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Abstract

There is continued uncertainty in how long it takes a person infected by the COVID-
19 virus to become infectious. In this paper, we quantify how this uncertainty affects
estimates of the basic replication number Ry, and thus estimates of the fraction of the
population that would become infected in the absence of effective interventions. The
analysis is general, and applies to all SEIR-based models, not only those associated
with COVID-19. We find that when modeling a rapidly spreading epidemic, seemingly
minor differences in how latency is treated can lead to vastly different estimates of
Rp. We also derive a simple formula relating the replication number to the fraction
of the population that is eventually infected. This formula is robust and applies to all
compartmental models whose parameters do not depend on time.
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1 Introduction

In any epidemic, there are two basic questions that need to be answered:

— How much does our behavior need to change to contain and eventually suppress
the outbreak?
— How many people will eventually get infected if our behavior doesn’t change?

Both questions boil down to estimating the basic reproduction number R(, which
describes the average number of new individuals that each infected individual goes on
to infect, assuming no interventions and no depletion of the population of susceptible
individuals.
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The connection of Ry to the first question is clear. If Ry = 1.2, then blocking 20% of
would-be transmissions is enough to halt and reverse the outbreak; mild interventions,
such as promoting frequent hand-washing and the wearing of masks, might be enough.
If Rp = 5, then blocking 80% or more of the would-be transmissions is needed, so
much more drastic actions, such as full scale lock-downs, are called for. At of July 2020,
strong measures have largely halted the spread of COVID-19 in East Asia and Europe,
and policy-makers there are trying to determine the extent to which these measures can
be safely relaxed. In much of South Asia, Africa, and the Americas, however, where
strict measures either were not imposed or were abandoned prematurely, the disease
is running unchecked and policy-makers must come to grips with what measures need
to be imposed or re-imposed. Throughout the world, effective public policy depends
on understanding Ry.

The connection of Ry to the second question is more subtle. We will see that, in
a wide variety of models, the fraction x of the population that is eventually infected
is purely a function of the replication number R. R, as opposed to Ry, describes the
average number of new individuals that each infected individual goes on to infect,
taking a constant level of intervention into account but assuming no depletion of the
population of susceptible individuals. Specifically, we will show that

| —x=e R, (1)

For instance, if Rp = 5 and our interventions only serve to bring R down to 2, then
the fraction that eventually gets infected is the nonzero solution to 1 — x = e 2% or
about 0.797. That is, in this scenario almost 80% of the population would eventually
get infected.

To the best of our knowledge, Eq. (1) has not previously appeared in the litera-
ture, and in discussions with epidemiologists, none have been aware of such a simple
relationship. However, the reasoning behind it is very similar to arguments that have
previously appeared in compartmental models of population dynamics, such as Gyl-
lenberg and Hanski (1997) and Hastings (2003), particularly the calculations that
appear at the very end of Hastings (2003).

Equation (1) assumes that R is constant. In reality, R varies with time as inter-
ventions are applied and relaxed, perhaps multiple times, and as the mood of the
population oscillates between complacency and fear. Long-term projections in those
circumstances are much more difficult, and are not attempted in this paper.

Since knowing the value of Ry is so important, it is essential to understand the
accuracy of our estimates. Unfortunately, published estimates of Rg for COVID-19
have varied tremendously, from 1.3 (Du et al. 2020) to more than 6 (Tang et al. 2020),
often with non-overlapping error bars. The most widely cited estimate of Ry = 2.2 is
that of Li et al (2020), and (as of July 2020) much of the modeling of the future course
of the pandemic has used Li’s value or lower.

The basic technique for estimating Ry involves tracking the increase in cases in the
early stages of an outbreak, before interventions are applied, and then computing how
much transmission was needed to explain the observed growth. This requires model-
building, so it’s important to understand the extent to which the answer depends on
the details of the model.
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An important feature of COVID-19 is the large extent to which the disease is carried
by individuals who are not yet showing symptoms. While there is general agreement
that some pre-symptomatic individuals can still infect others (see, e.g., Mandavilli
(2020) for early reporting on this fact), there is as yet no agreement on the length
of the latency period during which an infected individual is not yet infectious. Some
early models treated infected individuals as immediately infectious (Du et al. 2020;
Pasco et al. 2020), while others assumed that they only become infectious toward the
end of the incubation period (Ferguson et al. 2020).

In this paper, we determine how the estimated value of Ry depends on the length
of the latency period for three versions of the popular SEIR (Susceptible, Exposed,
Infectious, Removed) model. A detailed explanation of the results will have to wait
until we describe these versions, but we find, as illustrated in Fig.2, that all three
versions are very sensitive to the average length of the latency period. Even for a
fixed value of this parameter, the different versions, all of which are more or less
equally plausible scientifically, give very different answers. More complicated (and
realistic) models are even more parameter-dependent. The upshot is that essentially
all published estimates of R for COVID-19 should be viewed with skepticism. Until
we understand latency for COVID-19 much better than we currently do, we won’t
understand Ry.

Variation in early data for the spread of COVID-19 leads to additional uncertainty in
estimates of Ry. Initial estimates of Ry were based on the early stages of the epidemic
in Wuhan, China, where Li et al. (2020) estimated a doubling time of 7.4 days. In places
like Europe and the USA, where efforts had already been made to contain the spread,
the actual reproduction number R should have been less than Ry. However, outbreaks
in many places have grown much faster than in Wuhan. For instance, in the USA
the number of confirmed COVID-19 cases grew 100-fold, from 541 to 54,856, from
March 8 to March 24, 2020, corresponding to a doubling time of only 2.4 days (https://
www.worldometers.info/coronavirus, https://interaktiv.morgenpost.de/corona-virus-
karte-infektionen-deutschland-weltweit/). Over the same time period, the number of
confirmed cases in the entire world, excluding China, grew from 29,256 to 341,356,
which indicates a doubling time of 4.5 days, slower than the USA but faster than
Wuhan.!

A further complication for COVID-19 is the (still unknown) extent to which the
disease is spread by individuals who never develop symptoms; these asymptomatic
carriers are very difficult to identify and isolate. The simplest way to model such
individuals is to imagine that there is a long tail to the distribution of the length of
the infectious period. This is the motivation behind one of the three variants of the
SEIR model developed below. A more sophisticated approach, taken by most COVID-
19 modelers, is to sort infected individuals into non-infectious, asymptomatic, pre-
symptomatic, and symptomatic compartments and treat each compartment differently.
See Pasco et al. (2020) for an example. However, this has the problem of involving

1 These numbers are for confirmed cases. Due to severe testin g inefficiencies, the actual number of infections
on March 8, and likewise the actual number of infections on March 24, were probably an order of magnitude
higher. However, even if testing efficiency doubled in that time and the true number of infections in the USA
only grew 50-fold instead of 100-fold, the resulting doubling time of 2.8 days would still be far smaller
than in Wuhan.
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even more parameters than before, making the estimated value of Ry be even more
dependent on the details of the model. With enough parameters, almost anything can
happen. As John von Neumann said, With four parameters I can fit an elephant, and
with five I can make him wiggle his trunk. (Dyson 2004)

The outline of the paper is as follows. In Sect.2 we review stage models for epi-
demics and develop three versions of the SEIR model. For each version we present,
without proof, the formula for the estimated value of Ry in terms of the growth rate
of the epidemic and the parameters of the model. This is illustrated by comparing,
in Fig.2, the different estimates for Ry for COVID-19 in the USA in March 2020.
We also illustrate the consequences of Eq. (1) and briefly discuss the phenomenon of
herd immunity. In Sect.3 we derive the formulas for R presented in Sect.2 and we
prove that Eq. (1) applies, not only to the three variants already discussed, but to all
compartmental models meeting some mild assumptions. Finally, in Sect.4 we discuss
the real-world implications of these results.

2 Stage Models
2.1 The SEIR Model and its Variants

Most models of disease spread are variants of the SEIR model, which is itself an
extension of the popular SIR model (https://en.wikipedia.org/wiki/Compartmental
models_in_epidemiology). In the SEIR model, people are classified as “Susceptible”,
“Exposed”, “Infectious”, and “Removed” (or “Recovered”). Susceptible individuals
become Exposed from contact with existing Infectious individuals, Exposed individ-
uals become Infectious after a latency period, and Infectious individuals eventually
recover, die, are quarantined, or are otherwise Removed from circulation. We let
S(t), E(t), I(t) and R(¢) denote the number of Susceptible, Exposed, Infectious and
Removed individuals at time ¢ and write equations to govern the evolution of these
quantities.
The basic SEIR model has three continuous parameters.

1. The mean time #; spent by patients in the uninfectious “exposed” state. We call
this time the latency.

2. The mean time f#, spent by patients in the infectious state.

3. Thereproduction number R, which is the mean number of people that each infected
person infects in turn.

The sum fioy = t1 + 7 is the total average time from exposure to the appearance of
symptoms severe enough to cause an individual to isolate. We call this the extended
incubation period. # is relatively easy to measure, and for symptomatic COVID-19
patients it is believed to be about one week (Backer et al. 2020). The individual numbers
t1 and 1, are much harder to determine. In this paper, we will compare different values
of the latency 71, while holding the sum # fixed.

In addition to these three parameters, we consider several ways to treat the distri-
bution of incubation times for individuals. The most common choice is to assume that
the time each individual spends in the exposed state and the infectious state are inde-
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Three kinds of time delays
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Fig.1 Theactual distribution of latency (or infectiousness) is not well-approximated by either an exponential
distribution or a fixed value

pendent exponential random variables with means # and #,, respectively. This choice
leads to a simple system of differential equations. Alternatively, we can assume that the
time spent in the exposed state is always exactly #1, and the time spent in the infectious
state is exactly #,. A third approach is a hybrid, keeping the time in the exposed state
constant but making the time in the infectious state follow an exponential distribution.

Of course, none of the three methods captures the actual dynamics. In reality,
the length of the incubation period is roughly bell-shaped, as is the length of the
infectious period. See Fig. 1. Approximating this bell with an exponential distribution
introduces a substantial chance of almost immediate retransmission of the disease,
since the peak of the distribution is at # = 0. This is unrealistic, as there is a minimum
length of time between getting infected and having a big enough viral load to infect
others. However, replacing the bell with a spike at the mean length is also unrealistic,
as it suppresses all variation among disease carriers. There is also the question of
symptomatic versus asymptomatic carriers. This is partially addressed in the hybrid
model, which incorporates a minimum retransmission time while recognizing that
some people (especially those who are asymptomatic or who defy orders to isolate
themselves) may be infectious for much longer than others.

In the early stages of an outbreak, when almost all individuals are susceptible, SEIR
models (and more complicated extensions of these models) are all linear. Linearity
implies that the total number of infected individuals grows exponentially as e’/”, where
7 is the doubling time of the growth divided by In(2) ~ 0.69. Since all models lead to
the same qualitative behavior, 7 is the only quantity that can be directly deduced from
the data. The subsequent step of inferring R from t then depends on which model we
choose and which parameters we choose for that model.
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Dependence of R on model and latency
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Fig.2 Estimated values of R for all three models as a function of the average latency ¢, assuming t = 3.5
andt, = 7—1t1. While R greatly increases with latency in the fixed length and hybrid models, the exponential

model behaves differently. The exponential model allows a few exposed individuals to reinfect others very
quickly and these rapid transmitters drive much of the growth of the outbreak

2.2 Estimating R

Here are the formulas for R as a function of ¢, t, and 7 for each of the three versions
of the SEIR model. When the duration of the Exposed and Infectious states are both
treated as exponential random variables,

t 15 1t
R=1+—+24 2. 2)
T T T
When both durations are fixed,
(t2/T)e"/"
= 3)
1 —e 2/t
Finally, in the hybrid model
15
R= (1+_2> en/e. @
T

These formulas are derived in the next section.

To illustrate how estimates of R depend on the latency and the choice of model,
we consider the rapid growth of COVID-19 in the USA in March 2020. The 100-fold
growth over 16 days corresponds to T = 3.5, and the extended incubation period of
a week means that 1, = 7 — t1. Figure 2 gives the computed values of R under these
assumptions as a function of the latency ¢;.
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Note how the inferred value of R depends on the average latency ¢, and also how
it depends on the seemingly innocuous choice of whether to make the lengths of the
Exposed and Infectious stages fixed or random. While it is easy to make a good case
for each variant of the SEIR model, they give vastly different results, especially for
larger values of f1! Without a clear scientific justification for choosing one model
over the other two, we must acknowledge that all of our estimates of R are extremely
uncertain.

The exponential model behaves differently from the other models because it
involves some individuals becoming infectious very quickly, even when the average
latency is large, and involves some of those individuals infecting others very quickly
as well. These rapid transmitters do not account for the majority of the transmissions,
which still take a total of 7 days on average, but they have an oversized effect on the
growth rate. The number of these rapid transmitters is maximized when either #; is
small or #, is small, which explains why the estimated value of R reaches its peak
when #; = f, = 3.5 days.

The lesson is that when the minimum time from infection to reinfection goes up,
so does the estimated value of R. There is a simple explanation for this. If = 3.5,
then the outbreak doubles every 2.4 days, quadruples every 4.8 days, and multiplies
by 8 every 7.2 days. If it takes at least 4.8 days for an exposed individual to infect
somebody else, then R must be at least 4 to account for the quadrupling in that time;
if the time interval is always at least 7.2 days, then R must be at least 8.

2.3 Extent of the Epidemic

We next consider the dependence on R of the fraction x of the population that is
eventually exposed to the disease. As noted earlier, and as proved in Sect. 3, x is the
nonzero solution to the equation

| —x = e Ry, 5)

This equation applies to the SIR model, to all three versions of the SEIR model, and
to compartmentalized extensions of the SEIR model.

The dependence of x on R is shown in Fig.3. When R is as small as 1.15, x is
already at 25%, and when R = 1.7, x is already about 70%. When studies such as
(Murray 2020) said in March 2020 that 25-70% of the population would be infected
in the absence of control measures, they implicitly assumed that R was only between
1.15 and 1.7. Under that assumption, moderate efforts should have been enough to
bring R below 1 and suppress the outbreak. However, if R is actually larger, and if our
best long-term social distancing efforts don’t bring R below 2, then the vast majority
of the population will be infected in the first full wave of the pandemic. In that case the
resulting herd immunity would be impressive, but almost no vulnerable people would
be left to benefit from it.

Finally, the value of R affects the possibility of having multiple waves of the pan-
demic. Suppose that extreme interventions are sufficient to contain the first wave of
the pandemic, during which a fraction x of the population is infected, and then society
re-opens and R returns to its pre-lockdown value. Unless
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Extent of pandemic as a function of R
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Fig.3 The percentage of the population that eventually becomes infected as a function of the reproduction
number R. Note that this percentage is already over 40% when R = 1.3, and rapidly approaches 100% as
R increases. The lower curveis x = 1 — %, the threshold to achieve herd immunity and avoid successive
waves of infection

1
1——, 6
x> R (6)

successive outbreaks are extremely likely to occur.

3 Mathematical Derivations

All three versions of the SEIR model (with no further compartmentalization) have the
same general structure.

1. Susceptibles turn into Exposed at a rate equal to BS(¢)I(¢), where S is a trans-
mission coefficient. In the early stages of the pandemic, S(¢) is approximately the
entire population 7', so the number of Susceptibles who become Exposed, per unit
time, is approximately BT I(¢).

2. Exposed individuals become Infectious in an average of #; days. In the exponential
version, the number of Exposed who become Infectious per unit time is o E(¢),
where o = 1/1;. In the fixed-length version, the rate at which Exposed become
Infectious today is exactly equal to the rate at which they became Exposed #; days
ago, namely BT I(t — t1).

3. Infectious individuals are Removed in an average of #, days. In the exponential
version and the hybrid version, the number of Infectious who are Removed per
unit time is y I (), where y = 1/1;. In the fixed-length version, the rate at which
Infectious are Removed today is exactly equal to the rate at which they became
Infectious 7, days ago, which in turn is the rate at which they were Exposed #| + 2
days ago, namely BT I(t — t; — t2).
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4. The reproduction ratio is R = 8T, so we can replace ST with R/t; or Ry.

3.1 Exponential Incubation Times

In the purely exponential model, these considerations yield the following system of
differential equations:

ds
— = —BSOI1(1),

dt

dE _ St E(t

d_;_ﬂ 1) —aE(),

dl— E 1 7
Pty @) —yIl@). (N

At the beginning of the outbreak BS(¢) &~ BT = Ry, resulting in the linear system of

differential equations
i E@)\ (—a Ry\ [(E() )
de\1®)) \e —y)\I®O)

The exponential rate of growth (1/7) is the positive eigenvalue of the matrix on the
right-hand side. Since the sum of the two eigenvalues is the trace, namely —(« + y),
the other eigenvalue must be — (% + o+ y). The determinant of the matrix is —(R —
1)ay. Since the determinant is the product of the two eigenvalues, we have

-1 /1
—(R—l)ay=—(—+a+y>
T T

1 1 /1 1

3 +-|—-—+-

ayt T \a Yy
1t 1 +1n

=2 , 9
i (€

R—-1=

which is equivalent to Eq. (2).

3.2 Fixed Incubation Times

In the model with fixed incubation times, Exposed become Infected at rate RI(t —
t1)/t2, while Infected are Removed at rate RI(t — t; — t2) /12, SO

dl(t)—RIt t I(t —1t 15 10
S = U = 1= =) (10)

Plugging in I(f) = Ce'/™, where C is an unknown constant, we obtain

t
get/r _ CR_e/T (e—n/r _ e—(t1+tz)/r)

T 15
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_R (e—n/r _ e—(n+t2)/r)
15}

Q| =

5]
Tt (e—tl/r — e—(t1+t2)/r)

_ (/)T
l—en/t

, (1D
which is Eq. (3).

3.3 The Hybrid Model

Here we treat the length of the exposed stage as fixed and the length of the infectious
stage as random. The rate at which Exposed become Infectious is Ry I(t — t1) =

RI(t — t1)/1p, but the rate at which Infectious individuals are removed is yI(t) =
1(t)/t>. This gives the differential equation

di(t) R 1(2)
—=—I(t—1n)— —=. 12
ar . (t—11) . (12)
Plugging in I(r) = Ce'/" as before, and dividing both sides by Ce'/, gives
l — Ee_tl/r — l
T 15 15
2= Rent
T
t
R= <_2 + 1) e/t (13)
T

which is Eq. (4).

3.4 How Many People Will Eventually Get Sick?

Here we consider what fraction of people will get sick before the pandemic ends.
We will derive Eq. (1) twice, first for the three versions of the SEIR model that we
previously considered, and then for more general compartmental models.

In the SEIR model, the pandemic only subsides when it starts to run out of Sus-
ceptibles to infect, so for this part of the calculation we do nor make the simplifying
approximation that S(z) ~ T. Instead we look at the exact equation for S, which is
the same in all three versions of the model.

ds()

4 = —BS()I(1). (14)
Dividing both sides by S(¢) gives

dIn(S(1)) B

—a = BI(1). (15)
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S(0c0)
< 50) ) ﬂ/ I(r)dt. (16)

Let x be the fraction of people who eventually get sick. Since S(0) is essentially T’
(minus a few infected individuals who seed the outbreak), and since S(c0) = (1—x)T,
the left-hand side of Eq. (16) is In(1 — x). Meanwhile, the right-hand side is — > T x,
since the number of people who get sick is x 7', and since each sick person is infectious
for an average of #, days. However, ftoT = BT /y = R, so we have

Integrating then gives

In(1 — x) = —Rx,
1 —x =e R, (17)

which is Eq. (1).
Next we consider a general compartmentalized model, with individuals who have

been infected divided into n categories I, ..., I, with infectivities By, ..., B,, with
average durations sy, . . . §,, and with probabilities py, ..., p, of aninfected individual
eventually landing in each compartment. The average durations sy, ..., s, are fixed,

but we make no additional assumptions about the distribution of times spent in each
compartment. Some individuals may spend time in more than one compartment (e.g.,
pre-symptomatic followed by symptomatic), so the sum of the p;’s may be greater
than 1.

The equations for S and In(S) are then

dS(t)

dln(S(t))
o ~4m2mu) —Z@uo (18)

Integrating as before, we have

S(00)
In I;(¢) de. 19
(5a7) - § m/lo (19)
Setting S(oo) = (1 — x)T, making the approximation S(0) & T and exponentiating

then gives
n 0
1 —x =exp —Zﬂ,-/ Lit)dt ). (20)
i=1 Y0

Meanwhile, the total number of people who get infected is x T, of which a fraction p;
wind up in compartment i, and spend an average time of s; there, so

9]
/ Ii(t)dr = pisixT. 20
0
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This then gives

1 —x =exp (—x Z p,-s,ﬂﬁ) . (22)

i=1

We then compute R, which is defined as the average transmission per infected
individual toward the beginning of the outbreak, when S & T. Each person in com-
partment i infects others at a rate 8; T for an average time s;, for an average of 8;s; T
newly infected people in all. Since each infected person has a probability p; of landing
in compartment i, each infected person infects an average of

R=Y) " pisihiT (23)
i=1

others. But this is precisely the expression appearing on the right-hand side of Eq. (22),
SO
1 —x=e &, (24)

exactly as before. In fact, our results for the SEIR model can be viewed as a special
case of this with just two compartments, namely the Exposed and Infectious states,
with 81 = 0, s; = 1 and p; = 1 for the Exposed state and 8, = B, s2 = t» and
p2 = 1 for the Infectious state.

3.5 Multiple Waves and Herd Immunity

To understand Eq. (6), imagine that R = 4, so each infected person has contact, of
the sort that spreads the virus, with an average of 4 other people. If more than 3/4 of
the population has already had the virus, then fewer than one of those four people (on
average) will get infected. Since each infected individual actually infects fewer than
one new person (on average), any local outbreak will quickly peter out.

More generally, if a fraction x of the population is already immune and a fraction
1—x is still Susceptible, the average number of new people that each infected individual
actually infects is only R(1 — x), not R. Aslong as R(1 —x) < 1, or equivalently x >
1— %, local outbreaks cannot get any traction and cannot spread into the population
at large. This well-known phenomenon, where immunity in part of the population
protects the rest, is called “herd immunity”.

4 Conclusions

All models for understanding the future trajectory of the COVID-19 pandemic depend
on knowing how contagious the disease is, that is, on estimating Ro or R. This is
true both for complicated models involving many different sorts of people and many
different stages of disease progression, as well as for simple models such as SEIR.
Unfortunately, there is no direct way to measure R. All we can do is measure the time
scale T of the exponential growth of the pandemic and try to estimate R from 7.
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Such estimates depend strongly on the details of the model used. Eventually, the
correct parameters and the most accurate models will be revealed through clinical
studies of the actual distribution of the different stages of infection and especially by
tracing individual contacts to determine when infectivity starts. Until those studies are
completed for COVID-19, every projection will involve choosing parameters through
educated guesswork.

Even in the simple SEIR models considered in this paper, changing the parameters
of the model can change the estimated value of R dramatically. This was illustrated
in the example with T = 3.5 days and #; 4 #, = 7 days. In the fixed length model the
estimate for R ranged from 2.3 to 7.4 and the hybrid model was almost as sensitive.
In all three models, having a latency of just one day (1 = 1) increased R by 0.5 or
more compared to having no latency at all (r; = 0). Working with more realistic (and
more complicated) models only makes the problem of model dependence worse. The
more parameters there are, the more the final answers depend on the assumptions.

Most of the highly cited early estimates of R have been based either on models
without latency, on data from Wuhan that shows much slower growth than seen in
Europe and the USA, or both. As such, these estimates are likely to have substantially
underestimated the true value of R in the USA and perhaps elsewhere.

The success of any suppression strategy boils down to one thing: getting R below
1. Strategies that could work if Ry is between 1.3 and 2.5 might well fail if the actual
value of Ry is larger. Meanwhile, mitigation strategies depend on isolating the most
vulnerable members of society until the first wave of the pandemic has subsided. The
amount of herd immunity required to make that work also depends on R. It won’t be
safe for the vulnerable to go out until the first wave of the pandemic has subsided and
a fractionx > 1 — % of the population has developed immunity through exposure or
vaccination.

If we cannot get R below 1, then a substantial fraction of the population will
get infected. That fraction x is easily determined from the simple formula 1 — x =
e R*_ Unlike the estimates for R, this formula is robust, and applies to complicated
compartmental models as well as to simple SIR and SEIR models. Given the usual
assumptions implicit in compartmental models, this formula applies whenever

— The underlying dynamics of transmission and recovery do not change over time.
That is, the parameters B1, ..., Bn, S1s ..., Sn, P15 - - -, Pn Of the system are con-
stant, and

— The only nonlinearity in the dynamics comes from the transition from Susceptible
to some of the other compartments, which happen at a rate proportional to S times
a weighted sum of the I;’s.
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