
Bulletin of Mathematical Biology (2020) 82:118
https://doi.org/10.1007/s11538-020-00795-y

ORIG INAL ART ICLE

Optimal Control of the COVID-19 Pandemic with
Non-pharmaceutical Interventions

T. Alex Perkins1 · Guido España1

Received: 22 April 2020 / Accepted: 17 August 2020 / Published online: 4 September 2020
© Society for Mathematical Biology 2020

Abstract
The COVID-19 pandemic has forced societies across the world to resort to social
distancing to slow the spread of the SARS-CoV-2 virus. Due to the economic impacts
of social distancing, there is growing desire to relax these measures. To character-
ize a range of possible strategies for control and to understand their consequences,
we performed an optimal control analysis of a mathematical model of SARS-CoV-2
transmission. Given that the pandemic is already underway and controls have already
been initiated, we calibrated our model to data from the USA and focused our analysis
on optimal controls from May 2020 through December 2021. We found that a major
factor that differentiates strategies that prioritize lives saved versus reduced time under
control is how quickly control is relaxed once social distancing restrictions expire in
May 2020. Strategies that maintain control at a high level until at least summer 2020
allow for tapering of control thereafter and minimal deaths, whereas strategies that
relax control in the short term lead to fewer options for control later and a higher
likelihood of exceeding hospital capacity. Our results also highlight that the potential
scope for controlling COVID-19 until a vaccine is available depends on epidemio-
logical parameters about which there is still considerable uncertainty, including the
basic reproduction number and the effectiveness of social distancing. In light of those
uncertainties, our results do not constitute a quantitative forecast and instead provide
a qualitative portrayal of possible outcomes from alternative approaches to control.

Keywords Coronavirus · Epidemic · Infectious disease dynamics · Ordinary
differential equations · Pontryagin’s Maximum Principle

The authors were supported by a RAPID Grant from the National Science Foundation (DEB 2027718).

B T. Alex Perkins
taperkins@nd.edu

Guido España
guido.espana@nd.edu

1 Department of Biological Sciences and Eck Institute of Global Health, 100 Galvin Life Science
Center, Notre Dame, IN 46556, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-020-00795-y&domain=pdf
http://orcid.org/0000-0002-7518-4014


118 Page 2 of 24 T. A. Perkins, G. España

1 Introduction

The first known case of COVID-19 in the USA arrived from China on January 15,
2020 (Holshue et al. 2020). In the weeks that followed, deficiencies in testing allowed
the virus that causes this disease to spread largely undetected (Perkins et al. 2020),
with the number of reported cases growing to 429,319 by April 8, 2020 [39]. Social
distancing—such as closing schools, working fromhome, and sheltering in place—has
been adopted widely and appears capable of impacting transmission (Kraemer et al.
2020; Cowling et al. 2020). These practices have tremendous economic and social
consequences, however, which has precipitated growing desire to relax them [17].

A danger in relaxing the use of social distancing is that the virus could resurge in its
absence (Prem et al. 2020). A safe, effective, and widely used vaccine would obviate
the need for social distancing, but there are many challenges associated with develop-
ing a vaccine against COVID-19 (Lurie et al. 2020) and one is not likely to be available
until at least spring 2021 (Amanat and Krammer 2020). Strategies for successfully
controlling COVID-19 until then will depend on a suite of non-pharmaceutical inter-
ventions (Aledort et al. 2007), including some degree of social distancing but also
diagnostic testing, contact tracing, and case isolation (Bedford et al. 2020).

In models of pathogen transmission based on mass-action assumptions, non-
pharmaceutical interventions all act in a similar way by reducing the transmission
coefficient. This parameter, often denoted β, reflects the product of the rate of contact
between susceptible and infectious people and the probability of transmission upon
contact (Keeling and Rohani 2007). Due to the extent to which they reduce contact,
full-scale lockdowns appear to be the most effective strategy for reducing transmis-
sion available at present (Flaxman et al. 2020). Until alternative non-pharmaceutical
interventions can be implemented that are similarly effective but less disruptive eco-
nomically, it is urgently important to determine the minimal extent to which contact
must be reduced to achieve public health objectives.

Optimal control theory offers a way to understand how to apply one or more time-
varying control measures to a nonlinear, dynamical system in such a way that a given
objective is optimized (Lenhart and Workman 2007). These techniques have been
widely applied to a variety of pathogen transmission systems before (e.g., Blayneh
et al. 2010; Miller Neilan et al. 2010; Choi and Jung 2014; Agusto and Khan 2018),
including in the context of a pandemic of a respiratory pathogen (e.g., Lin et al.
2010; Tchuenche et al. 2011; Shim 2013). The latter studies indicate that the level of
non-pharmaceutical interventions required is dependent on model parameters and that
application of non-pharmaceutical interventions can be required at a high level and
for a long duration in the absence of a vaccine.

Here, we apply optimal control theory to determine optimal strategies for the imple-
mentation of non-pharmaceutical interventions to control COVID-19, with a focus on
the USA. An optimal strategy in this sense involves weighing the relative costs of
control and COVID-related mortality, and finding an approach to control that mini-
mizes that combined cost. Other optimal control analyses of COVID-19 are beginning
to emerge (Djidjou-Demasse 2020; Mallela 2020; Patterson-Lomba 2020; Piguillem
and Shi 2020; Shah et al. 2020), although these have been less focused on any particu-
lar geographic setting. One contextual feature of the USA that our analysis considers
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Table 1 State variables in the model

Symbol Definition

S Susceptible individuals

E Exposed but not yet infectious

A Asymptomatic infections

I Symptomatic infections

H Hospitalized infections

V Vaccinated individuals who have not been infected

u Control with non-pharmaceutical interventions

is the level of control that was implemented early in the pandemic.We account for this,
because our objective is less about understanding what level of control would have
been optimal earlier on and more about understanding what level of control would
be optimal later on. We assume that a vaccine is necessary as a long-term solution
to COVID, so we oriented our analysis around the time frame between May 2020
and a hypothetical vaccine introduction beginning in March 2021. In addition, we
emphasize the sensitivity of our results to epidemiological parameters that are not
well characterized but appear influential in determining what range of impacts of non-
pharmaceutical interventions on COVID-19 are possible. All code and data used in
our analysis are available at http://github.com/TAlexPerkins/covid19optimalcontrol.

2 Methods

2.1 Model

Wemodeled SARS-CoV-2 transmission according to a system of ordinary differential
equations,

dS

dt
= μ − (δ + β(1 − u)(αA + I + H) + ι + ν) S

dE

dt
= (β(1 − u)(αA + I + H)) (S + (1 − ε)V ) + ιS − (δ + ρ) E

dA

dt
= (1 − σ)ρE − (δ + γ ) A

dI

dt
= σρE − (δ + γ ) I

dH

dt
= γ κ I − (δ + η) H

dV

dt
= νS − (δ + β(1 − u)(αA + I + H)(1 − ε)) V

(1)

with variables and parameters defined in Tables 1 and 2.
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Fig. 1 Relationship between the
number of hospitalizations and
the probability of death from
COVID-19 among hospitalized
patients. The parameters Δ−
and Δ+ represent lower and
upper bounds on the probability
of death, and Hmax represents
the hospital capacity above
which the probability of death
exceeds Δ−. Hospitalizations
are quantified as a proportion of
the overall population
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In the model, all individuals are initially susceptible, S, with infections introduced
at a constant rate, ι, from outside the population. Individuals then transition to the
exposed class, E , where they reside for an average of ρ−1 days. A proportion σ

experience a symptomatic infection, I . The remainder experience an asymptomatic
infection, A, and have a fraction, α, of the infectiousness of symptomatic infections.
Individuals reside in the I and A classes for an average of γ −1 days. All asymptomatic
infections and a proportion 1− κ of symptomatic infections then recover and become
fully immune to subsequent infection. The remaining proportion κ of symptomatic
infections transition to the hospitalized class, H , from which they exit through either
recovery or death after an average of η−1 days.

Rather than track deaths due to COVID-19, D(t), as a state variable in Eq. (1), we
assume that they follow directly from hospitalizations, H(t), according to

D(t) =
{

ηH(t)Δ−, H(t) ≤ Hmax

ηH(t)
(
Δ− + (Δ+ − Δ−)

(
1 − eh(H(t)−Hmax)

))
, H(t) > Hmax

.

This results in the probability of death moving beyond a minimum of Δ− toward a
maximum of Δ+ as H(t) exceeds Hmax, as illustrated in Fig. 1. The motivation for
this choice is to account for the possibility that patients could experience increased
mortality when the demand for certain resources, such as intensive care unit beds or
ventilators, exceeds their availability. One other optimal control analysis of COVID-
19 has incorporated a similar phenomenon (Piguillem and Shi 2020), albeit with a
different functional form.

Individuals who are recovered and immune are not followed explicitly, as the
model’s assumption of density-dependent transmission only requires specification of
susceptible and infectious classes in the transmission term. Due to our assumption that
rates of birth, μ, and death due to reasons other than COVID-19, δ, are equal, changes
in population size over the course of the epidemic are modest, making the distinction
between density- and frequency-dependent transmissions negligible.

The primary form of control in the model is achieved through the variable u, which
represents a proportional reduction in the transmission coefficient,β. As is standard for
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mass-actionmodels of directly transmitted pathogens, β reflects the product of the rate
at which susceptible and infectious individuals come into contact and the probability
of transmission given that a contact has occurred (Keeling and Rohani 2007). Thus, a
wide range of non-pharmaceutical interventions could result in changes in u, including
school closures, work from home policies, and shelter in place mandates, as well as
more targeted approaches, such as isolation based on self-awareness of symptoms or
contact tracing. In addition to control through u, the V class represents individuals
who have been vaccinated, with individuals entering V from S at rate ν beginning on
day τν . We assume that vaccination may not provide complete protection, resulting in
vaccinated individuals becoming infected at a fraction 1− ε of the rate at which fully
susceptible individuals become infected.

2.2 Basic Reproduction Number, R0

At its core, the behavior of this model is similar to that of an SEIR model with
demography. Because analyses of the transient and asymptotic properties of this class
of models are plentiful in textbooks and elsewhere (e.g., Keeling and Rohani 2007),
we omit such an analysis here. We do, however, derive a formula to express the basic
reproduction number, R0, as a function of model parameters. This relationship plays
a role in how we parameterize the model.

We use the next-generation method (van den Driessche and Watmough 2008) to
obtain a formula describing R0 as a function of model parameters. This method
depends on matrices F and V , whose elements are defined as the rates at which
secondary infections increase the i th compartment and the rates at which disease pro-
gression, death, and recovery decrease the i th compartment, respectively. For “disease
compartments” E, A, I , and H , these matrices are defined as

F =

⎡
⎢⎢⎣

β(αA + I + H)S
0
0
0

⎤
⎥⎥⎦

V =

⎡
⎢⎢⎣

(δ + ρ)E
− (1 − σ)ρE + (δ + γ )A

− σρE + (δ + γ )I
− γ κ I + (δ + η)H

⎤
⎥⎥⎦ .

(2)

These matrices are then used to define two others,

F = ∂Fi

∂x j
(0, y0) =

⎡
⎢⎢⎣
0 αβ β β

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
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V = ∂Vi

∂x j
(0, y0) =

⎡
⎢⎢⎣

δ + ρ 0 0 0
− ρ(1 − σ) δ + γ 0 0

− ρσ 0 δ + γ 0
0 0 − γ κ δ + η

⎤
⎥⎥⎦ , (3)

where x represents disease compartments and y non-disease compartments. The
inverse of V is

V−1 =

⎡
⎢⎢⎢⎣

1
δ+ρ

0 0 0
ρ(1−σ)

(δ+γ )(δ+ρ)
1

δ+γ
0 0

ρσ
(δ+γ )(δ+ρ)

0 1
δ+γ

0
κγρσ

(δ+γ )(η+δ)(δ+ρ)
0 κγ

(δ+γ )(η+δ)
1

η+δ

⎤
⎥⎥⎥⎦ , (4)

which, along with F , defines the matrix K = FV−1. Specifying

K = β

⎡
⎢⎢⎣

(1−σ)αρ(δ+η)+ρσ(δ+η)+κγρσ
(δ+γ )(δ+ρ)(δ+η)

α
δ+γ

η+δ+κγ
(δ+γ )(η+δ)

1
η+δ

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (5)

we obtain

R0 = βρ ((1 − σ)α(δ + η) + σ(δ + η) + σκγ )

(δ + γ )(δ + ρ)(δ + η)
(6)

as the maximum eigenvalue of K .

2.3 Optimal Control Problem

The optimal control problem is to minimize the objective functional

J (u) =
∫ t1

t0
D(t)2 + c u(t)2dt (7)

subject to the constraints of the state dynamics described in Eq. (1) and the initial con-
ditions that S(t0) = 1 and all other state variables equal zero at time t0. The parameter
c weights the extent to which the control, u(t), is prioritized for minimization relative
to deaths, D(t). Squared terms for D(t) and u(t) are chosen both for mathematical
convenience in the case of u(t) and to more heavily penalize solutions for u(t) that
permit relatively high values of D(t) or u(t) at any given time.

To find the optimal control, u∗(t), that minimizes J (u), we follow standard results
from optimal control theory applied to systems of ordinary differential equations
(Lenhart and Workman 2007). These techniques make use of Pontryagin’s Maximum
Principle to determine the pointwise minimum of the Hamiltonian of the system, H,
using adjoint variables, λ, that correspond to each of the state variables.
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To solve for the adjoint variables, we first define the Hamiltonian,

H = D2 + c u2 + λS (μ − (δ + β(1 − u)(αA + I + H) + ι + ν) S)

+ λE (β(1 − u)(αA + I + H) (S + (1 − ε)V ) + ιS − (δ + ρ) E)

+ λA ((1 − σ)ρE − (δ + γ ) A) + λI (σρE − (δ + γ ) I )

+ λH (γ κ I − (δ + η) H)

+ λV (νS − (δ + β(1 − u)(αA + I + H)(1 − ε)) V ) . (8)

We then define differential equations describing the behavior of each adjoint vari-
able as the negative of the partial derivative of H with respect to the state variable
corresponding to each adjoint variable. This yields

dλS

dt
= λS (δ + β(1 − u)(αA + I + H) + ι + ν)

− λE (β(1 − u)(αA + I + H) + ι) − λV (ν)

dλE

dt
= λE (δ + ρ) − λA ((1 − σ)ρ) − λI (σρ)

dλA

dt
= λS (β(1 − u)αS) − λE (β(1 − u)α(S + (1 − ε)V ))

+ λA(δ + γ ) + λV (β(1 − u)α(1 − ε)V )

dλI

dt
= λS (β(1 − u)S) − λE (β(1 − u)(S + (1 − ε)V ))

+ λI (δ + γ ) − λH (γ κ) + λV (β(1 − u)(1 − ε)V )

dλH

dt
= − ∂D2

∂H
+ λS (β(1 − u)S) − λE (β(1 − u)(S + (1 − ε)V ))

+ λH (δ + η) + λV (β(1 − u)(1 − ε)V )

dλV

dt
= − λE (β(1 − u)(αA + I + H)(1 − ε))

+ λV (δ + β(1 − u)(αA + I + H)(1 − ε)) ,

(9)

where

∂D2

∂H
=

{
2(ηΔ−)2H , H ≤ Hmax

2H−1D2 − 2ηhHD(Δ+ − Δ−)eh(H−Hmax), H > Hmax
.

Equation (9) can be solved backward in time with transversality conditions at time t1
equal to zero for each adjoint variable.

To find the pointwise optimal control, u∗, we find the value of u that minimizes
∂H
∂u , which yields

u∗ = −β(αA + I + H) (λS S + λV (1 − ε)V − λE (S + (1 − ε)V )

2c
. (10)
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The optimal control is subject to a lower bound of 0 and an upper bound of umax, with
those values used for u∗ whenever the right-hand side of Eq. (10) yields values outside
those bounds.

To find u∗(t) numerically, we use the forward–backward sweep method (Lenhart
and Workman 2007), which involves first solving for the state variables forward in
time, next solving for the adjoint variables backward in time, and then plugging the
solutions for the relevant state and adjoint variables into Eq. (10), subject to bounds on
u(t). As is often the case for optimal control problems (Lenhart and Workman 2007),
we found that we needed to perform these steps iteratively and with a convex combi-
nation of controls across iterations to achieve convergence. Specifically, we repeated
the forward–backward sweep process 50 times, after which we took newly proposed
solutions of u∗(t) as the average of the 20 most recent solutions, until the algorithm
was stopped after 2000 iterations. We assessed convergence with a statistic defined as

∑
∀t |unew − uold|∑

∀t |unew| , (11)

where smaller values indicate better convergence. All numerical solutions were
obtained with a Runge–Kutta 4 routine implemented with the ode function from the
deSolve package (Soetaert et al. 2010) in R.

2.4 Model Parameterization

In Table 2, we specify low, intermediate, and high values of each parameter. For
some parameters, estimates matching our parameter definitions were taken from other
studies. For other parameters, additional steps were necessary to match our parameter
definitions. We elaborate on the latter below.
Transmission coefficient, β We based values of this parameter on assumptions about
R0 by solving for β as a function of R0 and other parameters in Eq. (6). Because
estimates of R0 for COVID-19 vary widely (Park et al. 2020), we chose values that
span a range of estimates that may be applicable to the USA.
Background birth and death rates, μ and δ We parameterized μ consistent with a rate
of 3,791,712 births in a population of 331 million in the USA in 2018 (Martin et al.
2019). To achieve a constant population size in the absence of COVID-19, we set δ

equal to μ.
Probability of death among hospitalized cases,Δ and hWe assume thatΔ− is equal to
early estimates from theUSA (2.6%) (Centers forDiseseControl and Prevention 2020)
and that Δ+ is equal to estimates from Italy (7.2%) (Onder et al. 2020). Estimates of
how quickly Δ+ might be approached have not been made empirically, so the value
of h was assumed. The intermediate value of h = 701 corresponds to an increase in
H of 50% beyond Hmax resulting in 50% of the maximum increase from Δ− to Δ+.
Progression through hospitalization, η We used line-list data [1] to estimate a mean
(13.2 days) and standard deviation (7.39 days) of the time between hospital admission
and either discharge or death.
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Timing of vaccine introduction, τν Experts have stated that a vaccine against COVID-
19 could be available to the public by spring 2021 (Amanat and Krammer 2020). We
used April 1, 2021, as our default value for this parameter.
Vaccination rate, ν In the 2009 H1N1 pandemic, 100 million doses of vaccine were
administered between October 2009 and April 2010 [8,9]. Consistent with that, our
default value of ν resulted in 0.197% of the population being vaccinated each day.
Hospital capacity, Hmax We based our definition of this parameter on hospital beds
and did not include other aspects of hospital resources, such as ICU beds, ventilators,
or hospital staffing. Specifically, we adopted an estimate of 312,090 beds available for
COVID-19 patients in theUSA by the Institute for HealthMetrics and Evaluation [54].
Maximum effect of control, umax A model incorporating survey data and age-based
contact patterns estimated that social distancing could reduce transmission of SARS-
CoV-2 by 73% (Jarvis et al. 2020). Based on this, we used 0.7 as an intermediate value
of this parameter and 0.5 and 0.9 as lower and upper values.

2.5 Model Calibration

To obtain realistic behavior of the model, we calibrated it to match the cumulative
number of reported deaths in the USA within the first 100 days of 2020 (i.e., by April
9), which we obtained from the New York Times [39]. We focused our calibration
on the parameter ι, due to the difficulty of empirically estimating the rate at which
imported infections appear. To obtain a value of ι that resulted in the model matching
the reported number of deaths, we simulated the model across 300 values of ι evenly
spaced between 10−12 and 10−4 on a log scale, performed a linear interpolation of
the simulated number of deaths across those values of ι, and found the value of ι that
most closely matched reported deaths.

We calibrated the model under a total of 18 different parameter scenarios, crossing
low, intermediate, and high values of R0 with low, intermediate, and high values of
umax and low and high values of ω. The latter represents the proportion of all deaths
caused by COVID-19 that were reported. Because non-pharmaceutical interventions
began going into effect in the USA within the timeframe of this calibration period,
we calibrated the model subject to an assumed pattern of u(t) through the first 100
days of 2020. We chose a logistic functional form for this, with a minimum of 0 and a
maximum of umax. Two parameters that control the midpoint and slope of the increase
from 0 to umax were selected by an informal process of trial and error, with the goal
of having the model’s predictions of deaths over time match the timing of reported
deaths under all 18 parameter scenarios. We also used this process to select the date
on which importations were initiated through ι.

3 Results

3.1 Model Calibration

Under each of the 18 different scenarios we considered about R0, umax, and ω, our
model was able to reproduce the numbers and timing of reported deaths in the USA
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Fig. 2 Reported (red) and
simulated (black) numbers of
daily deaths in the USA
resulting from model calibration
under 18 different parameter
scenarios (black lines) (Color
Figure Online)
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reasonably well (Fig. 2). Different values of ι were required to do so under different
values of those other three parameters, but all values of ι ranged 10−7−10−6 (Table 3).
Taking into account the population of the USA, this equates to a range of 33–331
imported infections per day. Higher values of R0 resulted in lower values of ι, given
that fewer importations were required to generate the reported numbers of deaths when
there was more local transmission. For similar reasons, ι was lower when umax was
lower. The value of ω had a negligible effect on ι.

In addition to ι, we also calibrated the date on which importations began (February
1) and u(t) during the first 100 days of 2020. Even though the first imported cases in
the USA began appearing before February 1 (Holshue et al. 2020), it is not surprising
that our model better matched the data with a slightly later start date, given that the
model did not allow for increases in importation over time, as likely occurred (Perkins
et al. 2020). The calibration of u(t) was consistent with u(t) starting at zero, reaching
half of umax on April 4, 2020, and increasing by a maximum of 0.075 umax per day
around that time. The timing of these changes is approximately two weeks later than
changes in Google mobility data from the USA [22], which may be a consequence
of our model moving some individuals from exposure to death too quickly given that
residence time in each compartment is exponentially distributed.

In general, we do not interpret any of the calibrated parameter values as reliable esti-
mates of empirical quantities. Such an interpretation would require analyses that more
carefully account for data-generating processes and sources of uncertainty. Rather,
our objective in this calibration exercise was to ensure that the model’s behavior is
reasonably consistent with empirical data, which we feel was accomplished.

3.2 Convergence

For our main results, we obtained solutions to u∗(t) under a total of 126 parameter
combinations, crossing the 18 parameter sets in Table 3with seven values of c spanning
10−12 to 10−6 by factors of ten. In one representative example (Fig. 3, left), we
observed that solutions of u∗(t) converged to a set of similar solutions after several
hundred iterations. As expected, the objective functional decreased during those initial
iterations and remained low thereafter (Fig. 3, right). To assess convergence by the
statistic in Eq. (11), we selected the iterations with the ten lowest values of J (u) in the
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Table 3 Calibrated estimates of
the importation rate, ι, under 18
scenarios about the values of R0,
umax, and ω

R0 umax ω ι

3 0.5 0.5 9.35 × 10−7

3.5 0.5 0.5 3.16 × 10−7

4 0.5 0.5 1.07 × 10−7

3 0.7 0.5 9.69 × 10−7

3.5 0.7 0.5 3.32 × 10−7

4 0.7 0.5 1.14 × 10−7

3 0.9 0.5 9.35 × 10−7

3.5 0.9 0.5 3.16 × 10−7

4 0.9 0.5 1.07 × 10−7

3 0.5 0.8 9.69 × 10−7

3.5 0.5 0.8 3.32 × 10−7

4 0.5 0.8 1.14 × 10−7

3 0.7 0.8 9.35 × 10−7

3.5 0.7 0.8 3.16 × 10−7

4 0.7 0.8 1.07 × 10−7

3 0.9 0.8 9.69 × 10−7

3.5 0.9 0.8 3.32 × 10−7

4 0.9 0.8 1.13 × 10−7

Fig. 3 Convergence of solutions of u∗(t) under parameters R0 = 3, umax = 0.9, ω = 0.8, and c = 10−12.
Left: Colors indicate values of u∗(t) for each day in 2020 and 2021 across 2,000 iterations of the forward–
backward sweep algorithm. Right: Across iterations, the value of the objective functional, J (u), decreased
steadily until cycling for the remaining iterations (Color Figure Online)

last 100 iterations. Of 126 parameter combinations, 78% had final solutions of u∗(t)
with convergence statistics below 10−5, 94% below 10−2, and all below 10−1.

3.3 Minimized Objective Functional Under Different Parameters

Comparing values of the two components of the objective functional,
∫ t1
t0

D(t)2dt and∫ t1
t0
u(t)2dt , across different parameter values provides insight into the range of behav-

ior of themodel and its response to control. Because they are similar to the components
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Fig. 4 Dependence of time under control (blue) and cumulative deaths (red) on c (x-axis), R0 (columns),
umax (rows), and ω (markers). Deaths are quantified as a proportion of the overall population (Color Figure
Online)

of the objective functional but more easily interpretable, we describe effects of model
parameters on

∫ t1
t0

D(t)dt (cumulative deaths) and
∫ t1
t0
u(t)dt (cumulative time under

control). The parameter c, which controls the weight of the two terms in J (u), led to
a transition from minimizing cumulative deaths to minimizing cumulative time spent
under control as it varied from 10−9 to 10−6 (Fig. 4). The parameters R0 and umax
both influenced the extent towhich cumulative deaths could beminimized.With a high
value of umax, deaths could be kept relatively low across all values of R0 explored,
provided that c ≤ 10−10. With a low value of umax and a high value of R0, cumulative
deaths could only be reduced by around 10% as c varied across its entire range from
10−12 to 10−6. The parameter ω had essentially no influence on the components of
the objective functional (Fig. 4).

3.4 Optimal Control Over Time

We first consider the scenario where R0 = 3 and umax = 0.9, because those are the
conditions under which control has the greatest potential to influence the pandemic.
Under c = 10−12, u∗(t) remains at umax until late June 2020, after which it settles
down to around 75% of umax until late 2021 (Fig. 5). This results in hospitalizations
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Fig. 5 Optimal control under parameters with maximal ability to control the pandemic, with maximal
weighting on minimization of deaths. Panels show the optimal control (bottom) and its impacts on the
dynamics of hospitalized (middle) and susceptible (top) compartments with R0 = 3, umax = 0.9, ω = 0.8,
and c = 10−12. Vaccination is introduced at the time indicated by the arrow, with the vaccinated population
(orange) reducing the susceptible population. Through April 2020 (gray shading), the value of the control
is fixed according to its calibrated trajectory. The dashed horizontal line indicates hospital capacity (Color
Figure Online)

dropping from their peak in April 2020 and remaining very low through 2021. The
susceptible population remains very high and only begins eroding once a vaccine is
introduced.

With a higher value of c = 10−9, u∗(t) drops to around 50% of umax in May 2020
(Fig. 5). As a result, hospitalizations rebound and exceed hospital capacity by around
a third in June and July before falling again, after u∗(t) returns to umax. From August
2020 onward, a steady decline in u∗(t) allows hospitalizations to be maintained at
moderate levels before rebounding and exceeding hospital capacity once again for
several months in 2021.

With the highest value of c = 10−6, u∗(t) drops almost to zero at the beginning
of May 2020 (Fig. 7). This results in a rapid increase in hospitalizations, which is
followed by an increase in u∗(t). By the end of June, the susceptible population has
been depleted to the point that herd immunity begins to obviate the need for control
and u∗(t) declines to zero by October 2020. During this large second wave in summer
2020, hospital capacity is exceeded by more than 20-fold. This results in cumulative
deaths equaling 5% of the population, which is approximately one order of magnitude
greater thanwhen c = 10−9 and twoorders ofmagnitude greater thanwhen c = 10−12.
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Fig. 6 Optimal control under parameters with maximal ability to control the pandemic, with intermediate
weighting on minimization of deaths. Panels show the optimal control (bottom) and its impacts on the
dynamics of hospitalized (middle) and susceptible (top) compartments with R0 = 3, umax = 0.9, ω = 0.8,
and c = 10−9. Vaccination is introduced at the time indicated by the arrow, with the vaccinated population
(orange) reducing the susceptible population. Through April 2020 (gray shading), the value of the control
is fixed according to its calibrated trajectory. The dashed horizontal line indicates hospital capacity (Color
Figure Online)

Under other conditions about the transmissibility of the virus and the potential for
non-pharmaceutical interventions to reduce transmission, control is less capable of
curtailing the epidemic. With R0 = 3.5 and umax = 0.7, hospitalizations peak in early
summer 2020 at twice hospital capacity and take until December 2020 to fall below
hospital capacity, even with the most aggressive value of c that we considered (10−12)
(Fig. 8). With R0 = 4, umax = 0.5, and c = 10−12, hospitalizations peak in summer
2020 at 30 times hospital capacity (Fig. 9). This results in extensive herd immunity
and the relaxation of control in 2021, albeit at the cost of extensive deaths (Fig. 4).
Optimal controls under a wider variety of parameter combinations can be explored
interactively at http://covid19optimalcontrol.crc.nd.edu.

Across the scenarios that we considered, control generally either relaxes slowly
once vaccination commences (Figs. 5, 6) or abruptly once herd immunity is attained
(Fig. 7). Near the end of some scenarios, control drops markedly as the end of 2021 is
approached (e.g., Fig. 8), due to the fact that deaths resulting from relaxation of control
near the end of 2021 would not manifest appreciably until 2022. Such behavior should
be interpreted as an artifact of the finite time horizon of our analysis.Werewe to extend
the analysis until the end of 2022, for example, we would expect behavior similar to
that in mid-2021 to extend forward through much of 2022, and for the artifactual

123

http://covid19optimalcontrol.crc.nd.edu


118 Page 16 of 24 T. A. Perkins, G. España

Fig. 7 Optimal control under parameters with maximal ability to control the pandemic, with minimal
weighting on minimization of deaths. Panels show the optimal control (bottom) and its impacts on the
dynamics of hospitalized (middle) and susceptible (top) compartments with R0 = 3, umax = 0.9, ω = 0.8,
and c = 10−9. Vaccination is introduced at the time indicated by the arrow, with the vaccinated population
(orange) reducing the susceptible population. Through April 2020 (gray shading), the value of the control
is fixed according to its calibrated trajectory. The dashed horizontal line indicates hospital capacity (Color
Figure Online)

relaxation of control, we observe toward the end of 2021 to apply to the end of 2022
instead.

3.5 Optimal Control Following Different Starting Conditions

Our calibration procedure resulted in a single assumption about the trajectory of u(t)
prior to April 30, 2020. Control during this period was fixed in analyses in Sect. 3.4,
with the flexibility to define u∗(t) only allowed during the period fromMay 1, 2020, to
December 31, 2021. Here, we explore how non-pharmaceutical interventions initiated
one to three weeks earlier or later in spring 2020 would affect optimal controls in the
period after. We focus this analysis on scenarios in which c = 10−12, which results
in the optimal control problem seeking to minimize deaths as aggressively as any
scenario that we explored. Consequently, we interpret changes in the optimal control
in this section to reflect changes in constraints on what solutions of u∗(t) are possible,
rather than changes in the balance between D(t)2 and u(t)2 in the optimization.

Across all combinations of R0, umax, and ω that we considered, cumulative deaths
through 2020 and 2021 decreasewhen control begins earlier and increasewhen control
begins later (Fig. 10, red). In the scenario in which a delay in the initiation of control

123



Optimal Control of the COVID-19 Pandemic with Non-… Page 17 of 24 118

Fig. 8 Optimal control under parameters with maximal ability to control the pandemic, with maximal
weighting on minimization of deaths. Panels show the optimal control (bottom) and its impacts on the
dynamics of hospitalized (middle) and susceptible (top) compartments with R0 = 3.5, umax = 0.7,
ω = 0.8, and c = 10−12. Vaccination is introduced at the time indicated by the arrow, with the vaccinated
population (orange) reducing the susceptible population. Through April 2020 (gray shading), the value
of the control is fixed according to its calibrated trajectory. The dashed horizontal line indicates hospital
capacity (Color Figure Online)

has the smallest effect (R0 = 3, umax = 0.5), cumulative deaths increase by 10%with
a three-week delay. In the scenario in which a delay in the initiation of control has
the largest effect (R0 = 4, umax = 0.9), cumulative deaths increase 28-fold with a
three-week delay.

The overall amount of time spent under control throughout 2020 and 2021 increases
when control begins earlier and decreases when control begins later (Fig. 10, blue).
This is the case across all combinations of R0, umax, and ω that we considered. In
part, this owes to less time spent under control through April 30, 2020, when u(t)
is fixed and not subject to optimization. At the same time, delays in the initiation of
control result in a higher prevalence of infection by the beginning of the optimization
period, which results in higher levels of subsequent transmission, greater depletion of
the susceptible population, and less need for control later in the period of optimization
(compare Fig. 11 with Fig. 5).

4 Discussion

Under our model, the ability of non-pharmaceutical interventions to minimize deaths
depends to a large extent on the maximum effect that they could have on transmission,
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Fig. 9 Optimal control under parameters with maximal ability to control the pandemic, with maximal
weighting on minimization of deaths. Panels show the optimal control (bottom) and its impacts on the
dynamics of hospitalized (middle) and susceptible (top) compartments with R0 = 4, umax = 0.5, ω = 0.8,
and c = 10−12. Vaccination is introduced at the time indicated by the arrow, with the vaccinated population
(orange) reducing the susceptible population. Through April 2020 (gray shading), the value of the control
is fixed according to its calibrated trajectory. The dashed horizontal line indicates hospital capacity (Color
Figure Online)

as captured by the parameter umax. If umax is high (0.9), our model predicts that
maintaining transmission at a low enough level that hospital capacity will not be
exceeded could be possible. If umax is low (0.5), our model predicts that there may
be limited scope to curtail the pandemic, even if control is sustained for a long period
of time. If umax is intermediate (0.7), our model predicts that the potential impact of
control is sensitive to the value of R0. These results emphasize the importanceof careful
estimation of these parameters as the pandemic progresses (Flaxman et al. 2020). This
includes accounting for geographic differences in both umax and R0 (Gilbert et al.
2020; Hilton and Keeling 2020).

The balance betweenminimizing deaths versus days under control is determined by
the parameter c in our model, which mirrors the weighting between these factors that
government leaders will need to consider as they make decisions in comingmonths. In
the event that non-pharmaceutical interventions are effective, our analysis shows that
they would need to be sustained at a high level until at least sometime in summer 2020,
at which time they could potentially be relaxed to a small degree but would still need to
be maintained at a relatively high level thereafter. Scenarios that place greater weight
on minimizing days under control provide insight into the possible consequences of
relaxing non-pharmaceutical interventions prematurely. In a scenario in which the
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Fig. 10 Dependence of time under control (blue) and cumulative deaths (red) on a shift in the timing of
u(t) before April 30, 2020 (x-axis), R0 (columns), umax (rows), and ω (markers). Deaths are quantified as
a proportion of the overall population (Color Figure Online)

effect of non-pharmaceutical interventions is reduced moderately in May, resuming
non-pharmaceutical interventions at high levels soon after becomes necessary to react
to a second wave later in the summer. In a scenario in which non-pharmaceutical
interventions are reduced more drastically in May, an extremely large second wave
occurs in summer 2020 that exceeds hospital capacity many times over.

Our conclusion that prolonged control is needed to avoid a resurgence that would
greatly exceed healthcare capacity is in line with results from other modeling studies
(Davies et al. 2020; Ngoonghala et al. 2020; Ferguson et al. 2020; Kissler et al. 2020;
Tuite et al. 2020). Some differ though in that they consider scenarios in which control
is implemented intermittently, with periods of relaxed control in between periods of
maximal control (Ferguson et al. 2020; Kissler et al. 2020; Tuite et al. 2020). In the
limited number of direct comparisons of intermittent and continuous strategies that
have been performed for COVID-19 to date, continuous strategies appear to be capable
of more effectively limiting transmission to low levels (Djidjou-Demasse 2020; Yap
and Raja 2020). The sustainability of either strategy would benefit from the ability
to transition away from heightened social distancing and more toward diagnostic
testing, contact tracing, and case isolation (Tuite et al. 2020; Piguillem and Shi 2020).
Although our analysis focuses on a single timing of vaccine introduction inApril 2021,
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Fig. 11 Optimal control (bottom) and its impacts on the dynamics of hospitalized (middle) and susceptible
(top) compartments with R0 = 3, umax = 0.9, ω = 0.8, c = 10−12, and the initiation of control delayed
by 21 days. Vaccination is introduced at the time indicated by the arrow, with the vaccinated population
(orange) reducing the susceptible population. Through April 2020 (gray shading), the value of the control
is fixed according to its calibrated trajectory. The dashed horizontal line indicates hospital capacity (Color
Figure Online)

we assume that similar results would apply until a vaccine is available, whenever that
may be.

Our results tend to agree with those from other optimal control analyses of COVID-
19, although our analysis goes beyond those studies in some ways. In general, ours
and other studies share the conclusion that heightened control early in the pandemic
is important for achieving long-term success. Like our analysis, some anticipate that
partial relaxation of controls may be possible over time (Djidjou-Demasse 2020; Shah
et al. 2020),whereas others focus on strategies intended to have amore limited duration
to begin with (Patterson-Lomba 2020; Morris et al. 2020; Piguillem and Shi 2020).
Importantly though, our analysis goes further than others in exploring sensitivity of
the optimal control to model parameters. Specifically, we show that preventing a
large wave that overwhelms health systems may not even be possible under some
parameter combinations (low umax, high R0) and that prioritizing the minimization of
deaths versus days under control leads to vastly different outcomes. We also constrain
levels of control applied through April 2020, making the optimization more relevant
to decision making thereafter. Shifting the timing of the initiation of control shows
that constraints about past levels of control strongly affect future possibilities for the
extent to which deaths can be minimized and the level of control required to achieve
that, consistent with other results (Lai et al. 2020).
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The goal of our analysis is to provide qualitative insights into the implications of
alternative approaches to control, rather than to make quantitative predictions about
future events. Some key limitations of using our model for the latter purpose include
our omission of subnational variation in epidemic dynamics (Perkins et al. 2019; Team
2020), differentiation among alternative non-pharmaceutical interventions (Flaxman
et al. 2020), and age differences in contact patterns (Jarvis et al. 2020), susceptibil-
ity (Davies et al. 2020), and risk of hospitalization (Centers for Disese Control and
Prevention 2020). Whereas a previous optimal control analysis of pandemic influenza
(Shim 2013) suggested that age-specific optimal controls were all relatively similar,
recent work on COVID-19 (Richard et al. 2020; Gondim andMachado 2020) suggests
that optimal controls should be higher for older age-groups due to their higher risk
of severe disease and death. Inclusion of age structure is important for other reasons
too, such as realistically capturing transmission dynamics (Britton et al. 2020) and
accounting for age-specific interventions, such as school closures (Head et al. 2020).
Additional limitations that affect our model’s suitability for making future predictions
include its deterministic nature and the rudimentary calibration procedure that we per-
formed, which was sufficient to provide a basis for qualitative analyses but that would
need refinement for application of our model to inference or forecasting.

In conclusion, our analysis suggests that May 2020 was a critical juncture in the
pandemic, when decisions about the continuation or relaxation of non-pharmaceutical
interventions had major implications for the possibility of keeping transmission below
levels that health systems could cope with. At the same time, our analysis highlights
the role that constraints play in determining optimal levels of control, both in terms
of constraints on epidemiological parameters and on levels of control prior to the
time that a decision is made about future actions. At any point during the pandemic,
reducing transmission in the near term would give decision makers greater flexibility
in the range of decisions available to them in the long term, and gathering high-quality
data could help reduce uncertainty about the consequences of those decisions.

Acknowledgements Thanks to the University of Notre Dame’s Center for Research Computing for com-
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