Skip to main content
Log in

Physicochemical Characterization of Protein Hydrolysates Produced by Autolysis of Jumbo Squid (Dosidicus gigas) Byproducts

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The physicochemical characteristics of protein hydrolysates of jumbo squid (Dosidicus gigas) byproducts (JSBP) produced by endogenous proteases at two different pH values (5.0 and 7.0) were studied using destructive and nondestructive methods. Reaction mixture samples were collected at different interval times during hydrolysis to monitor changes in the level of hydrolysis (DH) using the OPA method, the protein peptide molecular masses (MM), and SDS-PAGE. The DH increased from 3.5 to 11.2 % at pH 5.0 and from 4.8 to 17.5 % at pH 7.0. Both pH treatments exhibited similar degradation patterns with progressive proteolysis and, after 120 min of hydrolysis, yielded hydrolysates that contained MM <45 kDa proteins. It was detected lower hydrophobic amino acid exposure for the protein hydrolysates prepared at pH 5.0 compared with the hydrolysates at pH 7.0. In several wavebands, higher wavenumbers were observed in the FT-IR spectra for the pH 5.0 hydrolysates. Nine different equivalent protons were observed in the NMR spectra for both hydrolysates; these protons might belong to amino acid side chains. SEM showed substantially lower particle size for the JSBPs after hydrolysis at pH 7.0. The hydrolysate zeta potentials were −29.4 mV at pH 7.0 and −10.5 mV at pH 5.0. The pH 5.0 hydrolysates exhibited lower endothermic resistance and hydrophobicity (SoANS) compared with the pH 7.0 hydrolysates. This biophysical characterization enhances the understanding of jumbo squid byproduct hydrolysate physiochemical properties, which will aid in determining the proper use of these hydrolysates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Adler-Nissen, Enzymatic Hydrolysis of Food Proteins (Elsevier, New York, 1986), pp. 9–131

    Google Scholar 

  2. A.D. Neklyudov, A.V. Berdutina, A.N. Ivankin, S.I. Mitaleva, E.A. Evstaf’eva, Appl. Biochem. Microbiol. 39, 426 (2003)

    Article  CAS  Google Scholar 

  3. V.K. Pasupuleti, S. Braun, in Protein Hydrolysates in Biotechnology, ed. by V.K. Pasupuleti, A.L. Demain (Springer, New York, 2010), p. 11

    Chapter  Google Scholar 

  4. H.G. Kristinsson, B.A. Rasco, Crit. Rev. Food Sci. Nutr. 40, 43 (2000)

    Article  CAS  Google Scholar 

  5. N.H. Herpandi, A. Rosma, W.A. Wan Nadiah, Compr. Rev. Food Sci. F. 10, 195 (2011)

    Article  CAS  Google Scholar 

  6. H.G. Kristinsoon, in Maximing the Value of Marine by-Products: an Overview, ed. by F. Shahidi (CRC Press, St. Johns, 2007), p. 229

    Chapter  Google Scholar 

  7. A. Alemán, E. Pérez-Santín, S. Bordenave-Juchereau, I. Arnaudin, M.C. Gómez-Guillén, P. Montero, Food Res. Int. 44, 1044 (2011)

    Article  Google Scholar 

  8. P.Z. Lian, C.M. Lee, E. Park, J. Agric. Food Chem. 53, 5587 (2005)

    Article  CAS  Google Scholar 

  9. A. Sánchez-Sánchez, J.L. Arías-Moscoso, W. Torres-Arreola, G.E. Marquez-Ríos, J.L. Cárdenas-López, G. García-Sánchez, J.M. Ezquerra-Brauer, CyTA J. Food 12, 85 (2014)

    Article  Google Scholar 

  10. J.H. Cordova-Murueta, M. Navarrete del Toro, F.L. García Carreño, Food Chem. 100, 705 (2007)

    Article  CAS  Google Scholar 

  11. B. Gimenez, A. Aleman, P. Montero, M.C. Gomez-Guillen, Food Chem. 114, 976 (2009)

    Article  CAS  Google Scholar 

  12. B. Gimenez, J. Gomez-Estaca, A. Aleman, M.C. Gomez-Guillen, M.P. Montero, Food Hydrocolloid. 23, 2022 (2009)

    Article  CAS  Google Scholar 

  13. P.M. Nielsen, D. Petersen, C. Dambmann, J. Food Sci. 66, 642 (2001)

    Article  CAS  Google Scholar 

  14. U. Laemmli, U. Nat, Genet. 227, 680 (1970)

    CAS  Google Scholar 

  15. F.A. Vázquez-Ortiz, G. Caire, I. Higuera-Ciapara, G. Hernandez, G.J. Liq, Chromatogr. 18, 2059 (1995)

    Google Scholar 

  16. S. Hayakawa, S.J. Nakai, Food Sci. 50, 486 (1985)

    Article  CAS  Google Scholar 

  17. K. Mitchell, T. Glover, An Introduction to Biostatistics, 2nd edn. (Waveland Press, Long Grove, 2008), pp. 143–165

    Google Scholar 

  18. F. Guérard, L. Guimas, A. Binet, J. Mol. Catal. B Enzym. 19–20, 489 (2002)

    Article  Google Scholar 

  19. J.M. Ezquerra, N.F. Haard, R. Ramírez-Olivas, H. Olivas-Burrola, C. Velazquez-Sánchez, J. Food Biochem. 26, 459 (2002)

    Article  Google Scholar 

  20. A.G. Moreno Martínez, R. Ramírez Olivas, J.M. Ezquerra Brauer, V.M. Ocaño Higuera, J.L. Cárdenas López, Biotecnia 14, 18 (2012)

    Google Scholar 

  21. H. Yamanaka, M. Matsumoto, K. Hatae, H. Nayaka, B. Jpn, Soc. Sci. Fish. 61, 612 (1995)

    Article  CAS  Google Scholar 

  22. H. Palafox, J.H. Cordova-Murueta, M.A. Navarrete del Toro, F.L. Garcia-Carreño, Process Biochem. 44, 584 (2009)

    Article  CAS  Google Scholar 

  23. L.A. Mignino, M. Crupkin, M.E. Paredi, J. Food Res. 2, 55 (2013)

    Article  CAS  Google Scholar 

  24. S. Khantaphant, S. Benjakul, Comp. Biochem. Physiol. B 151, 410 (2008)

    Article  Google Scholar 

  25. M. Sugiyama, S. Kousu, M. Hanabe, Y. Okuda, Utilization of Squid (Oxonian Press, New Delhi, 1989), pp. 84–97

    Google Scholar 

  26. P.Z. Lian, C.M. Lee, J. World Aquac. Soc. 39, 196 (2008)

    Article  Google Scholar 

  27. M.H. Uriarte-Montoya, H. Santacruz-Ortega, F.J. Cinco-Moroyoqui, O. Rouzaud-Sández, M. Plascencia-Jatomeaa, J.M. Ezquerra-Brauer, Food Res. Int. 44, 3243 (2011)

    Article  CAS  Google Scholar 

  28. B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (John Wiley & Sons, Chichester, 2004)

    Book  Google Scholar 

  29. J. Bandekar, Biochim. Biophys. Acta 1120, 123 (1992)

    Article  CAS  Google Scholar 

  30. H. Fabian, in Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, Chichester, 2006), p. 3399

    Google Scholar 

  31. S. Krimm, J. Bandekar, Advances in Protein Chemistry (Academic, Orlando, 1986), p. 181

    Google Scholar 

  32. K. Wuthrich, Angewandate Chemie Int. Ed. 42, 3340 (2003)

    Article  Google Scholar 

  33. M.P. Williamson, T. Asakura, in Protein NMR Techniques (Methods in Molecular Biology), ed. by D.G. Reid (Humana Press, Totowa, 1997), p. 53

    Chapter  Google Scholar 

  34. G.D. Fullerton, E. Nes, M. Amurao, A. Rahal, L. Krasnosselskaia, I. Cameron, Cell Biol. Int. 30, 66 (2006)

    Article  CAS  Google Scholar 

  35. J. Cavanagh, W.J. Fairbrother, A.G. Palmer III, M. Rance, N.J. Skelton, Protein NMR Spectroscopy: Principles and Practice, 3th end (Elsevier, New York, 2007), pp. 725–780

    Book  Google Scholar 

  36. A.P. Golovanon, G.M. Hautbergue, S.A. Wilson, L.-Y. Lian, J. Am. Chem. Soc. 126, 8933 (2004)

    Article  Google Scholar 

  37. C. Radha, P.R. Kumar, V. Prakash, J. Sci. Food Agric. 88, 336 (2008)

    Article  CAS  Google Scholar 

  38. W.S. Chen, W.G. Soucle, J. Am. Oil Chem. Soc. 63, 1346 (1986)

    Article  CAS  Google Scholar 

  39. T.F. Linsenmayer, E. Gibney, J.M. Fitch, J. Gross, R. Mayne, J. Cell Biol. 99, 1405 (1984)

    Article  CAS  Google Scholar 

  40. E. Pechkova, V. Sivozhelezov, C. Nicolini, Arch. Biochem. Biophys. 466, 40 (2007)

    Article  CAS  Google Scholar 

  41. P. Argos, M.G. Rossman, U.M. Grau, H. Zeber, G. Frank, J.D. Tratschin, Biochem 18, 5698 (1979)

    Article  CAS  Google Scholar 

  42. Höhne G, Hemminger WF, Flammersheim HJ, Differential scanning calorimetry, 2nd edn. (Springer), pp. 147–241 (2003)

  43. L.A. Mignino, M. Crupkin, M.E. Paredi, LWT-Food Sci. Technol. 41, 678 (2008)

    Article  CAS  Google Scholar 

  44. M. Korzeniowska, I.W.Y. Cheung, E.C.Y. Li-Chan, Food Chem. 138, 1967 (2013)

    Article  CAS  Google Scholar 

  45. A. Mahn, M.E. Lienqueob, J.C. Salgado, J. Chromatogr. A 1216, 1838 (2009)

    Article  CAS  Google Scholar 

  46. K.J. Payne, A. Veis, Biopolymers 27, 1749 (1988)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by CONACYT under grant 154046. Arias-Moscoso was supported by a doctoral fellowship from CONACYT. The authors are grateful to Alondra Cuevas for her skilled SDS analyses and Dr. Javier Cinco for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josafat Marina Ezquerra-Brauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias-Moscoso, J.L., Maldonado-Arce, A., Rouzaud-Sandez, O. et al. Physicochemical Characterization of Protein Hydrolysates Produced by Autolysis of Jumbo Squid (Dosidicus gigas) Byproducts. Food Biophysics 10, 145–154 (2015). https://doi.org/10.1007/s11483-014-9374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-014-9374-z

Keywords

Navigation