed point theorem (and using
the comparison of the solutions to the linear parabolic equations and the comparison
of the solutions to the linear first order ODEs) that there exists a unique solution
(s1, i1, s2, i2) such that

s j , i j ∈ L∞
loc(Ω × [0,+∞)),
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0 ≤ s1(x, t), i1(x, t) ≤ C I (x, t), a.e. (x, t) ∈ Ω × (0,+∞),

0 ≤ s2(x, t), i2(x, t) ≤ CT (t), a.e. (x, t) ∈ Ω × (0,+∞),

j ∈ {1, 2} [for such an argument see Aniţa and Capasso (2009, 2012) and Aniţa et al.
(2009)].

Let C∗
I be the maximal nonnegative solution to

⎧⎨
⎩

−dΔCI − [rM(x)(1 − γ21Iω(x)) − (n + γ1Iω(x))]CI + rχC2
I = 0, x ∈ Ω

∂CI

∂ν
(x) = 0, x ∈ ∂Ω,

(16)
and let λ̃1 be the principal eigenvalue for the problem

{−dΔϕ − [rM(x)(1 − γ21Iω(x)) − (n + γ1Iω(x))]ϕ = λϕ, x ∈ Ω
∂ϕ

∂ν
(x) = 0, x ∈ ∂Ω.

(17)

It is obvious that λ̃1 depends on Ω,ω, and the controls γ1 and γ21, and is an
increasing function of γ1, γ21, and ω—by inclusion—via Rayleigh’s principle.

By the same methods as in Aniţa et al. (2009), the following proposition can be
shown to hold.

Proposition 1 Under the above assumptions

(i) If λ̃1 ≥ 0, then (16) admits only the trivial solution.
Moreover, for any initial condition, the solution to (15) satisfies

CI (·, t) → 0 in L∞(Ω),

as t → +∞.
(ii) If λ̃1 < 0, then (16) has two nonnegative solutions: the trivial one and C∗

I > 0.
Moreover, if CI0 is not identically 0, then the solution to (15) satisfies

CI (·, t) → C∗
I in L∞(Ω),

as t → +∞.

We note that Proposition 1 confirms for the full reaction–diffusion system, the
outcomes of the preliminary analysis presented at the beginningof Sect. 3. In particular,
it is of interest to observe that, for small values of the weed distribution, M(x), or a
large value of the control parameter, γ21, or a large domain of intervention, ω, λ̃1 may
become greater than or equal to zero, so that the only nonnegative solution of (16) is
the trivial one, and the whole insect population eventually goes extinct.

The case λ̃1 < 0 requires further investigation, since an additional nontrivial value
of C∗

I is possible; we may then require suitable threshold conditions for the eventual
extinction of the epidemic.
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Now, let λ1 be the principal eigenvalue for the problem

{−dΔϕ + (n + γ1Iω(x))ϕ + rχC∗
I (x)ϕ = λϕ, x ∈ Ω

∂ϕ

∂ν
= 0, x ∈ ∂Ω.

(18)

Notice that λ1 ≥ n and that if γ1 ↗ +∞, then λ1 ↗ λ∗
1, where λ∗

1 is the principal
eigenvalue for

⎧⎪⎨
⎪⎩

−dΔϕ + nϕ + rχC∗
I (x)ϕ = λϕ, x ∈ Ω \ ω

ϕ = 0, x ∈ ∂ω
∂ϕ

∂ν
= 0, x ∈ ∂Ω.

Notice that λ∗
1 may be as large as we wish if γ1 is sufficiently large and/or if ω is

sufficiently large.
The following result concerns the eradicability of the disease in the most interesting

situation when λ̃1 < 0, q > � and CI0 
= 0L∞(Ω).

Theorem 1 If λ̃1 < 0, q > �, CI0 
= 0L∞(Ω) and

[‖C∗
I ‖∞‖k‖2 + ζC(q − �)+]2 < λ1[μ + l + α − b�C(q − �)+], (19)

then

i1(·, t) −→ 0, i2(·, t) −→ 0 in L1(Ω),

as t → +∞.

Notice that condition (19) holds if, for example, γ1 is sufficiently large and/or the
subset ω is sufficiently large.

Proof Since CI0 
= 0L∞(Ω), then ∀ε > 0, ∃t(ε) ≥ 0,∀t, t ≥ t(ε) :

C∗
I (x) − ε < CI (x, t) < C∗

I (x) + ε, a.e. x ∈ Ω, t ≥ t(ε),

and

0 ≤ CT (x, t) < C(q − �)+ + ε, a.e. x ∈ Ω, t ≥ t(ε).
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Let (ı̃1, ı̃2) be the solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ı̃1
∂t

= dΔı̃1 − (n + γ1Iω(x))ı̃1 − rχ(C∗
I (x) − ε)ı̃1

+ (C∗
I (x) + ε)(1 − γ23Iω(x))

∫
Ω

k(x, x ′)ı̃2(x ′, t)dx ′, x ∈ Ω, t > t(ε)

∂ ı̃1
∂ν

(x, t) = 0, x ∈ ∂Ω, t > t(ε)

∂ ı̃2
∂t

= −(μ + �)ı̃2 − αı̃2

+ [ζ(1 − γ22Iω(x))ı̃1 + b(1 − γ3Iω(x))�ı̃2] · [C(q − �)+ + ε], x ∈ Ω, t > t(ε)

ı̃1(x, t(ε)) = i1(x, t(ε)), ı̃2(x, t(ε)) = i2(x, t(ε)), x ∈ Ω

(20)
(the existence, uniqueness, and nonnegativity of the solution follows via a fixed point
argument). We have that

0 ≤ i j (x, t) ≤ ı̃ j (x, t) a.e. x ∈ Ω,∀t ≥ t(ε),

j ∈ {1, 2}. This follows from considering the system satisfied by (ı̃1 − i1, ı̃2 − i2) and
showing in a standard manner that

(ı̃1 − i1)
−(x, t) = 0, (ı̃1 − i1)

−(x, t), x ∈ Ω, t ≥ t(ε).

If we multiply the first equation in (20) by ı̃1 and integrate over Ω , we obtain that

1

2

d

dt

(∫
Ω

|ı̃1(x, t)|2dx
)

≤ −d
∫

Ω

|∇ ı̃1(x, t)|2dx −
∫

Ω

(n + γ1Iω(x))|ı̃1(x, t)|2dx

− rχ
∫

Ω

(C∗
I (x) − ε)|ı̃1(x, t)|2dx

+
∫

Ω

(C∗
I (x) + ε)ı̃1(x, t)

∫
Ω

k(x, x ′)ı̃2(x ′, t)dx ′dx

≤ − λ1‖ı̃1(t)‖22 + rχε‖ı̃1(t)‖22 + (‖C∗
I ‖∞ + ε)‖k‖2‖ı̃1(t)‖2‖ı̃2(t)‖2

(by Rayleigh’s principle), ∀t ≥ t(ε).
If we multiply the second PDE in (20) by ı̃2 and integrate over Ω , we obtain that

1

2

d

dt

(∫
Ω

|ı̃2(x, t)|2dx
)

= −(μ + �)

∫
Ω

|ı̃2(x, t)|2dx

+ b�[C(q − �)+ + ε]
∫

Ω

|ı̃2(x, t)|2dx − α

∫
Ω

|ı̃2(x, t)|2dx

+ ζ [C(q − �)+ + ε]
∫

Ω

ı̃1(x, t)ı̃2(x, t)dx

123



Controlling the Spatial Spread of a Xylella Epidemic Page 13 of 26 32

≤ − [μ + � + α − bl(C(q − �)+ + ε)]‖ı̃2(t)‖22
+ ζ [C(q − �)+ + ε]‖ı̃1(t)‖2‖ı̃2(t)‖2, ∀t ≥ t(ε).

We may infer that

1

2

d

dt
(‖ı̃1(t)‖22 + ‖ı̃2(t)‖22) ≤ −(λ1 − rχε)‖ı̃1(t)‖22

− [μ + � + α − b�(C(q − �)+ + ε)]‖ı̃2(t)‖22
+ [(‖C∗

I ‖∞ + ε)‖k‖2 + ζ(C(q − �)+ + ε)]‖ı̃1(t)‖2‖ı̃2(t)‖2
≤ − 1

2
min{λ1 − rχε,μ + � + α − b�(C(q − �)+ + ε)}(‖ı̃1(t)‖22 + ‖ı̃2(t)‖22),

∀t ≥ t(ε), if

[(‖C∗
I ‖∞ + ε)‖k‖2 + ζ(C(q − �)+ + ε)]2

< (λ1 − rχε)[μ + � + α − b�(C(q − �)+ + ε)].

This condition holds for any sufficiently small ε > 0 [because (19) holds]. On the
other hand, since condition (19) holds, it follows that for any ε > 0 sufficiently small,
we have that

1

2
min{λ1 − rχε,μ + � + α − b�(C(q − �)+ + ε)} = a > 0,

and we conclude that ‖ı̃1(t)‖22 + ‖ı̃2(t)‖22 converges to 0 as t → +∞, at the rate of
exp{−2at}. Since Ω is bounded, it follows that

ı̃1(·, t) → 0, ı̃2(·, t) → 0 in L1(Ω),

and that

i1(·, t) → 0, i2(·, t) → 0 in L1(Ω),

as t → +∞, at least as fast as exp{−at} (i.e., the total number of infected insects and
the total number of infected trees tend to 0, exponentially). It means that the disease
is eradicable. ��

Remark 1 Recall that if the diffusion coefficient is strictly positive, d > 0, then any
point of the domain Ω is strongly connected to any other point of Ω, so that actions
taken in a subregion ω ⊂ Ω will eventually propagate to the whole habitat.

On the other hand, due to the lack of diffusion for i2, it is reasonable to expect the
control to be more effective (leading to a faster decay of i1 and i2) if γ22, γ23, and γ3
act on the whole domain Ω. In this case, the controlled system becomes
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∂s1
∂t

(x, t) = dΔs1(x, t) + rCI (x, t)[M(x)(1 − γ21Iω(x)) − χs1(x, t)]

− (n + γ1Iω(x))s1(x, t) − β(1 − γ23)s1(x, t)
∫

Ω

k(x, x ′)i2(x ′, t)dx ′,

(21)

∂i1
∂t

(x, t) = dΔi1(x, t) − (n + γ1Iω(x))i1(x, t) − rχ i1(x, t)CI (x, t)

+ β(1 − γ23)s1(x, t)
∫

Ω

k(x, x ′)i2(x ′, t)dx ′, (22)

∂s2
∂t

(x, t) = (q − �)s2(x, t) − s2(x, t)
CT (x, t)

C
− (ζ(1 − γ22)i1(x, t) + b(1 − γ3)�i2(x, t))s2(x, t) + αi2(x, t), (23)

∂i2
∂t

(x, t) = −μi2(x, t) − �i2(x, t) − i2(x, t)
CT (x, t)

C
+ (ζ(1 − γ22)i1(x, t) + b(1 − γ3)�i2(x, t))s2(x, t) − αi2(x, t). (24)

The boundary conditions and the initial conditions are as before.
There exists a unique solution (s1, i1, s2, i2) to (21)–(24) with the above mentioned

boundary, and initial conditions, satisfying

s j , i j ∈ L∞
loc(Ω × [0,+∞)),

s j (x, t), i j (x, t) ≥ 0, a.e. (x, t) ∈ Ω × (0,+∞),

j ∈ {1, 2}. This follows from using a similar argument as for (6)–(11).

In this special case, the following result holds:

Theorem 2 If λ̃1 < 0, q > �, CI0 
= 0L∞(Ω) and

[(1 − γ23)‖C∗
I ‖∞‖k‖2 + ζ(1 − γ22)C(q − �)+]2

< λ1[μ + l + α − b(1 − γ3)�C(q − �)+] (25)

then

i1(·, t) −→ 0, i2(·, t) −→ 0 in L1(Ω),

as t → +∞.

Notice that (25) is a weaker assumption than (19).

Proof Using a comparison result for (i1, i2), we obtain that

0 ≤ i j (x, t) ≤ ı̃ j (x, t) a.e. x ∈ Ω,∀t ≥ t(ε),

j ∈ {1, 2}, where (ı̃1, ı̃2) is the solution to

123



Controlling the Spatial Spread of a Xylella Epidemic Page 15 of 26 32

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ı̃1
∂t

= dΔı̃1 − (n + γ1Iω(x))ı̃1 − rχ(C∗
I (x) − ε)ı̃1

+ (C∗
I (x) + ε)(1 − γ23)

∫
Ω

k(x, x ′)ı̃2(x ′, t)dx ′, x ∈ Ω, t > t(ε)

∂ ı̃1
∂ν

(x, t) = 0, x ∈ ∂Ω, t > t(ε)

∂ ı̃2
∂t

= −(μ + �)ı̃2 − αı̃2

+ [ζ(1 − γ22)ı̃1 + b(1 − γ3)�ı̃2] · [C(q − �)+ + ε], x ∈ Ω, t > t(ε)

ı̃1(x, t(ε)) = i1(x, t(ε)), ı̃2(x, t(ε)) = i2(x, t(ε)), x ∈ Ω.

(26)
If we multiply the first equation in (26) by ı̃1 and integrate over Ω , we obtain that

1

2

d

dt

(∫
Ω

|ı̃1(x, t)|2dx
)

≤ −d
∫

Ω

|∇ ı̃1(x, t)|2dx −
∫

Ω

(n + γ1Iω(x))|ı̃1(x, t)|2dx

−rχ
∫

Ω

(C∗
I (x) − ε)|ı̃1(x, t)|2dx

+(1 − γ23)

∫
Ω

(C∗
I (x) + ε)ı̃1(x, t)

∫
Ω

k(x, x ′)ı̃2(x ′, t)dx ′dx

≤ −λ1‖ı̃1(t)‖22 + rχε‖ı̃1(t)‖22
+(1 − γ23)(‖C∗

I ‖∞ + ε)‖k‖2‖ı̃1(t)‖2‖ı̃2(t)‖2

(by Rayleigh’s principle).
If we multiply the second PDE in (26) by ı̃2 and integrate over Ω , we obtain that

1

2

d

dt

(∫
Ω

|ı̃2(x, t)|2dx
)

= −(μ + �)

∫
Ω

|ı̃2(x, t)|2dx

+ b(1 − γ3)�[C(q − �)+ + ε]
∫

Ω

|ı̃2(x, t)|2dx

−α

∫
Ω

|ı̃2(x, t)|2dx

+ ζ(1 − γ22)[C(q − �)+ + ε]
∫

Ω

ı̃1(x, t)ı̃2(x, t)dx

≤ − [μ + � + α − b(1 − γ3))l(C(q − �)+ + ε)]‖ı̃2(t)‖22
+ ζ(1 − γ22)[C(q − �)+ + ε]‖ı̃1(t)‖2‖ı̃2(t)‖2, ∀t ≥ t(ε).

We may infer that

1

2

d

dt
(‖ı̃1(t)‖22 + ‖ı̃2(t)‖22) ≤ −(λ1 − rχε)‖ı̃1(t)‖22

− [μ + � + α − b(1 − γ3)�(C(q − �)+ + ε)]‖ı̃2(t)‖22
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+ [(1 − γ23)(‖C∗
I ‖∞ + ε)‖k‖2 + ζ(1 − γ22)(C(q − �)+ + ε)]

×‖ı̃1(t)‖2‖ı̃2(t)‖2
≤ − 1

2
min{λ1 − rχε,μ + � + α − b(1 − γ3)�(C(q − �)+ + ε)}

×(‖ı̃1(t)‖22 + ‖ı̃2(t)‖22),

∀t ≥ t(ε), if

[((1 − γ23)‖C∗
I ‖∞ + ε)‖k‖2 + ζ(1 − γ22)(C(q − �)+ + ε)]2

< (λ1 − rχε)[μ + � + α − b(1 − γ3)�(C(q − �)+ + ε)].

This condition holds for ε > 0 sufficiently small (because (25) holds). On the other
hand, since condition (25) is satisfied, then for ε > 0 sufficiently small, we have that

1

2
min{λ1 − rχε,μ + � + α − b(1 − γ3)�(C(q − �)+ + ε)} = ã > 0,

and we conclude that ‖ı̃1(t)‖22 + ‖ı̃2(t)‖22 converges to 0 as t → +∞, at the rate of
exp{−2ãt}. Since Ω is bounded, it follows that

ı̃1(·, t) → 0, ı̃2(·, t) → 0 in L1(Ω),

and that

i1(·, t) → 0, i2(·, t) → 0 in L1(Ω),

as t → +∞, at least as fast as exp{−ãt} (i.e., the total number of infected insects
and the total number of infected trees tend to 0, exponentially). This means that the
disease is eradicable. Notice that ã ≥ a. ��

4 Numerical Simulations

The numerical strategy adopted to approximate the controlled system (Equations
(6)–(9)) consists of the finite element method for space discretization and the finite
difference method for time discretization. This procedure is the state of the art for the
solution of parabolic partial differential equations (PDEs); see, e.g., Quarteroni and
Valli (1994).

Space discretization We first apply a standard Galerkin procedure to the weak
formulations of the controlled system [Eqs. (6)–(9)]. For the computational domain
Ω , we have taken a rectangle of size 400 × 80 km2, which mimics, for example, the
whole region of Apulia in Southern Italy, from South (right-hand side of the domain)
to North (left-hand side of the domain). The rectangular domain has been discretized
by a uniform grid of 200 × 40 bilinear finite elements (Q1), yielding a total number
of 8241 discretization nodes. The stiffness matrix is computed exactly, whereas the
mass matrix is obtained by applying the mass lumping technique.
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Time discretization After the spatial discretization, we obtain a semi-discrete prob-
lem that consists of a system of ordinary differential equations (ODEs). We solve
these ODEs by employing a first order semi-implicit finite difference scheme, where
the linear diffusion terms are approximated by Backward Euler, whereas the non-
linear reaction terms are approximated by forward Euler. As a result, at each time
step we must find the solution of a linear system of algebraic equations of dimension
4 × 8241 = 32964 degrees of freedom. The system is solved by Gaussian elimina-
tion with the built-in function in MATLAB. The time step size is Δt = 0.0002 years.
For further details on the numerical discretization of parabolic problems, we refer the
reader to Quarteroni and Valli (1994).

4.1 Parameter Calibration

The values of the simulation parameters are listed in Table 2. The diffusion coef-
ficient in the PDEs is set to d = 1e − 4 km2/year. The total simulation time is
T = 10 years. The initial distributions, used in all next numerical simulations, are the
following:

⎧⎪⎪⎨
⎪⎪⎩

s1(x, 0) = 100
i1(x, 0) = 20 exp(−100(x1 − 380)2 − 100(x2 − 40)2)
s2(x, 0) = 50
i2(x, 0) = 0

That is, we assume constant initial distributions for healthy insects and trees, and we
localize the initial presence of infected insects on the right-hand side of the domain.

4.2 Numerical Results

A couple of numerical experiments are reported here to show the efficacy of the
controls on the weed biomass and the olive cultivar.

In Figs. 1 and 2, we have taken M = 1 and χ = 0.03, while in Figs. 3 and 4,
M = 1 and χ = 0.01. The colorbar indicates the scaled values of the distribution
corresponding to the colors adopted in the map: It goes from blue, associated with low
values, to yellow, associated with high values.

In both computational experiments, control measures have been applied only in
the right-hand section of the habitat, simulating the subregion of the Apulian region
already affected by the xylella epidemic, augmented by a “containment band,” i.e., the
subregion

ω = {x = (x1, x2) ∈ Ω : x1 > 250 km}.

Experiment 1 χ = 0.03, ζ = 0.8 year−1: we first run the model without control,
and thus, the control parameters (γ21, γ1, γ23, γ22, γ3) are set to zero everywhere. The
xylella epidemic starts spreading as a travelling wave from the right portion of the
domain, where the initial condition for the infected insects is positive; see Fig. 1.
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(a) t = 1 year. Top figure: healthy trees (s2); bottom figure: infective trees (i2).
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(b) t = 5 years. Same format as panel (a).
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(c) t = 10 years. Same format as panel (a).

Fig. 1 Experiment 1. Spatial distributions of olive trees without control: χ = 0.03, d = 1e−4 km2/year
(Color figure online)
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(a) t = 1 year. Top figure: healthy trees (s2); bottom figure: infective trees (i2).
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(b) t = 5 years. Same format as panel (a).
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(c) t = 10 years. Same format as panel (a).

Fig. 2 Experiment 1. Spatial distributions of olive trees with regional control. χ = 0.03, d = 1e −
4 km2/year, {x = (x1, x2) ∈ Ω : x1 > 250 km}. (γ21, γ1, γ23, γ22, γ3) = (0.999, 0.2, 0.2, 0.2, 0.2)
(Color figure online)

123



Controlling the Spatial Spread of a Xylella Epidemic Page 21 of 26 32

When we apply regional control, setting the control parameters

(γ21, γ1, γ23, γ22, γ3) = (0.999, 0.2, 0.2, 0.2, 0.2),

the xylella epidemic is stopped at the origin and no travelling front occurs; see Fig. 2.
This result confirms our conjecture that a significant weed cut in the olive orchards
strongly decreases the carrying capacity of insects, yielding a successful blocking of
the xylella epidemic spread.

In order to investigate how the diffusion coefficient d influences the results, we
have re-run both tests with d = 2e−4, 5e−4, 1e−3 (all in km2/year). We do not
observe any significant qualitative difference.

Experiment 2. χ = 0.01, ζ = 0.2 year−1 : as above, we first run the model
without control, and thus, the control parameters (γ21, γ1, γ23, γ22, γ3) are set to zero
everywhere. The xylella epidemic starts spreading as a travelling wave from the right
portion of the domain, where the initial condition of the infected insects is positive;
see Fig. 3.

When we apply a regional control, setting the control parameters

(γ21, γ1, γ23, γ22, γ3) = (0.6, 0.2, 0.2, 0.6, 0.2),

the xylella epidemic is stopped at the origin and no travelling front occurs; see Fig. 4.
This result clearly indicates that for more resistant olive cultivar, we may still block an
epidemic with a lower level of weed cut in the olive orchards, even though, by using
χ = 0.001, we have a larger effective insect carrying capacity.

As in the previous experiment, we have also re-run both tests with d =
2e−4, 5e−4, 1e−3 (all in km2/year). Even in this case, we do not observe any
significant qualitative difference.

5 Concluding Remarks

The results reported in this paper confirm that themost promising target for an effective
and cost-efficient control of the X. fastidiosa epidemic is represented by agricultural
management practices consisting of the removal of the weeds in the whole relevant
habitat of the olive orchards. A further interesting strategy, as expected, is represented
by the use of more resistant cultivar (Brunetti et al. 2020) [see also Schneider et al.
(2020) and references cited therein].

Here, we have extended the ordinary differential equation (ODE) model introduced
in Brunetti et al. (2020) to an integro-partial differential system which takes into
account the spatial structure of the relevant epidemic system, subject to possible control
strategies, including weed cut, insect traps, treated nets, more resistant cultivar, etc.
As emphasized in Remark 1, theoretical results show that eradication of an epidemic
outbreak is possible by the implementation of the above mentioned control measures
only on a suitable subregion of the whole habitat, including the area already affected
by the outbreak, possibly augmented by a suitable “containment band.”
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(a) t = 1 year. Top figure: healthy trees (s2); bottom figure: infective trees (i2).
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(b) t = 5 years. Same format as panel (a).
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(c) t = 10 years. Same format as panel (a).

Fig. 3 Experiment 2. Spatial distributions of olive trees without control: χ = 0.01, d = 1e − 4 km2/year
(Color figure online)
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(a) t = 1 year. Top figure: healthy trees (s2); bottom figure: infective trees (i2).
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(b) t = 5 years. Same format as panel (a).
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(c) t = 10 years. Same format as panel (a).

Fig. 4 Experiment 2. Spatial distributions of olive trees with regional control. χ = 0.01, d = 1e −
4 km2/year, {x = (x1, x2) ∈ Ω : x1 > 250 km}. (γ21, γ1, γ23, γ22, γ3) = (0.6, 0.2, 0.2, 0.6, 0.2) (Color
figure online)
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Unfortunately in practice, it might be unfeasible to act on the diffusion parame-
ters; they are related to the ecological structure of the relevant habitat, including the
behavior of the insect population. Intervention strategies should then include possible
modification of insect behavior, such as by the use of treated nets.

Future investigations will be devoted to the search of an optimal set of control
parameters, γ ’s, together with an optimal subregion of intervention ω. It is clear that,
for a realistic optimal control problem, relevant participating costs need to be included:
e.g., production, losses, and management costs.

Once again, validation of the model proposed here represents a key issue: although
we have tried to make explicit the assumptions underlying our model, they have not
yet been validated by comparison with experimental data. Therefore, we caution that
our results are far from being conclusive for X. fastidiosa subsp. pauca - Philaenus
spumarius olive tree epidemics. However, it is desirable that, with additional features
that make it more realistic, our model might provide the foundations for designing
optimal control strategies by public authorities.

It is worth reporting here a statement (abridged) taken from the very recent paper
(Matricardi et al. 2020) on COVID-19 modeling, which can be applied to the role of
any model:

“a model is only an approximate interpretation of reality and it is always wrong
in some small or relevant elements. The destiny of the model presented here is to
be rapidly improved thanks to novel knowledge coming from new observations and
better assumptions. The Authors hope that many and more brilliant minds will read
the present pages, will identify and highlight putative mistakes, will get inspiration
for their research, and will produce better, more complete, and useful models........ If
the speculations presented here on implications for surveillance, control, and therapy
of [Xylella] will contribute, even only minimally, to save ..... [olive trees]........., then
the Authors have accomplished their small mission. ”
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