Skip to main content
Log in

An ergodic theorem of a parabolic Anderson model driven by Lévy noise

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

In this paper, we study an ergodic theorem of a parabolic Andersen model driven by Lévy noise. Under the assumption that A = (a(i, j)) i,jS is symmetric with respect to a σ-finite measure gp, we obtain the long-time convergence to an invariant probability measure ν h starting from a bounded nonnegative A-harmonic function h based on self-duality property. Furthermore, under some mild conditions, we obtain the one to one correspondence between the bounded nonnegative A-harmonic functions and the extremal invariant probability measures with finite second moment of the nonnegative solution of the parabolic Anderson model driven by Lévy noise, which is an extension of the result of Y. Liu and F. X. Yang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldous D. Stopping times and tightness. Ann Probab, 1978, 6(2): 335–340

    Article  MATH  MathSciNet  Google Scholar 

  2. Anderson P W. Absence of diffusion in certain random lattices. Phys Rev, 1958, 109: 1492–1505

    Article  Google Scholar 

  3. Carmona R A, Molchanov S A. Parabolic Anderson Problem and Intermittency. Mem Amer Math Soc, 108. Providence: Amer Math Soc, 1994

    Google Scholar 

  4. Cox J T, Fleischmann K, Greven A. Comparison of interacting diffusions and an application to their ergodic theory. Probab Theory Relat Fields, 1996, 92: 513–528

    Article  MathSciNet  Google Scholar 

  5. Cox J T, Greven A. Ergodic theorems for infinite systems of locally interacting diffusions. Ann Probab, 1994, 22: 833–853

    Article  MATH  MathSciNet  Google Scholar 

  6. Cox J T, Klenke A, Perkins E A. Convergence to equilibrium and linear systems duality. In: Stochastic Models (Ottawa, ON, 1998), CMS Conf Proc, 26. Providence: Amer Math Soc, 2001, 41–66

    Google Scholar 

  7. Cranston M, Mountford T. Lyapunov exponent for the parabolic Anderson model in ℝd. J Funct Anal, 2006, 236: 78–119

    Article  MATH  MathSciNet  Google Scholar 

  8. Cranston M, Mountford T, Shiga T. Lyapunov exponent for the parabolic Anderson model. Acta Math Univ Comenian (NS), 2002, 71(2): 163–188

    MATH  MathSciNet  Google Scholar 

  9. Cranston M, Mountford T, Shiga T. Lyapunov exponent for the parabolic Anderson model with Lévy noise. Probab Theory Relat Fields, 2005, 132: 321–355

    Article  MATH  MathSciNet  Google Scholar 

  10. Ethier S N, Kurtz T G. Markov Processes: Characterization and Convergence. New York: John Wiley and Sons, 1986

    MATH  Google Scholar 

  11. Furuoya T, Shiga T. Sample Lyapunov exponent for a class of linear Markovian systems over ℤd. Osaka J Math, 1998, 35: 35–72

    MATH  MathSciNet  Google Scholar 

  12. Gärtner J, König W. The Parabolic Anderson Model. In: Deuschel J D, Greven A, eds. Stochastic Interacting Systems. Berlin: Springer-Verlag, 2005, 153–179

    Chapter  Google Scholar 

  13. Gärtner J, Molchanov S A. Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm Math Phys, 1990, 132: 613–655

    Article  MATH  MathSciNet  Google Scholar 

  14. Granston M, Gauthier D, Mountford T S. On the large deviations for parabolic Anderson Model. Probab Theory Relat Fields, 2010, 147: 349–378

    Article  Google Scholar 

  15. Greven A, den Hollander F. Phase transitions for the long-time behaviour of interacting diffusions. Ann Probab, 2007, 35: 1250–1306

    Article  MATH  MathSciNet  Google Scholar 

  16. Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion processes. Amsterdam: North-Holland, 1981

    MATH  Google Scholar 

  17. König W, Lacoin H, Moeters P, Sidorova N. A two cities theorem for Parabolic Anderson Model. Ann Probab, 2009, 37: 347–392

    Article  MATH  MathSciNet  Google Scholar 

  18. Leschke H, Müller P, Warzel S. A survey of rigorous results on random Schrödinger operators for amorphons solids. In: Deuschel J D, Greven A, eds. Stochastic Interacting Systems. Berlin: Springer-Verlag, 2005

    Google Scholar 

  19. Liggett T M. A characterization of the invariant measures for an infinite particle system with interactions. Trans Amer Math Soc, 1973, 179: 433–453

    Article  MATH  MathSciNet  Google Scholar 

  20. Liggett T M. A characterization of the invariant measures for an infinite particle system with interactions II. Trans Amer Math Soc, 1974, 198: 201–213

    Article  MATH  MathSciNet  Google Scholar 

  21. Liggett T M. Interacting Particle Systems. Berlin: Springer-Verlag, 1985

    Book  MATH  Google Scholar 

  22. Liggett T M, Spitzer F. Ergodic theorems for coupled random walks and other systems with locally interacting components. Z Wahrsch verw Gebiete, 1981, 56: 443–468

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu Y. An application of the compound Poisson process to the stochastic differential equations with jumps. In: Some Problems in Stochastic Analysis, the Research Report of Postdoctor at AMSS, CAS. 2001

  24. Liu Y, Gong G L. Approximation of homogeneous Lévy processes by compound Poisson processes on separable metric groups. Acta Math Sci, 1998, 18: 221–227 (in Chinese)

    MATH  MathSciNet  Google Scholar 

  25. Liu Y, Yang F X. Some ergodic theorems of a parabolic Anderson model. Preprint. Or see: Some ergodic theorems of linear systems of interacting diffusion. Acta Math Sin (Engl Ser) (to appear)

  26. Protter P E. Stochastic Integration and Differential Equations. 2nd ed. Berlin: Springer, 2005

    Google Scholar 

  27. Sato K. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999

    MATH  Google Scholar 

  28. Sawyer S. Isotropic random walks in a tree. ZWahrsch verw Gebiete, 1978, 42: 279–292

    Article  MATH  MathSciNet  Google Scholar 

  29. Shiga T. An interacting system in population genetics. J Math Kyoto Univ, 1980, 20: 213–242

    MathSciNet  Google Scholar 

  30. Shiga T. An interacting system in population genetics II. J Math Kyoto Univ, 1980, 20: 723–733

    MATH  MathSciNet  Google Scholar 

  31. Shiga T. Ergodic theorems and exponential decay of sample paths for certain interacting diffusion systems. Osaka J Math, 1992, 29: 789–807

    MATH  MathSciNet  Google Scholar 

  32. Stroock DW, Varadhan S R S. Multidimensional Diffusion Processes. Berlin: Springer, 1979

    MATH  Google Scholar 

  33. Yang F X. Some problems on long-time behaviour of interacting diffusions. Ph D Thesis. Beijing: Peking University, 2010 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wu, J., Yang, F. et al. An ergodic theorem of a parabolic Anderson model driven by Lévy noise. Front. Math. China 6, 1147–1183 (2011). https://doi.org/10.1007/s11464-011-0124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-011-0124-y

Keywords

MSC

Navigation