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Abstract
Newly emerging pandemics like COVID-19 call for predictive models to implement
precisely tuned responses to limit their deep impact on society. Standard epidemic
models provide a theoretically well-founded dynamical description of disease inci-
dence. For COVID-19 with infectiousness peaking before and at symptom onset,
the SEIR model explains the hidden build-up of exposed individuals which creates
challenges for containment strategies. However, spatial heterogeneity raises questions
about the adequacy of modeling epidemic outbreaks on the level of a whole country.
Here, we show that by applying sequential data assimilation to the stochastic SEIR
epidemicmodel, we can capture the dynamic behavior of outbreaks on a regional level.
Regional modeling, with relatively low numbers of infected and demographic noise,
accounts for both spatial heterogeneity and stochasticity. Based on adapted models,
short-term predictions can be achieved. Thus, with the help of these sequential data
assimilation methods, more realistic epidemic models are within reach.
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1 Introduction

The initial spread of the novel coronavirus in Germany (RKI 2020) resulted in con-
tainment measures based on reduced traveling and social distancing (Anderson et al.
2020). In epidemic standard models (Anderson et al. 1992; Kucharski et al. 2020),
which provide a dynamical description of epidemic outbreaks (Bolker and Grenfell
1995; Schwartz and Smith 1983), containment measures aim at a reduction of the
contact parameter. Since the contact parameter is one of the critical parameters that
determine the speed of increase of the number of infectious individuals, estimating
the contact parameter is a key basis for epidemic modeling (Lourenço et al. 2020).

From early on, the situation of COVID-19 has been characterized by extreme spatial
heterogeneity (RKI 2020). In the initial phase of the outbreak, spatial heterogeneity
was caused by random travel-based imports of infectious cases and enhanced by local
eventswith increased contacts; after introduction of non-pharmaceutical interventions,
spatial heterogeneity was sustained. Therefore, over the full observation period, the
assumptionof homogeneousmixingmust be relaxed (Grenfell et al. 1995), and coupled
dynamics of regional models seem to be a more adequate description (Li et al. 2020).
However, when modeling a relatively small region with a population size of N = 105,
compared to the country level with populations of N = 107 to 109, one must address
the problem of stochasticity (Engbert and Drepper 1994; Grenfell et al. 1995) (Sect.
2.2). The combination of dynamical modeling and substantial fluctuations calls for
sequential data assimilation methods for parameter inference (Law et al. 2015; Reich
and Cotter 2015) as widely used, for example, in numerical weather prediction (Bauer
et al. 2015).

We investigate how the stochastic SEIR epidemic model (Anderson et al. 1992)
applies to regional data of COVID-19 incidence under non-pharmaceutical interven-
tions, i.e., where epidemic dynamics were confined to regions and coupling between
them could be neglected. The model assumes S, E , I , and R compartments represent-
ing susceptible, exposed, infectious, and recovered individuals (Fig. 1). This model
is particularly important for the description of the spread of COVID-19, since infec-
tiousness seems to peak on or before symptom onset (He et al. 2020b) and models
without the exposed compartment cannot adequately address the time delay between
the build-up of exposed and infectious individuals.

Since we are interested in short-term modeling (weeks to months), we neglect birth
and death processes as a first-order approximation for the dynamics of the model.
The disease-related model parameters are the rate parameters a = 1/Z (with an
average latency period Z ) and g = 1/D (with a mean infectious period D), which
can be estimated independently from the analysis of infected cases (He et al. 2020b;
Li et al. 2020). Therefore, the time-dependent contact parameter β is the most critical
parameter that needs to be determined via data assimilation (Reich and Cotter 2015).
It is directly related to the basic reproductive number r in a SEIR-type model (Sect.
2.1), which is average number of secondary cases by each infected case in a population
consisting of susceptible individuals only (Dietz 1993; He et al. 2020a). Therefore,
non-pharmaceutical interventions that aim at r < 1 translate into the relation β < g
in the model.
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Fig. 1 The SEIR model. The population is divided into four compartments that represent susceptible,
exposed, infectious, and recovered individuals. The contact parameter β is critical for disease transmission,
and 1/a and 1/g are the average durations of exposed and infectious periods, respectively. Unlike in the
standard model, the birth and death processes are neglected in short-term simulations discussed throughout
the current study

In the following, we will use a combination of sequential data assimilation and
stochastic modeling on the regional level to estimate the spatial heterogeneity in the
spread of epidemics and to show how to use such a combined approach for epidemic
predictions and uncertainty quantifications.

2 Mathematical Model and Statistical Inference

2.1 SEIR Model and Basic Reproductive Number

The SEIR epidemicmodel is a four-compartment model with susceptibles (individuals
who are able to contract the disease), exposed (individuals who are infected but not
yet infectious), infectious, and recovered (individuals who are immune). The model
is typically formulated as a system of ordinary differential equations (ODE), i.e.,

Ṡ = m − (m + β I )S (1)

Ė = βSI − (m + a)E (2)

İ = aE − (m + g)I (3)

Ṙ = gI − mR , (4)

where the total number of individuals N = S+ E + I + R is constant under temporal
evolution due to Ṅ = 0. The ODE system, Eqs. (1–4), has a non-trivial equilibrium
point, denoted as epidemic equilibrium (S�, E�, I �, R�), where the number of sus-
ceptibles S� at equilibrium is related to the basic reproductive number r by r · S� = 1.
Since we aim at a short-term description of the system, we neglect birth and death
processes here; equivalent to the limit m → 0, we obtain

r = 1

S�
= aβ

(m + a)(m + g)
→ β

g
for m → 0 . (5)

We use a numerical values of g = 1/3 per day, equivalent to an average infectious
period of D = 3 days (Li et al. 2020). The critical condition for disease containment
r < 1 is obtained for β < βcrit = 1/3 per day in our model. The median latency
period has been estimated as 5.2 days (He et al. 2020b). Here, we used a numerical
value of a = 1/5.2 per day for the rate parameter of the exposed individuals.
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Table 1 Transitions and
transition probabilities in the
stochastic SEIR model. The
transition are from state
X = (S, E, I , R)T to X ′ with
probability WX→X ′

X ′ WX→X ′

S − 1 E + 1 I R βSI/N

S E − 1 I + 1 R aE

S E I − 1 R + 1 gI

2.2 The Stochastic SEIR Model

While the classical model is formulated as a system of ordinary differential equations,
we are exploring its application to a relatively low number of cases in the early phase
of the current epidemics on the regional level with population sizes from 105 to 106.
Therefore, we use the stochastic SEIRmodel in the form of amaster equation (Engbert
andDrepper 1994),which is particularly useful formodeling small numbers of infected
individuals occurring in smaller regions or at the beginning of an epidemic.

The demographic SEIR model contains four variables denoted by
X = (S, E, I , R)T ∈ N

4, representing the number of individuals in each of the
four classes with a constant population size N = S + E + I + R. The transition rate
of the ODE compartmental model translates into transition probabilities in the master
equation formulation for the evolution of the model’s conditional probability density,
that is,

d

dt
p(X |X0, t) =

∑

X ′ �=X

{
WX ′→X p(X ′|X0, t) − WX→X ′ p(X |X0, t)

}
(6)

with transition probabilities given in Table 1 and initial condition X0. The individual
trajectories for the model’s temporal evolution can be simulated exactly and numer-
ically efficiently (Engbert and Drepper 1994) using Gillespie’s algorithm (Gillespie
1976).

2.3 Sequential Data Assimilation

Publicly available data on the cumulative number of infected individuals are used to
infer the model states X = (S, E, I , R)T and the contact parameter β of the stochastic
SEIR model. Note that the cumulative number of infected individuals corresponds to
Y = I + R in the SEIR model.

In the present study, we combine sequential data assimilation for the model states
with an approximate log-likelihood function for the contact parameter (Reich and
Cotter 2015). The basic algorithmic idea is to propagate an ensemble of M model
forecasts using Gillespie’s algorithm up to the next available observation point tk . The
forecast ensemble is denoted by X (n)

f (tk) with n ∈ {1, . . . , M}. We used an ensemble
size of M = 100 in this study. The reported cumulative number of infected individuals
yobs(tk) is then used via a linear regression approach to obtain the adjustedmodel states
X (n)
a (tk). This step is implemented via the ensemble Kalman filter in its formulation

of (Sakov and Oke 2008; Reich and Cotter 2015). While the forecast ensemble is used
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to compute the temporary negative log-likelihood L(tk, β) of the model’s contact
parameter β at time tk , the adjusted model states serve as starting values for the next
Gillespie prediction cycle.

The above algorithm is run with a fixed range of contact parameters β ∈
[βmin, βmax] and for a fixed timewindow [tinitial, tfinal] of available data points yobs(tk).
The best fit contact parameter β∗(tk) at any time tk is the one that minimizes the tem-
porary negative log-likelihood function, that is,

β∗(tk) = argmin
β

L(tk, β) (7)

with L(tk, β) defined by (13) below.

2.3.1 Ensemble Kalman Filter

The reported cumulative number of infected individuals yobs(tk) is linked to the model
states X = (S, E, I , R)T via

Y (tk) := I (tk) + R(tk) = HX(tk) , (8)

i.e., H = (0, 0, 1, 1). As an initial condition, we set I (t0) equal to the reported number
of infected cases and R(t0) = 0 so that yobs(t0) = I (t0)+R(t0), and E(t0) = g/a·I (t0)
with additive noise. We assume that the errors in the observed yobs(tk) are additive
Gaussian with mean zero and variance ρ. We set ρ = 10 in our experiments.

The ensemble Kalman filter provides a computationally robust algorithm for updat-
ing a model-based forecast ensemble X (n)

f (tk) at time tk into posterior model states

X (n)
a (tk) utilizing the observed yobs(tk) and its forwardmodel (8). The assimilation step

is based on a Gaussian or linear regression approximation of the underlying Bayesian
inference problem with the forecast ensemble constituting a Monte Carlo approxima-
tion to the prior distribution over the model states X(tk) (Evensen 2006; Reich and
Cotter 2015). More precisely, the ensemble Kalman filter is based on the empirical
mean

mf(tk) := 1

M

M∑

n=1

X (n)
f (tk) ∈ R

4 (9)

and the empirical covariance matrix

Pf(tk) := 1

M

M∑

n=1

(
X (n)
f (tk) − mf(tk)

) (
X (n)
f (tk) − mf(tk)

)T ∈ R
4×4 (10)

of the forecast ensemble. These two quantities are used to quantify the forecast uncer-
tainty. Combining the implied Gaussian approximation of the forecast uncertainty
with the assumed linear forward model (8) leads to the ensemble Kalman filter update
formula (Sakov and Oke 2008; Reich and Cotter 2015)
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X (n)
a (tk) := X (n)

f (tk) − 1

2
K (tk)

{
HX (n)

f (tk) + Hmf(tk) − 2yobs(tk)
}

(11)

with the Kalman gain defined by

K (tk) := Pf(tk)H
T

{
HPf(tk)H

T + ρ
}−1 ∈ R

4×1. (12)

One notes that the Kalman gain HK (tk) increases as the forecast variance HPf(tk)HT

in the observed quantity (8) increases while being bounded by one from above. This
in turn implies that the forecast is more strongly affected by the data and vice versa
in case the forecast variance is reduced. We note that the resulting analysis ensemble
X (n)
a (tk) ∈ R

4, n ∈ {1, . . . , N }, can be mapped back onto the integers N4 if needed.

2.3.2 Model evidence

The model’s negative log-likelihood at an observation time tk is approximated by

L(tk, β) := 1

2

|Hmf(tk) − yobs(tk)|2
HPf(tk)HT + ρ

+ 1

2
log(HPf(tk)H

T + ρ). (13)

Note that the first contribution penalizes the data misfit, while the second penalizes
model uncertainty. The smaller the negative log-likelihood, the better the chosenmodel
parameter β fits the data yobs(tk) at time tk . The best parameter fit over a time window
[tmin, tmax] is defined as the value of β which minimizes the cumulative negative
log-likelihood

Lcum(β) =
tmax∑

tk=tmin

L(tk, β), (14)

that is,
β∗ := argmin

β
Lcum(β). (15)

3 Methods

3.1 Parameter Recovery from Simulated Data

To test the inference scheme, we simulated data for 20 days. In Fig. 2a, the black line
indicates the evolution of the SEIR model’s predicted cumulative numbers of infected
individuals, Y (tk) = HX(tk) = I (tk) + R(tk). As in the real data, red dots represent
the daily number of reported cases. In the simulation, the contact rate was chosen as
βtrue = 0.6. In the following, we analyzed whether this true value could be recovered
using the inference procedures described above.

We varied the contact rate β and determined the cumulative negative log-likelihood
values Lcum(β), Eq. (14). The position of the minimum of Lcum(β) indicates the best
estimate for the numerical value of the underlying contact rate β∗, Eq. (15). The
position of the minimum turns out to be close to the true value, β∗ ≈ βtrue = 0.6
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Fig. 2 (Color figure online)Parameter recovery analysis. a Simulated data with b = 0.6. b Negative log-
likelihood Lcum(β) indicates a minimum at about the true parameter value

(Fig. 2b). Thus, parameter recovery can be demonstrated for a relatively short time
series of 10 observations, which represents a typical dataset in the early phase of newly
emerging epidemics. Next, we apply our inference scheme to real data.

3.2 Application to Empirical Data

Since the parameter inference was successful with simulated data, the next step was
an application to empirical observations. We applied the inference framework to two
regional data sets from the RKI data base. As an example, we selected the COVID-19
time series for Köln (RKI data, population size N = 1, 085, 664), which includes 27
days of observations with more than 30 cases and is plotted in Fig. 3a. The parameter
estimation yields an estimate for the contact rate of β∗ ≈ 0.7 (Fig. 3b). Thus, an
analysis of the negative log-likelihood function produced qualitatively similar results
for the simulated SEIR time series and the empirical data for a representative region.
In the main text, we carry out an estimation of the time-resolved instantaneous opti-
mal parameter values β∗(tk), Eq. (7), using the instantaneous negative log-likelihood
function L(tk, β), Eq. (13).

We found that our results were relatively insensitive to the choice of the measure-
ment error variance ρ appearing in (12) and (13). At the same time, we emphasize
that the errors in the reported cumulative numbers of infected individuals are complex,
may vary over time, and will certainly impact on the inferred parameters. The same
applies to the unknown initial model states X(t0) = (S(t0), E(t0), I (t0), R(t0))T and
their uncertainties.
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Fig. 3 (Color figure online)Contact parameter estimates for real data. a Data for Köln; date refers to report
of case at RKI. b Negative log-likelihood Lcum(β) for Köln give a minimum at β∗ ≈ 0.7

3.3 RKI Data on COVID-19 in Germany

The Robert Koch Institute (RKI), the central scientific institution in the field of
biomedicine within the portfolio of the Federal Ministry of Health, provides daily
access to the number of confirmed cases, deaths, and recovered patients, broken down
into 412 counties, six age groups, and by gender. As they are official records, only cases
certified by doctors or laboratories according to a strict medical protocol in accordance
with the Infection Protection Act are entered into the data base. The exact time of an
infection is usually not known. The associated time stamp refers to the date on which
the local health authority became aware of the case and recorded it electronically. As
records are passed from the physician or lab via local and state health authorities to the
RKI, there is a delay of several days before cases are reported on the website. Thus,
the statistics relating to the most recent three or four days are incomplete and cannot
be interpreted; retrospective updates and corrections are made for all days of the pan-
demic spell as they become available. Also the date at which the case is reported at
the RKI (i.e., the Erkrankungsdatum/date of illness) is not more recent than the date
at which the infection occurred. We use data up to and including April 30, as reported
on June 22, 2020; they are included as part of the supplement.

4 Results

The key motivation of the current study was to apply sequential data assimilation to
the stochastic SEIR model to estimate the contact parameter. We successfully applied
an ensemble Kalman filter (Evensen 2006; Law et al. 2015; Reich and Cotter 2015)
to recover the contact parameter from simulated data (Sect. 3.1). When applied to
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empirical data on a regional level, the estimation of the contact parameter produces a
comparable evidence profile (Sect. 3.2).

In the early phase of the COVID-19 outbreak in Germany, the reported cumulative
numbers of cases increased rapidly (Fig. 4a,b); however, the epidemic dynamics vary
from region to region. This spatial heterogeneity is due to the different onset times of
the disease in different regions, but it is also enhanced by variations in the local contact
parameters β. In response to the containment measures, we expect β to change over
time.

4.1 Time Dependence of the Contact Parameter

An estimation of the time dependence of the contact parameter is achieved via the
model’s best fit. An approximative instantaneous negative log-likelihood L(tk, β) of
the contact parameter β at observation time tk is obtained from the ensemble Kalman
filter (Sect. 2.3). Thus, by determining the minimum of L(tk, β) with respect to β at
time tk , we estimate the time dependence of the best fit β∗(tk) (Fig. 4c). The black line
represents the average time dependence for all 320 regions included in the analysis;
standard deviations are indicated by the gray area. The results for the two example
regions are given in their corresponding colors.

The non-pharmaceutical interventions to counter the spread of COVID-19 were
implemented at slightly different points in time across Germany. In the majority of
the regions, closings of schools and other educational institutions started on March
16, while large-scale contact bans were implemented on March 22. As a result of
these social distancing measures will have an impact on the contact parameter, we
expected to observe a related drop in the contact parameter over time. Before we
present a corresponding analysis, it should be made clear that none of these measures
can produce an immediate effect on the observed cases of infected individuals because
of the latency period. Since sequential data assimilationwill need several data points to
adapt the model to the data, the related interval should be as long as possible to achieve
a reliable estimate of the contact parameter. Therefore, we selected the average value
of β∗(tk) over the three days from March 17 to March 19 as a pre-intervention value.
The average over March 31 to April 2 is taken as an estimate of the post-intervention
value. To analyze the effect across regions, we computed average values βpre (March
17-19) and βpost (March 31-April 2) of the relevant β∗(tk) for all regions. The resulting
scatter plot indicates a clear reduction of the numerical value of the contact parameter
from βpre to βpost (Fig. 4d). The reduction is statistically significant (Wilcoxon test,
p < 0.01).

4.2 Simulations with Time-Dependent Contact Parameter

The contact parameter β is the most critical parameter determining the dynamics of
the stochastic SEIR model. After a time-resolved estimation of the best fit β∗(tk), we
are able to generate simulations from an initial state to predict the future trajectory
(Fig. 5). Simulations I begin with the first epidemic day in the corresponding region
with greater than or equal to 30 cases. The initial number of infected I0 is set to
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Fig. 4 (Color figure online) Analysis of best fit time-dependent contact parameters β∗(tk ); date refers to
report of case at RKI. a For two regions (LK Köln and LKMünster), the cumulative numbers show a strong
increase after different disease onset times. b Semi-logarithmic scaling suggests approximate exponential
growth in early as well as later regimes. c The time-dependent contact parameter β∗(tk ) indicates a small
decrease over time due to social distancing interventions (black: average for 320 regions; red, blue: contact
parameter for the examples above; gray shading: standard deviation across regions. d Scatter plot of the
time averaged contact parameter βpre before intervention and βpost after intervention. Note that the critical
value for disease containment is βcrit = 1/3 per day in our model (red lines)

the observed number of cases yobs(t0), while the initial number of exposed is set to
E0 = g/a · I0, which would hold at epidemic equilibrium for m > 0 (for m = 0 both
E and I tend to zero with E�/I � ≈ g/a). The initial number of infected was disturbed
by noise representing uncertainties in the initial model states. The initial number of
susceptibles was set to N , which must be replaced by an estimate as the epidemics
in unfolding more strongly, of course. Forward iterations with the estimated time-
varying contact parameter show that the slope of the epidemic curve is approximately
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Fig. 5 (Color figure online) Simulations of the stochastic SEIRmodel for two example regions. Simulations
I indicate an ensemble of 100 runs of the model with initial conditions from the first epidemic day with
number of cases greater than or equal to 30 (gray: ensemble of trajectories; blue: observations). Simulations
II start at March 26, using an ensemble size of 100 after data assimilation (gray: ensemble of trajectories;
red: observations). a Cumulative cases of infected individuals over time for LK Köln. bDaily reported new
cases for Köln. c Cumulative cases for LKMünster. d Daily new cases for Münster. Date refers to report of
case at RKI

reproduced by the model (Fig. 5a,c; gray lines indicate the ensemble of simulated
trajectories; blue points are observed data).

Simulation II starts at March 26 and exploits the full potential of sequential data
assimilation. The sequential data assimilation approach via the ensemble Kalman filter
(Sect. 2.3.1) is based on the forward modeling of an ensemble of trajectories. After
each time step (1 day), the ensemble of trajectories is compared to the next observation
and adjusted via a linear regression step. Thus, we obtained an adapted ensemble of
internal model states for each epidemic day. Here, we exploit this fact to run a forward
simulation with initial conditions from the assimilated ensemble of internal model
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states. The corresponding forward simulations are close to the real time-evolution of
the epidemics in the two example regions (Fig. 5a,c; gray lines indicate the ensemble
of simulated trajectories; blue points are observed data). A related plot of the daily
reported new cases indicates an approximately constant level of numbers of new cases
for Köln (Fig. 5b) and slowly decreasing daily new cases for Münster (Fig. 5d); both
predictions are in agreement with empirical observations.

4.3 Predictions for Two Different Scenarios

The forward simulations discussed in the previous section demonstrated the predictive
power of the SEIR model when using sequential data assimilation. In the next step,
we generated simulations under two different scenarios. In scenario I, we started with
the adapted ensemble of internal model states after data assimilation (April 16) and
iterated the model forward with the mean contact parameter estimated from the period
of April 14 to April 16, that is well after interventions were implemented (Fig. 6,
green area). The simulations continue to match the time course of infected cases for
both example regions (Fig. 6a,b). Daily reported case numbers show a decline for both
regions (Fig. 6c,d).

In scenario II, we assumed that all governmental intervention measures had been
terminated. Therefore, we used the estimated contact parameters from the period of
March 17 to March 19. Again, we started simulations with the adapted ensemble of
internal states after sequential data assimilation (Fig. 6, red area). For both example
regions, we observe a strong increase in infected cases under scenario II (Fig. 6c,d).
This dramatic increase can be seen most clearly in the plot of daily numbers of new
cases (for more examples, see section A).

5 Discussion

The ongoing worldwide spread of the new coronavirus exerts enormous pressure on
healthcare systems, societies and governments. Therefore, predicting the epidemic
dynamics under the influence of non-pharmaceutical interventions (NPI) is an impor-
tant problem from a data science and mathematical modeling perspective (Maier and
Brockmann 2020). The motivation of the current work was to explore the potential
of sequential data assimilation (Law et al. 2015; Reich and Cotter 2015) to create a
regional epidemic model as a forecasting tool.

The standard epidemic SEIR-type models implement a compartmental description
under the assumption of homogeneous mixing of individuals (Anderson et al. 1992).
More realisticmodeling approachesmust account for spatial heterogeneity due to time-
varying disease onset times, regionally different contact rates, and the time dependence
of the contact rates due to the implementation of containment strategies. However,
these regional descriptions require models that include the effects of demographic
stochasticity due to the limited size of populations and the low number of cases in
the region considered (Bittihn and Golestanian 2020). The effects of such statistical
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Fig. 6 (Color figure online) Model predictions for COVID-19 after data assimilation in comparison to data
(black lines). In scenario I (green area), an assimilated ensemble of internal model states starts the forecast
with contact parameter βpost (continuation of social distancing interventions). In scenario II (red area), the
equivalent forecast is generated with contact parameter βpre (termination of interventions). a Predictions
for cumulative case numbers in Heinsberg. b Predictions of daily new cases in Heinsberg. c Predictions of
cumulative cases for Warendorf. d Predictions of daily new cases for Warendorf. Date refers to report of
case at RKI

fluctuations are inherently reproduced via stochastic versions of the standard epidemic
models (Engbert and Drepper 1994; Grenfell et al. 1995).

We have demonstrated the potential of sequential data assimilation to reproduce
COVID-19 dynamics at the level of a regional, stochastic model. With the help of
the ensemble Kalman filter (Evensen 2006), we successfully recovered the contact
parameter from the simulated data and obtained reliable estimates from the empirical
data. The contact parameter is the most critical free parameter in the stochastic SEIR
model, since the other parameters (mean exposed and infectious duration) can be
estimated independently from observed time series (He et al. 2020b; Li et al. 2020).
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Moreover, the contact parameter of the SEIR model is directly related to the basic
reproductive number r (Liu et al. 2020). Therefore, our approach could also be framed
as a model-based method for statistical inference of the basic reproductive number.

Next, we ran a time-resolved data assimilation that generated estimates of the time
dependence of the contact parameter. The drop in mean contact rates from an early
(βpre, March 17 to 19) to a later period (βpost, March 31 to April 2) indicates the effect
of non-pharmaceutical interventions. We also generated model prediction for two
different scenarios. In scenario I, simulations produce forecasts with start date April
16. The previously assimilated ensemble provide the initial conditions and the contact
parameter is set to the value estimated for the post-intervention period from April 14
to April 16. In scenario II, we replaced the post-intervention contact parameter with its
pre-intervention value, estimated from the data for the period March 17 to March 19.
As a result, the two scenarios predict rather different temporal developments (decline
of daily new cases for scenario I and strong increase for scenario II). Therefore,
our model predictions suggest that lifting of the non-pharmaceutical interventions
could potentially turn the epidemic dynamics back to the exponential increase from
before their implementation. Such predictions can easily be scaled up to the federal
state level (Bundesländer) or to the country level; a corresponding predictive model
will be potentially quite robust due to its explicit modeling of spatial and temporal
heterogeneities, captured by a separate time course of the contact parameter for each
region.

A recent simulation study by Li et al. (2020) used a similar approach of sequen-
tial data assimilation for dynamic epidemic models. However, they implemented a
deterministic SEIR model and extended it with additional noise assumptions. We pro-
posed the usage of the stochastic SEIR model in the formulation of a master equation
(Engbert and Drepper 1994) which can be simulated exactly and numerically effi-
ciently using Gillespie’s algorithm (Gillespie 1976). A more complex spatiotemporal
stochastic model has been considered in Arenas et al. (2020).

Furthermore, the state-parameter estimation in Li et al. (2020) utilizes the ensemble
Kalman filter directly on an augmented state space (Reich and Cotter 2015). Contrary
to that study, we found a direct application of the ensemble Kalman filter to the
augmented state space (X , β) not suitable because of the strongly nonlinear interaction
between the model states X and the contact parameter β. This led us to consider a
two stage approach which combines the ensemble Kalman filter for state estimation
with a likelihood-based inference of the contact parameter β (Reich and Cotter 2015).
The proposed two-stage approach can be extended to the estimation of multiple model
parameters including the generally unknown initial states of the stochastic SEIRmodel.
However, the computational complexity will increase exponentially with the number
of parameters to be estimated and more refined Monte Carlo methods for combined
state and parameter estimation will be required if the total number of parameters
exceeds three or four (Reich and Cotter 2015).

Our current study was mainly motivated by the methodological problem of a pos-
sible contribution from data assimilation to epidemics modeling based on a stochastic
SEIR model. There are obvious limitations within our current modeling framework,
which we did not address because of our methodological focus. Longer-term pre-
dictions (∼ months) are important, but they critically depend on an estimation of
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undocumented infections (see Li et al. 2020). Such hidden infections create, after
recovery, an unknown reduction in the number of susceptibles, which slows down
the epidemic dynamics; such an effect is currently not included in our current model.
However, it seems compatible with our framework to extend the SEIR model by an
additional class of undocumented infected individuals (Li et al. 2020).

Another important limitation of these results comes from the simplifying assump-
tion that there is no coupling to neighboring regions. As a consequence, the regional
differences in the contact parameter could be at least partly due to differences in the
contacts between the regions. Couplings between the regions (Li et al. 2020) could
also be integrated into our modeling framework. However, the non-coupling approx-
imation might be realistic in the situation of social distancing and travel bans during
the period investigated here.
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