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Abstract Dengue fever is one of the most important vector-borne diseases. It is trans-
mitted by Aedes Stegomyia aegypti, and one of the most effective strategies to combat
the disease is the reduction of exposure to bites of these mosquitoes. In this paper,
we present a game-theoretical model in which individuals choose their own level of
protection against mosquito bites in order to maximize their own benefits, effectively
balancing the cost of protection and the risk of contracting the dengue fever. We find
that even when the usage of protection is strictly voluntary, as soon as the cost of
protection is about 10,000 times less than the cost of contracting dengue fever, the
optimal level of protection will be within 5% of the level needed for herd immunity.
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1 Introduction

Dengue virus is a leading cause of illness and death in the tropics and subtropics. The
virus causes dengue fever, a vector-borne disease transmitted by mosquitoes. Each
year, an estimated 50–500 million cases of dengue fever occur worldwide (Whitehorn
and Farrar 2010; Bhatt et al. 2013). The principal vector, Aedes aegypti, is a domestic
species highly susceptible to the dengue virus. It feeds on human blood usually during
the daytime and takes multiple blood meals during one feeding cycle. It breeds in stag-
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nant clean water in artificial containers and is, therefore, well adapted to urban life.
A second vector, Aedes Stegomyia albopictus, is generally considered less effective
as an epidemic vector because, unlike A. aegypti, it feeds on many animals other than
humans and is less strongly associated with the domestic environment (Whitehorn
and Farrar 2010). There are no approved vaccines for the dengue virus, and preven-
tion depends on mosquito control and protection from mosquito bites (WHO 2009)
although other methods have recently been proposed (Bian et al. 2010; Frentiu et al.
2010).

Game-theoretical models (see, for example, Bauch and Earn 2004) consider a sit-
uation where individuals face a decision either to do a potentially costly preventive
action (such as to use repellents) or to risk that they contract the disease. Game theory
has been applied to vaccination against major public health threats, including smallpox
(Bauch et al. 2003), measles (Shim et al. 2012b), rubella (Shim et al. 2009), childhood
diseases (Bauch 2005), influenza (Galvani et al. 2007) and many others. From the
game-theoretical perspective, an individual takes an action (such as to use a repellent
or to vaccinate the child) that will maximize their personal payoff, taking into account
the disease incidence and risk of infection, which is determined by actions taken by
the rest of the population (Shim et al. 2012a). The theory assumes that individuals are
driven by self-interest rather than by the interest of the group (Shim et al. 2011). As
the frequency of preventive actions increases, the incentive to make such an action
decreases due to indirect protection by other protected individuals (Bauch and Earn
2004). This makes the eradication of disease very difficult, even when the cost of
preventive action is very low (Geoffard and Philipson 1997).

In this paper, we follow the general approach of previous models such as Bauch
and Earn (2004) and apply the approach to a situation where individuals choose to
use repellent to reduce the mosquito biting rate and consequently to reduce the risk of
contracting dengue fever.

2 Methods

Our model relies heavily on the results and analysis of Amaku et al. (2014). In Amaku
et al. (2014), the authors present a model involving all variables related to vector
control of dengue fever. The model also considers the vertical transmission of dengue
in the mosquitoes (Adams and Boots 2010). In Amaku et al. (2014), the authors
deduce thresholds for the elimination of the disease. In particular, they derive a basic
reproduction number for dengue fever

R0 = a2bcm(gμM + γM )

(μH + αH + γH )(μM + γM )μM (1 − g)
. (1)

The notation is explained, and the values of the parameters are given in Table1. We
note that this expression holds for biologically reasonable values and may break down
for values far away from those presented in Table1. For example, if g ≈ 1, R0 would
certainly not increase to ∞ as (1) suggests.
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Table 1 Notation and parameter values, adapted from Amaku et al. (2014)

Notation Meaning Value Source

amax Maximum daily biting rate 0.8 Scott et al. (2000)

b Fraction of bites actually
infective

0.6 Ocampo and Wesson (2004)

c Dengue virus susceptibility of
A. aegypti

0.54 Ocampo and Wesson (2004)

m Mosquito density relative to
humans

Varies

g Proportion of infected eggs 0.1 Amaku et al. (2014)

μM Natural mortality rate of
mosquitoes

0.09days−1 Brownstein et al. (2003)

γM Latency rate in mosquitoes 0.143days−1 Burattini et al. (2008)

μH Human natural mortality rate 3.5 × 10−5 days−1 Index Mundi (2012)

αH Dengue fever mortality rate 3.5 × 10−4 days−1 Halstead (1990)

γH Human recovery rate 0.143days−1 Halstead (1990)

C Cost of protection relative to
cost of dengue fever

rpop Protection level in population

rNE Optimal protection level

rHI Protection level for herd
immunity

For our purposes, the most important parameter is the average biting rate, a, as this
is what every single individual can influence by their actions (such as using repellents
and mosquito shields) and also because R0 is very sensitive to a.

Individuals can influence the rate mosquitoes bite them by the use of repellents.
For the sake of simplicity, we assume that when r ∈ [0, 1] denotes the frequency of
repellent usage, the biting rate is expressed by

a(r) = amax · (1 − r) (2)

where amax is the maximum average biting rate when no protection is in place.
Based onAmaku et al. (2014), the probability an individual gets infected is given by
λ

λ+μH
, where λ = λ(r, rpop) is the force of infection that depends on the individual’s

repellent usage, r , as well as on the repellent usage in the population, rpop, and can be
expressed by

λ(r, rpop) = a(r)

a(rpop)
· μM (1 − g)(μH + αH + γH )μH (R0 − 1)

μM (1 − g)(μH + γH ) + μHa(rpop)c
(3)

whenever R0 > 1. Note that λ = 0 when R0 ≤ 1. Also, note that λ(r, rpop) seems to
decrease in g but in fact does not as its component R0 increases in g.
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Following Bauch and Earn (2004), the individual’s payoff of using r in the popu-
lation using rpop is given by

E(r, rpop) = − λ(r, rpop)

λ(r, rpop) + μH
− Cr (4)

where C is the cost of complete protection (r = 1) relative to the cost of dengue fever
to the individual.

For every given rpop, we can find rmax = rmax(rpop) ∈ [0, 1] that maximizes
E(·, rpop). We are looking for the Nash equilibrium value, rNE, such that when all
individuals use rNE, nobody has an incentive to deviate from it.

3 Results

Let R0,max, given by (1) when a = amax, be the maximal basic reproduction number
for dengue fever when nobody uses any protection (i.e., when rpop = 0). It follows
from (2) to (1) that R0 < 1 if and only if rpop > rHI where

rHI = 1 −
√
R−1
0,max (5)

corresponds to the level of protection that yields herd immunity against dengue fever.
Consequently, if rpop > rHI, there is little risk of contracting dengue fever, and thus,
rmax(rpop) = 0. For the rest of this section, we will thus assume rpop < rHI and thus
R0 > 1. Note that

λ(r, rpop) = (1 − r)λ(0, rpop), (6)

∂

∂r
λ(r, rpop) = −λ(0, rpop), (7)

and thus

∂

∂r
E(r, rpop) = μH

(λ(r, rpop) + μH )2
· λ(0, rpop) − C (8)

∂2

∂r2
E(r, rpop) = 2

λ(0, rpop)2μH

(λ(r, rpop) + μH )3
> 0. (9)

Consequently, the maximum of E(·, rpop) is attained either at 0 or 1, and the equilib-
rium value rNE will be given by the solution of

E(0, rNE) = E(1, rNE) (10)

which is equivalent to
λ(0, rNE)

λ(0, rNE) + μH
= C. (11)
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Figure1 shows the equilibrium values rNE as they depend on the relative cost
of protection, C for various relative mosquito densities m. Figure2 further shows
that rHI − rNE depends on C in an almost linear way and in particular, when C ≈
10−4, the optimal value of protection is within 5% of the protection level needed
for herd immunity (and decreasing the cost further does not significantly improve the
outcomes). Figure3 further shows that the disease is very close to being eliminated
for such low C .

4 Discussion

FollowingBauch andEarn (2004),we have provided a game-theoreticalmodel to study
the optimal usage of repellents in order to prevent the contraction of dengue fever. Our
analysis is built on the model of dengue infection dynamics by Amaku et al. (2014)
that, similarly to Coutinhoa et al. (2006), Burattini et al. (2008) and Massad et al.
(2011) studied the efficiency of control strategies. Not surprisingly, as in Geoffard and
Philipson (1997), Bauch and Earn (2004) and Bauch (2005), we found that eradication

Fig. 1 Dependence of optimal
protection level rNE on the
relative cost of the protection
from various mosquito
prevalences. Note that rNE
increases with m

Fig. 2 Dependence of the
difference between rHI, the
protection yielding the herd
immunity for dengue fever, and
the optimal protection level rNE
on the relative cost of the
protection from various
mosquito prevalences. Note that
the difference decreases with m
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Fig. 3 Dependence of the basic
reproduction number R0 when
everybody uses rNE on the
relative cost of the protection
when m = 1

of dengue fever by voluntary usage of repellents to minimize mosquito biting rate is
not possible. Nevertheless, we found that the optimal repellent usage is still very close
to the levels needed for herd immunity, especially if the cost of repellents is low.

In our model, we assumed that individuals can achieve perfect protection. This is
not always possible, and as shown, for example, in Wu et al. (2011), imperfect pro-
tection aggravates the dilemma of voluntary protective actions. We have also assumed
that individuals have perfect information (about the dengue epidemics, the protection
coverage in the population, etc.), base their decision solely on the expected payoff,
and all (but a focal individual) use the same level rpop. However, individuals can have
different perceptions of the risk (Poletti et al. 2011) and can also base their decision
based also on different social aspects (Xia and Liu 2013). Consequently, there is an
inherent variability in the population protection level that is not captured in our model.

Nevertheless, game-theoretical models can still capture the interplay between dis-
ease prevalence, protective action coverage and individual behavior, and may help in
managing the population dynamics of vaccinating behavior for the benefit of public
health (Bauch 2005).
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