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Abstract
With advances in computing, agent-basedmodels (ABMs) have become a feasible and
appealing tool to study biological systems. ABMs are seeing increased incorporation
into both the biology andmathematics classrooms as powerful modeling tools to study
processes involving substantial amounts of stochasticity, nonlinear interactions, and/or
heterogeneous spatial structures. Here we present a brief synopsis of the agent-based
modeling approach with an emphasis on its use to simulate biological systems, and
provide a discussion of its role and limitations in both the biology and mathematics
classrooms.
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1 Introduction

Agent-based models (ABMs) are computational structures in which system-level
(macro) behavior is generated by the (micro) behavior of individual agents, whichmay
be persons, cells, molecules or any other discrete quantities. Typical ABMs contain
three elements: agents, an environment, and rules governing each agent’s behavior and
its local interactions with other agents and with the environment. Decades of advance-
ment in computer power has made agent-based modeling a feasible and appealing tool
to study a variety of complex and dynamic systems, especially within the life sciences.
As the use of ABMs in research has grown, so too has the inclusion of ABMs in life
science and mathematical modeling courses as a means of exploring and predicting
how individual-level behavior and interactions among individuals lead to system-level
observable patterns. ABMs are now one of the many types of models students study-
ing the life sciences or applied mathematics should encounter in their undergraduate
education.

Prior to the introduction of ABMs into biological and applied mathematics curric-
ula, the clear model format of choice was the ordinary differential equation (ODE), or
maybe a pair of them; occasionally, discrete difference equations and/or matrix equa-
tions would also be introduced. Exponential growth and decay were ready examples,
paving the way for extensions of the exponential growth process toward a carrying
capacity in the form of the logistic growth process (Voit 2020). This logistic process
was easily generalized to two populations, which were at first independent, but then
allowed to interact. Depending on these interactions, the result was a pair of two popu-
lations competing for the same resource or a simple predator–prey model in the format
of a two-variable Lotka–Volterra system.

Although ODEs and any other types of “Diff-E-Qs” are a priori dreaded by almost
all but mathematicians and physicists, the concept of an ODE, if adequately explained,
becomes quite intuitive. For instance, onemay ease a novice into theworld of ODEs by
considering changes in the water levelW of a lake over time (Ayalew 2019). Whereas
these dynamics are difficult to formulate as an explicit function W (t), newcomers
readily understand that changes in the water level depend on influxes from tributaries,
rain, and other sources on the supply side, and on effluxes, evaporation and water
utilization on the side of reducing the amount of water. Just putting these components
into an equation leads directly to a differential equation of the system (Weisstein 2011).
On the left side, one finds the change over time as dW/dt , and this change is driven,
on the right-hand side, by a sum of augmenting and diminishing processes.

There is hardly a limit to what can be achieved with ODEs in biology, with the
very important exception of processes that have genuine spatial features. And while
it is not difficult to ease a biology undergraduate into ordinary differential equations,
the same is not necessarily true for partial differential equations (PDEs). However,
spatial phenomena in biology seldom occur in homogeneous conditions. As examples,
consider the formation of tumors with angiogenesis and necrosis; the local patterns
of cell-to-cell signaling that governs the embryonic development; the spread of the
red fire ant (Solenopsis invicta) from Mobile, AL, its alleged port of entry into the
USA, all along the Gulf and East Coasts; or the population size and dynamics of
the Santa Cruz island fox (Urocyon littoralis santacruzae) being driven by territory
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size which in turn depends on local vegetation (Scott 2019). Until relatively recently,
the conundrum of space was often dealt with in the final chapter of mathematical
modeling in biology. A sea change came with the development of ABMs, which are
natural formats for both stochasticity and spatial phenomena. By their nature, these
models are computationally expensive, which initially prevented their use in most
classrooms. However, this situation has obviously changed. As the Bio2010 Report
(2003) stated: “Computer use is a fact of life of all modern life scientists. Exposure
during the early years of their undergraduate careers will help life science students use
current computer methods and learn how to exploit emerging computer technologies
as they arise.”

Classroom use of ABMs has thus become not just logistically feasible, but also very
appealing for demonstrating spatial dynamics in a wide range of biological systems
(Kottonau 2011; Triulzi & Pyka 2011; Shiflet 2013; Pinder 2013). Supporting this
appeal is a repertoire of software tools, such as SimBio and NetLogo (see Sect. 3), that
contain predefined examples and require minimal computer coding skills for model
analysis. Here, we present a brief synopsis and history of this modeling approach with
emphasis on life science applications (Sect. 2), describe some of the software tools
most frequently used in the classroom (Sect. 3), and then focus on some of its roles
and limitations in the classroom (Sect. 4).

2 Background, Rationale, and Pitfalls of ABMs

The Origins of Agent-Based Modeling. The true origins of any method or procedure
are seldom identifiable in an unambiguous manner. In the case of agent-based model-
ing, one could think of Craig Reynolds’ 1987 seminal article on the formation of bird
flocks (with the agents denoted as boids, short for “bird-oid object”), which he was
able to represent with just three rules of behavior: (1) avoid collisions with nearby
birds; (2) attempt to match the velocity of nearby birds; and (3) attempt to stay close
to nearby birds in the flock (Reynolds 1987; Gooding 2019). The result of simula-
tions with this simple ABM was very realistic-looking flocking behavior. Particularly
intriguing in this study was the fact that there was no leader or a global organizing
principle. Instead, the virtual birds were truly individual agents that self-organized
locally, thereby generating a globally coherent flight pattern.

While Reynolds’ work was a milestone, key concepts leading to modern ABMs can
be found much earlier. One notable contributor of ideas was Nobel laureate Enrico
Fermi, who usedmechanical additionmachines to generate probabilities for stochastic
models with which he solved otherwise unwieldy problems (Gooding 2019). This
procedure was an early form of the method of a Monte Carlo simulation, which was
later independently developed and published by Stanislav Ulam, like Fermi a member
of the Manhattan Project (Metropolis & Ulam 1949; Metropolis 1987). Another very
important contribution to the budding development of ABMs was the Turing machine
(Turing 1936), which is a mathematical model of computation that uses a set of rules
to manipulate symbols in discrete cells on an infinite tape. Much closer to ABMs
were ideas of Ulam, who was fascinated by the “automatic” emergence of patterns
in two-dimensional games with very simple rules (Ulam 1950; Metropolis 1987).
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Together with the new concept of game theory (von Neumann & Morgenstern 1944),
all these ideas were developed into the concept of cellular automata, which are direct
predecessors of ABMs (Ulam 1950; Ulametal 1947; von Neumann & Morgenstern
1944). A very appealing implementation of a cellular automaton was John Conway’s
famous Game of Life (Gardner 1970).

The social sciences adopted computational methods in the 1960s for microanalytic
simulations or, simply, micro-simulations (Gilbert & Troitzsch 2005; Gooding 2019).
In contrast to today’s ABMs, which use simple rules to recreate observed or unknown
patterns, the agents in the original microsimulations acted according to empirical data
(Bae 2016). The advantage of this strategy is that model analysis can reveal systemic
behaviors under different realistic scenarios (Gooding 2019). A seminal paper in this
context described generic segregation processes (Schelling 1971). Other agent-based
modeling work in sociology and economics was gleaned from the biological ABM
work of Smith (1982), who formulated Darwin’s ideas of evolution as a computer
simulation. This idea inspired Nelson & Winter to apply similar concepts and imple-
mentations to market studies, where firms were modeled like animals that followed
specific routines. In particular, the firms were in competition, and the market weeded
out bad routines while rewarding the fittest. Nelson & Winter’s influential book An
Evolutionary Theory of Economic Change (Nelson &Winter 1982) strongly proposed
the use of computer simulations, which today would fall within the scope of agent-
based modeling. Their ideas led to a school of thought called evolutionary economics
(Hanappi 2017). An early and particularly influential paper in this context tried to shed
light on the stock market (Palmer 1994).

Initially, ABMs of artificial life simulated simple homogeneous agents that acted
like huge colonies of ants that could just move and eat in the pursuit of food. Somewhat
more sophisticated, economic simulations used as the main agent homo economicus,
a consistently rational human pursuing the optimization of some economic goal or
utility with exclusive self-interest (Persky 1995). Based on these humble beginnings,
sophistication in computing soon permitted heterogeneous agents and much more
complicated landscapes than before. The successes in economics were so tantalizing
that simulation studies eventually reached the most prestigious journals of economics
and the social sciences (Axtell 1996; Epstein & Axtell 1996; Geanakoplos 2012;
Hanappi 2017). Modern ABMs in economics are capable of capturing much of the
complexity of macroeconomic systems (e.g., Caiani (2016)).

Following directly the principles of cellular automata, Kauffman studied large grids
with elements that changed features in a binary fashion (Kauffman 1993). For instance,
a white agent could turn black, and this shift occurred according to Boolean rules that
usually involved some or all neighboring grid points. Kauffman was able to demon-
strate the emergence of complex patterns, such as oscillations and percolation. Starting
in the 1980, Wolfram performed systematic studies of cellular automata, which led to
his influential 2002 book A New Kind of Science (Wolfram 2002) that assigns cellular
automata a wide range of applications in a variety of fields.

Biological Applications of Agent-Based Modeling. ABMs have been constructed to
study a wide range of biological phenomenon. Numerous reviews and research efforts
using ABMs have focused on specific biomedical systems. Issues of gene expression
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were modeled by Thomas (2019). Morphogenetic and developmental processes were
discussed in Grant (2006), Robertson (2007), Thorne (2007), Tang (2011), and Glen
(2019).Models of tissuemechanics andmicrovasculature are captured inBailey (2007)
and van Liedekerke (2015). Inflammation, wound healing and immune responses were
addressed in An (2004), An (2009), Chavali (2008), and Castiglione & Celada (2015).
Other authors (Wang 2015; Segovia 2004; Cisse 2013) used ABMs to model cancer
growth, tuberculosis, and schistosomiasis, respectively. Lardon and colleagues (Lar-
don 2011) used ABMs to analyze biofilm dynamics. Butler and colleagues described
the use of ABMs in pharmacology (Butler 2015). ABMs studying multicellular sys-
tems provide a unique capability to examine interactions and feedback loops across
the different hierarchies of the system (Hellweger 2016).

Reviews of ABMs in the context of ecology, environmental management, and land
use include (Bousquet 2004; Matthews 2007; Grimm&Railsback 2005; Caplat 2008;
DeAngelis & Diaz 2019). In some applications, interventions or treatments were
addressed and therefore required the adaptation of agents to changing scenarios (Berry
2002).

ABMs have also been used to simulate epidemics with analyses examining the
impact of implemented or potential intervention measures (e.g., quarantining/physical
distancing, mask wearing, and vaccination) (Mniszewski 2013; Perez & Dragicevic
2009; Tracy 2018). Visual representations of epidemiological ABMs have even been
used by news outlets during the COVID-19 pandemic to help explain to the public
how various intervention methods change the shape of an epidemic (i.e., “flatten the
curve) or the basic reproduction number (R0) of an epidemic; see, for example, Fox
(2020) and Stevens (2020).

Rationale & Pitfalls of ABMs. The two most frequent goals of an ABM analysis are
(1) the elucidation and explanation of emergent behaviors of a complex system and (2)
the inference of rules that govern the actions of the agents and lead to these emerging
system behaviors. This type of inference is based on large numbers of simulations,
i.e., replicate experiments with the ABM using the same assumptions and parameters,
and different experiments over which assumptions or parameter values are system-
atically changed. Simulations of ABMs essentially always yield different outcomes,
because movements, actions and interactions of agents with each other or with the
environment are stochastic events. The inference of rules from simulation results is an
abductive process (Voit 2019) that is challenging, because one can easily demonstrate
that different rule sets may lead to the emergence of the same systemic behaviors, and
because even numerous simulations seldom cover the entire repertoire of a system’s
possible responses. In fact, Hanappi (2017) warned: “assumptions onmicroagents that
play the role of axioms from which the aggregate patterns are derived need not—and
indeed never should—be the end of ABM research.”

Arguably the greatest appeal of ABMs, and at the same time a treacherous pitfall, is
their enormous flexibility, which is attributatble to the fact that any number of rules can
be imposed on the agents, and that the environment may be very simple but can also be
exceedingly complicated. For instance, the environment may exhibit gradients or even
different individually programmable patches (Barth 2012; Gooding 2019) including
importing geographic information systems (GIS) data to define the characteristics of
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each patch (see Scott (2019) for an example with a detailed explanation of how GIS
data are incorporated into an ABM). In particular, the repeated addition of new ele-
ments to a model can quickly increase the complexity of the model, thereby possibly
distracting from the core drivers of the system’s behavior, obscuring the importance of
each of the rules the agentsmust follow, and generallymaking interpretations of results
more difficult. Related to this option of adding elements is the critique that ABMs can
be ‘tuned’ by researchers to create outcomes that support the researcher’s narrative
(Gooding 2019). To counteract increases in complexity, some authors have begun to
develop methods of model reduction that retain the core features of a model, but elim-
inate unnecessary details (Zou 2012). Another critique of ABMs is that simulations
are not readily reproducible, because the rules can be complicated and stochasticity
rarely repeats the same model trajectories. A strategy to increase the reproducibility
of ABMs was the establishment of protocols for the standardized design and analysis
of ABMs (Lorek & Sonnenschein 1999; Grimm 2006, 2010; Heard 2015).

Support ofABMs from theScientificCommunity.Several introductory tutorials describe
the features of ABMs, including Bonabeau (2002), Matthews (2007), Macal (2010),
Heath (2010), Niazi & Hussain (2011), Heard (2015), and Weimer (2016). Generic
reviews of ABMs include Gu & Blackmore (2015), Gooding (2019), Heath (2009),
Grimm (2010), and Hanappi (2017). In a slight extension of ABMs, Lattilä (2010) and
Cisse (2013) described hybrid simulations involving ABMs and dynamic systems, and
Heard (2015) discussed statistical methods of ABM analysis. These introductory tuto-
rials and reviews, however, are typically not designed for undergraduates with limited
mathematical or computational modeling experience. The scientific community has
also worked hard on facilitating the use of ABMs by offering software like NetLogo,
Swarm, RePast, and Mason. Summaries and evaluations of some of the currently per-
tinent software are available in Berryman (2008) and Abar (2017), and NetLogo is
described more fully in Sect. 3.

3 Software Tools for the Classroom

A variety of software tools can be used to construct, simulate, and analyze ABMs.
When ABMs are taught or used in biology or mathematics courses, software should be
chosen to align with pedagogical objectives. Note that the pedagogy of ABMs in life
science and mathematical modeling courses is discussed in more detail in Sect. 4. In
this section, we highlight some of the most used software packages in an educational
setting.

EcoBeaker & SimBio. EcoBeaker was developed by Eli Meir and first released in 1996
as software that ran simulated experiments designed to explore ecological principles. In
1998, SimBio (Meir 1998) was founded (then called BeakerWare) for the release of the
second version of EcoBeaker and has since grown to include simulated experiments in
evolution, cell biology, genetics, and neurobiology.Many of the simulated experiments
in the SimBio Virtual Labs software are agent-based simulations. In a SimBio Virtual
Lab, the user interacts with a graphical interface portraying the agents (individuals in
the experiment) and sometimes their environment,which canbemanipulated in various
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ways for different experimental designs. The graphical interface also contains relevant
graphs which are updated as the simulated experiment runs. EcoBeaker and SimBio
Virtual Labs are examples of software where the focus is on experimental design and
the use of simulation to understand biological concepts. The user never interfaces with
the code and does not need to understand the underlying algorithms which produce
the simulation. SimBio Virtual Labs are used in many biology classrooms across
the United States. The software is priced per student (currently $6/lab/student or
$49/student for unlimited labs).

NetLogo. The agent-based modeling environment NetLogo (Wilensky 1999) was
developed by Uri Wilensky and first released in 1999. NetLogo is free and continues
to be improved and updated (the software is currently on version 6). Additionally, a
simplified version of NetLogo can be run through aWeb browser at http://netlogoweb.
org/. NetLogo is a programming platform allowing the implementation of any ABM
a user might design. As such, its user interface includes a tab where ABM code is
written in the NetLogo programming language, and a tab for the user to view a visu-
alization of the ABM and user specified outputs as the ABM is simulated. Textbooks
by Railsback & Grimm (2012) and Wilensky & Rand (2015) provide introductions to
the NetLogo prgramming languages as well as providing a thorough overview of the
algorithmic structures of ABMs.

Since its initial development, NetLogo has built up an extensive model library of
ABMs. Additionally, over the years, faculty at various institutions have developed
ABMmodules through NetLogo that allow students to explore a variety of biological
phenomenon. For example, the Virtual Biology Lab (Jones 2016) has created 20 dif-
ferent virtual laboratory modules using NetLogo through a web browser for exploring
topics in ecology, evolution, and cell biology. The Virtual Biology Labs are similar in
scope to the EcoBeaker and SimBio labs. Another example is InfectionsOnNeTWorks
(IONTW) which provides an ABM framework and teaching modules for examining
aspects of disease dynamics on various network structures (Just 2015a, b, c).

4 Pedagogy of ABMs in Life Science &MathModeling Courses

Oneof the responses to theBio2010Report (2003) has been apush to create biocalculus
courses or to insert more biological application examples and projects within tradi-
tional calculus courses. Indeed, studies have shown that including applications from
the life sciences in classic math courses like calculus leads to students gaining equiv-
alent or better conceptual knowledge than from similar courses without life science
applications (Comar 2008; Eaton & Highlander 2017). However, many mathematics
and biology educators have pointed out that the subset of mathematics applicable to
biology extends well beyond calculus, and undergraduates (especially those majoring
in biology) should be exposed to a variety of mathematical models and methods of
analysis across biology andmathematics courses (Bressoud 2004;Gross 2004; Robeva
& Laubenbacher 2009).

The only prerequisites for analyzing the simulations of an ABM are a basic under-
standing of the underlying biology and, in some instances, knowledge of how to
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perform basic statistical calculations or generate graphical representations of results.
Many pre-built ABMs in SimBio Virtual Labs and NetLogo generate relevant graphs
and/or produce spreadsheets or text files of the relevant data. Thus, a student can utilize
ABMs in life science courses without having to learn how to implement (by writing
code) an ABM.

The prerequisites for learning how to implement ABMs are not as extensive as for
other forms of mathematical models. The most essential prerequisite is some exposure
to the fundamentals of computer programming such as understanding loop structures
and conditional statements, implementing stochastic processes, and understanding
how the order of executed operations within a program impacts the program’s output.
Agent-based modeling software like NetLogo (Wilensky 1999) keeps model imple-
mentation and analysis relatively simple by providing built-in model visualization
tools and automatically randomizing the order in which agents execute programmed
operations.

4.1 Using ABMs in Life Science Courses

Due to their appealing visual representation, ABMs can easily be used in the classroom
to demonstrate biological processes ranging from chemical reactions to interactions
among species, as if the model were simply an animation. However, using ABMs in
thisway ismuch like using a cell phone to hammer nails (q.v., Theobald (2004)): It may
work in the desired fashion, but represents an utter waste of the tool’s real potential.
Adding just onemore step, the collection ofmodel-generated data, transforms a passive
learning experience into an active one. Students can be asked to calculate means and
variances, graph relationships between variables, discuss the sample size needed for
reliable results, and generate quantitative predictions under different hypotheses, all in
the context of a specific biological question. This can be done even in a large classroom
with only a single, instructor-controlled computer, bridging the gap between lecture
and lab.

If students have access to individual computers, much more is possible. Either
individually or in small groups, students can useABMs to collect and analyze their own
data. Free file-sharing resources such as GoogleDocs make it easy to pool data across
many groups, thereby crowd-sourcing problems that would be too large for any one
group to handle on their own. In smaller classes and lab sections, individuals or groups
can be assigned to model different scenarios (e.g., the interaction effects between
different parameters), prompting discussions of the most appropriate parameter values
andmodel settings. Suchmodels can even be extended intominiature research projects.
For example, in a unit on community ecology, students might be assigned a question
about two interacting species, then use online resources to find relevant information
and parameter estimates, design and conduct a series of model runs, analyze their data
using simple statistical techniques, and present their findings to the class.

Although ABMs can be used to simulate almost any biological process, meaningful
exploration of a model typically requires a substantial commitment of class time and
instructor engagement. As a result, except in modeling courses, it is seldom practical
to incorporate ABMs into every lesson plan. In our experience, their educational value
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is highest for studying processes involving (a) substantial amounts of stochasticity,
(b) nonlinear interactions, and/or (c) a defined spatial structure.

4.2 Using ABMs in MathModeling Courses

The inclusion of ABMs in math courses generally comes in two different modes: (1)
ABMs are taught as one modeling technique in a course covering multiple modeling
techniques, and (2) the construction and analysis of ABMs are taught in a course
where ABMs are the only type of modeling being used. However, due to the minimal
prerequisites for learning agent-based modeling, both types of courses can potentially
be offered with one or no prerequisite courses. Bodine (2018) provides an example
of a course where ABMs are taught as one type of discrete-time modeling technique
in an undergraduate course designed for biology, mathematics, biomathematics, and
environmental science majors that has no prerequisites beyond high-school algebra.
An example of a course where ABMs are the only type of modeling being used is
given by Bodine (2019); this course has only a single prerequisite: either a prior math
modeling course which introduces basic computer programming or an introduction to
computer science course.

The use of biological applications in teaching mathematical modeling (includ-
ing modeling with ABMs) is often viewed as having a lower entry point with less
new vocabulary overhead than other types of applications (e.g., those from physics,
chemistry, or economics). In particular, models of population dynamics, even those
involving interactions between multiple subpopulations or different species, usually
do not require any new vocabulary for most students, which allows for a more imme-
diate focus on mechanisms of population change and impact of interactions between
individuals within the populations.

4.3 Challenges & Best Practices for Courses Using/Teaching ABMs

Video Game vs. Scientific Process. In our experience, students sometimes react to
an ABM’s many controls and visual output by treating the model as a video game,
clicking buttons at random to see what entertaining patterns they can create. Other
students prefer to complete the exercise as quickly as possible by blindly following the
prescribed instructions. Neither of these approaches substantially engages students in
thinking about the question(s) underlying the model, different strategies for collecting
and analyzing data, or the model’s limitations.

To foster these higher-order cognitive skills, use of the ABM should be explicitly
framed as an example of the scientific process. This approach begins with a set of
initial observations and a specific biological question. For example, what manage-
ment practices would be most effective in controlling the invasive brown tree snake?
After familiarizing themselves with the biological system, students propose hypothe-
ses about the factors contributing to the snake’s success onGuam, suggestmanagement
strategies, and set model parameters that reflect their chosen strategy. Finally, they run
the model multiple times to collect data that allow them to measure their strategy’s
effectiveness. Under this pedagogical approach, ABMs become a vehicle for design-
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ing and conducting a miniature research project, enabling experiments that would not
otherwise be practical due to cost, logistics, or ethical considerations. The modeling
exercise can also reinforce lessons on how scientific knowledge is constructed and
tested (e.g., the three P’s of science, namely, problem posing, problem solving, and
peer persuasion (Watkins 1992)).

As part of this exercise, students should engage in the process of deciding how
best to collect, analyze, and present their data. For example, as part of the brown tree
snake project, students might be asked to explore the practical steps that other Pacific
islands could take to prevent invasions or eradicate invaders. One group of students
decides to focus on two different control measures: cargo checks of all inbound flights
and deployment of poison baits around airstrips. Following an overview of different
statistical approaches, the students determine that amultiple regression analysis would
best allow them to address their question. Allowed only a limited ‘budget’ of 30 model
runs, students settle on a factorial design using three treatment levels of cargo checks,
three levels of baiting, and three replicates of each combination. The students set up
a spreadsheet to record the data from each model run, graph their data in a scatter
plot, and use software such as Microsoft Excel’s Analysis ToolPak to conduct their
analysis.

A Model as a Caricature of the Real World. Students at early stages of their aca-
demic career often envision science as a collection of factual information and fixed
procedures. Students with this mindset may dismiss as useless any model that does
not incorporate every detail of a particular biological system. By contrast, scientists
recognize that models, whether mathematical, physical, or conceptual, are deliber-
ate simplifications that attempt to capture certain properties of a biological system
while ignoring others (Dahlquist 2017). For example, the standard epidemiological
SIR model (diagrammed in Fig. 1a) divides a population in three subpopulations (sus-
ceptible, infectious, and removed) while ignoring any potential heterogeneity within
each subpopulation (e.g., age, treatment status, groups at higher risk for transmission).

Students will need to engage in activities that frame the ABM as a hypothesis
about the organization and function of a specific biological system (Weisstein 2011).
After a description (and possible exploration) of the basic model, students can work
in groups to suggest additional processes and variables that seem relevant to under-
standing the system. They can then choose one or two of the factors that they consider
most important to addressing the question being asked. Finally, they should consider
how to modify the model to incorporate the chosen features. For example, a standard
epidemiological model divides the host population into susceptible, infectious, and
removed subpopulations, and studies the movement of individuals among these sub-
populations (Fig. 1a). A group of students decides to modify this model to track a
malarial epidemic. After discussing mortality rates, prevention and treatment options,
and genetic and age-related variation in host susceptibility, the students decide to
focus on incorporating vector transmission into their model. Through guided discus-
sion with the instructor, they realize that transmission now occurs in two directions:
from infected vectors to susceptible hosts and from infected hosts to uninfected vec-
tors. They therefore develop a schematic model (Fig. 1b) that depicts these revised
rules for each agent in the ABM. Even if the students do not actually build the corre-

123



Agent-Based Modeling and Simulation in Mathematics... Page 11 of 19   101 

S I R

(a) SIR Model

SH IH RH

SMIM

(b) Host-Vector SIR Model

Fig. 1 Diagram of compartmental models of disease dynamics where S, I , and R, susceptible, infectious,
and recovered, respectively, while the subscripts H and M represent humans and mosquitoes, respectively

sponding computational model, this exercise in extending a model to reflect specific
biological assumptions helps students understand the iterative process by which mod-
els are developed and the utility of even simple models to clarify key features of the
system’s behavior.

Algorithms vs. Equations. The concept of an equation is introduced fairly early in
mathematics education. In the United States, children can encounter simple alge-
braic equations in elementary school (Common Core 2019) and then continue to see
increasingly complex equations in math classes through college. Because of this long
exposure to equations, the use of functions and systems of equations to model systems
in the natural world feels “natural” or logical to students when they first encounter
differential equation models or matrix models. ABMs, on the other hand, can seem
confusing to students because they lack the ability to be expressed as an equation or set
of equations. An ABM is constructed as an algorithm describing when and how each
agent interacts with their local environment (which may include other agents). Often
these interactions are governed by stochastic processes, and thus “decisions” by agents
are made through the generation of random numbers. When first introducing students
to ABMs, it can be helpful to teach students how to read and construct computer
program flowcharts and to create a visual representation of what is occurring within
an algorithm or portion of an algorithm (see Bodine (2019) for example assignments
that utilize program flowchart construction). In life science classes where ABMs are
being analyzed but not constructed and implemented, a flow diagram can be a use-
ful tool for conveying the order processes occur in the model. Class discussions can
question whether the order of processes make biological sense, and whether there are
alternatives. In math modeling classes, the construction of flowcharts, even for simple
ABMs, can help students elucidate where decision points are within the code, and
what procedures are repeated through loop structures. The construction of flowcharts
as students progress to more complicated ABMs can help students rectify the order
of events in their implemented algorithm against the order in which events should
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be occurring biologically. Whether students are working with ABMs in life science
or math modeling classes, it is helpful for them to learn how to read and understand
flow diagrams as they are often included in research publications that use agent-based
modeling.

Describing an ABM. Much to the alarm of many math students beginning to develop
ABMs, the formal description of anABM requiresmore than just writing the computer
code. The standard method for describing ABMs in scientific publications, referred to
as the Overview, Design Concepts, and Details (ODD) Protocol (Grimm 2006, 2010;
Railsback & Grimm 2012), often requires more than one page to fully describe even
a simple ABM. This can make ABMs seem overwhelming to students as they first
begin to explore ABMs. In courses which teach the implementation and description of
ABMs, instructors should take care not to introduce the computer code implementation
simultaneous to themodel description via theODDprotocol.Note that the introductory
text on agent-based modeling by Railsback & Grimm (2012) does not introduce the
concept of the ODD protocol until Chapter 3, which comes after the introduction and
implementation (in NetLogo) of a simple ABM in Chapter 2. In the course materials
by Bodine (2019), the concept of the ODD protocol is introduced prior to Project 2,
but the students are not required to write their own ODD Protocol description until
the final project, once they have seen ODD descriptions for multiple models.

Model Implementation vs. the Modeling Cycle. Courses that aim to teach methods in
mathematical modeling often start with a discussion of the modeling cycle, which is
typically presented as a flow diagram showing the loop of taking a real world question,
representing it as a mathematical model, analyzing the model to address the question,
and then using the results to ask the next question or refine the original real world
question. Figure 2 shows an example of a modeling cycle diagram. In courses where
the mathematical models are encapsulated in one or a small handful of equations, the
time spent on representing the real world as a mathematical model (the green box
in Fig. 2) is relatively short. The construction of ABMs, however, can be a fairly
lengthy process, as ABMs are designed to simulate interactions between individuals
and the local environment. When students are in the middle of constructing their first
few ABMs, they often lose sight of where they are in the modeling cycle because the
model implementation becomes a cycle of its own; a cycle of writing bits of code,
testing the code to see if it runs and produces reasonable results, and repeating this
process to slowly add all the components needed for the full algorithm of the ABM.
As students are first learning agent-based modeling, they need to be reminded often
to pull back and view where they are in the modeling cycle; to see the flock for the
boids, as it were.

Model Validation. Within the modeling cycle, there is a smaller cycle of model vali-
dation (see dashed line in Fig. 2). In a course where students are first introduced to the
classic Lotka–Volterra predator-prey model, the students are usually first introduced
to a predator-prey data set (like the 200-year data set of Canadian lynx and snow-
shoe hare pelts purchased by the Hudson Bay Company (MacLulich 1937; Elton &
Nicholson 1942)), which shows the oscillating population densities of the predator
and prey populations. When the students then simulate the Lotka–Volterra model for
various parameter sets, they find that they are able to produce the same oscillating
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Fig. 2 Diagram of the modeling cycle. The time spent constructing and numerically implementing the
model of the real world (green node) can take more time if the model is an ABM than compared to other
types of mathematical models (Color figure online)

behavior of the predator and prey populations. This is a form of model validation,
and a model which did not display this distinctive trend seen in the data would be
considered invalid for that data set. A similar process must occur for validating ABMs
against observed biological patterns. However, in order to engage in this validation
process for ABMs, students must first understand how decisions of individual agents
and interactions between neighboring agents can lead to system-level observable pat-
terns, a phenomenon referred to as “emergence” or the “emergent properties” of an
ABM. The classic ABM example for easily identifying an emergent property is a
flocking example (a stock example of flocking exists in the NetLogo models library,
and is explored in Chapter 8 of the ABM textbook by Railsback & Grimm (2012)).

The concept of an emergent property can take a little while for students to fully
understand. By definition, it is an observable outcome that the system was not specifi-
cally programmed to produced. In particular, it is not a summation of individual-level
characteristics, and is typically not easily predicted from the behaviors and character-
istics of the agents. For example, a variation of the Reynolds (1987) flocking model
is included in the NetLogo Library and is explored in Railsback & Grimm (2012,
Chapter 8). In the model, each agent moves based on three rules:

1. Separate: Maintain a minimum distance from nearby agents
2. Align: Move in the same direction as nearby agents
3. Cohere: Move closer to nearby agents

where all agents move at the same speed and different schemes for determining who is
a nearby agent can be used. Additionally, there are model parameters for the minimum
distance to be maintained between agents, and the degree to which an agent can turn
left or right in a single time step in order to align, cohere, and separate. It is not
immediately evident from this set of rules that individual agents might be able to form
flocks (or swarm together), and indeed that system-level behavior does not emerge for
all parameter sets. However, certain parameter sets do lead to the agents forming one
or more flocks that move together through the model landscape.

Students learning agent-based modeling will likely need multiple examples of
ABMs with emergent properties in order to understand the concept enough to identify
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emergent properties on their own. A few other examples to consider from the NetLogo
library are:

– The emergence of synchronized flashing in a population of fireflies (Fireflies
Model).

– The tipping point forest density at which a forest fire burns the majority of the
forest (Fire Model).

– The emergence of population oscillations in linked predator and prey populations
(Wolf Sheep Predation Model).

Observations: Algorithms for Pattern Recognition.One of the most exciting moments
for students when they first begin running simulations of an ABM is seeing system-
level patterns emerge before their eyes. One of the challenges for students (and agent-
based modelers, in general) is to develop algorithms to identify and/or quantify the
patterns we can easily identify by sight. For example, in the flocking ABM discussed
above, an observer watching the locations of individual agents change at each time step
can easily see the formation of flocks. If however, the observerwanted to systematically
explore the parameter space of the flocking ABM and determine the regions of the
parameter space under which flocking occurs (a process which might involve running
hundreds or thousands of simulations), it would be a tedious and time-consuming task
to physically watch each simulation and record whether the agents formed a flock
or not. Instead, the observer must choose the criteria that indicate the formation of
a flock, and then determine a measure or an algorithm for determining whether a
flock (or multiple flocks) have formed. In a course designed to teach the construction
and analysis of ABMs, this is a point where students should be encouraged to be
both creative and methodical about developing such measures and algorithms. The
development of these observational measures and algorithms also provides a great
opportunity for collaboration between students. It is especially helpful if students with
a diversity of academic backgrounds can be brought together to brainstorm ideas; for
instance, mixing students with various levels of exposure in mathematics, computer
science, and biology can be very beneficial.

5 Conclusions

Rapid advances in computing power over the past decades have made agent-based
modeling a feasible and appealing tool to study biological systems. In undergraduate
mathematical biology education, there are multiple modes by which ABMs are uti-
lized and taught in the classroom. In biology classrooms, ABMs can be used to engage
students in hypothesis testing and in the experimental design and data collection pro-
cesses of otherwise infeasible experiments, and to enable students to utilize models
as a part of the scientific process. All of this can be done without students having to
learn a programming language. By contrast, students who have had some exposure to
computer programming can learn the construction, implementation, and analysis of
agent-based models in a math or computer science modeling class. Biological appli-
cations are ideal systems for first attempts at agent-based models as they typically do
not necessitate learning extensive new vocabulary and theory to understand the basic
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components that need to be included in the model. Throughout this article, we endeav-
ored to articulate the benefits and challenges of including ABMs in undergraduate life
science and math modeling courses.

Consistent with the Bio2010 Report (2003), we recommend that undergraduate
biology and life science curricula be structured to ensure that all students have some
exposure to mathematical modeling. We additionally recommend that this includes
agent-based modeling. While not every student necessarily needs to take a course
exclusively focused on agent-based modeling, every undergraduate biology student
should have the opportunity to utilize an ABM to perform experiments and to collect
and analyze data. As we educate the next-generation of life scientists, let us empower
them with the ability to utilize ABMs to simulate and better understand our complex
and dynamic world.
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