Skip to main content
Log in

Design and fabrication of 1-D semiconductor nanomaterials for high-performance photovoltaics

  • Review
  • Engineering Sciences
  • Published:
Science Bulletin

Abstract

To date, the cost-effective utilization of solar energy by photovoltaics for large-scale deployment remains challenging. Further cost minimization and efficiency maximization, through reduction of material consumption, simplification of device fabrication as well as optimization of device structure and geometry, are required. The usage of 1D nanomaterials is attractive due to the outstanding light coupling effect, the ease of fabrication, and integration with one-dimensional (1-D) semiconductor materials. The light absorption efficiency can be enhanced significantly, and the corresponding light-to-electricity conversion efficiency can be as high as their bulk counterparts. Also, the amount of active materials used can be reduced. This review summarizes the recent development of 1-D nanomaterials for photovoltaic applications, including the anti-reflection, the light absorption, the minority diffusion, and the semiconductor junction properties. With solid progress and prospect shown in the past 10 years, 1-D semiconductor nanomaterials are attractive and promising for the realization of high-efficiency and low-cost solar cells.

摘要

至今,大面积利用光伏技术获取太阳能仍极具挑战,仍然需要减少材料的消耗,简化太阳能电池的制作并优化结构,以降低成本并提高效率。由于一维纳米材料具有极强的光耦合效应,并易于加工组装成电池器件,半导体纳米线材料在太阳能利用方面越来越受到关注。基于上述优势,其光吸收效率及光电转换效率均堪与块体材料相当,但是材料用量却极大减少。本文总结了一维半导体纳米材料在太阳能转换领域的最新研究进展,包括用于减反射、光吸收、少子扩散与收集等。从近年研究进展看,一维半导体纳米材料在高效低成本利用太阳能电池方面前景广阔。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lewis NS (2007) Toward cost-effective solar energy use. Science 315:798–801

    Article  Google Scholar 

  2. Service RF (2005) Is it time to shoot for the Sun? Science 309:548–551

    Article  Google Scholar 

  3. Crabtree GW, Lewis NS (2007) Solar energy conversion. Phys Today 60:37–42

    Article  Google Scholar 

  4. Han X, Xu C, Ju X et al (2015) Energy analysis of a hybrid solar concentrating photovoltaic/concentrating solar power (CPV/CSP) system. Sci Bull 60:460–469

    Article  Google Scholar 

  5. Schubert MB, Werner JH (2006) Flexible solar cells for clothing. Mater Today 9:42–50

    Article  Google Scholar 

  6. Lunt RR, Bulovic V (2011) Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl Phys Lett 98:113305

    Article  Google Scholar 

  7. Fan ZY, Razavi H, Do JW et al (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 8:648–653

    Article  Google Scholar 

  8. Dick KA (2008) A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III–V nanowires. Prog Cryst Growth Charact Mater 54:138–173

    Article  Google Scholar 

  9. Fang M, Han N, Wang F et al (2014) III–V nanowires: synthesis, property manipulations and devices applications. J Nanomater 2014:702859

    Article  Google Scholar 

  10. Wacaser BA, Dick KA, Johansson J et al (2009) Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Adv Mater 21:153–165

    Article  Google Scholar 

  11. Yu R, Lin QF, Leung SF et al (2012) Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 1:57–72

    Article  Google Scholar 

  12. LaPierre RR, Chia ACE, Gibson SJ et al (2013) III–V nanowire photovoltaics: review of design for high efficiency. Phys Status Solidi RRL 7:815–830

    Article  Google Scholar 

  13. Lunt RR, Osedach TP, Brown PR et al (2011) Practical roadmap and limits to nanostructured photovoltaics. Adv Mater 23:5712–5727

    Article  Google Scholar 

  14. Fan ZY, Ruebusch DJ, Rathore AA et al (2009) Challenges and prospects of nanopillar-based solar cells. Nano Res 2:829–843

    Article  Google Scholar 

  15. Peng KQ, Lee ST (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23:198–215

    Article  Google Scholar 

  16. Han N, Wang F, Ho JC (2012) One-dimensional nanostructured materials for solar energy harvesting. Nanomater Energy 1:4–17

    Article  Google Scholar 

  17. Kempa TJ, Cahoon JF, Kim SK et al (2012) Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc Natl Acad Sci USA 109:1407–1412

    Article  Google Scholar 

  18. Cao LY, White JS, Park JS et al (2009) Engineering light absorption in semiconductor nanowire devices. Nat Mater 8:643–647

    Article  Google Scholar 

  19. Anttu N, Lehmann S, Storm K et al (2014) Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays. Nano Lett 14:5650–5655

    Article  Google Scholar 

  20. Heiss M, Morral AFI (2011) Fundamental limits in the external quantum efficiency of single nanowire solar cells. Appl Phys Lett 99:263102

    Article  Google Scholar 

  21. Krogstrup P, Jorgensen HI, Heiss M et al (2013) Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat Photonics 7:306–310

    Article  Google Scholar 

  22. Xu YL, Gong T, Munday JN (2015) The generalized Shockley–Queisser limit for nanostructured solar cells. Sci Rep 5:13536

    Article  Google Scholar 

  23. Anttu N (2015) Shockley–Queisser detailed balance efficiency limit for nanowire solar cells. Acs Photonics 2:446–453

    Article  Google Scholar 

  24. Peng KQ, Xu Y, Wu Y et al (2005) Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1:1062–1067

    Article  Google Scholar 

  25. Diedenhofen SL, Vecchi G, Algra RE et al (2009) Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods. Adv Mater 21:973–978

    Article  Google Scholar 

  26. Muskens OL, Rivas JG, Algra RE et al (2008) Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett 8:2638–2642

    Article  Google Scholar 

  27. Garnett E, Yang PD (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087

    Article  Google Scholar 

  28. Yan RX, Gargas D, Yang PD (2009) Nanowire photonics. Nat Photonics 3:569–576

    Article  Google Scholar 

  29. Lin Q, Hua B, Leung SF et al (2013) Efficient light absorption with integrated nanopillar nanowell arrays for three-dimensional thin-film photovoltaic applications. ACS Nano 7:2725–2732

    Article  Google Scholar 

  30. Lin QF, Leung SF, Lu LF et al (2014) Inverted nanocone-based thin film photovoltaics with omni directionally enhanced performance. ACS Nano 8:6484–6490

    Article  Google Scholar 

  31. Leung SF, Tsui KH, Lin QF et al (2014) Large scale, flexible and three-dimensional quasi-ordered aluminum nanospikes for thin film photovoltaics with omnidirectional light trapping and optimized electrical design. Energy Environ Sci 7:3611–3616

    Article  Google Scholar 

  32. Qiu YC, Leung SF, Zhang QP et al (2015) Nanobowl optical concentrator for efficient light trapping and high-performance organic photovoltaics. Sci Bull 60:109–115

    Article  Google Scholar 

  33. Lin H, Xiu F, Fang M et al (2014) Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. ACS Nano 8:3752–3760

    Article  Google Scholar 

  34. Lin H, Cheung HY, Xiu F et al (2013) Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping. J Mater Chem A 1:9942–9946

    Article  Google Scholar 

  35. Diedenhofen SL, Janssen OTA, Grzela G et al (2011) Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires. ACS Nano 5:2316–2323

    Article  Google Scholar 

  36. Fan ZY, Kapadia R, Leu PW et al (2010) Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett 10:3823–3827

    Article  Google Scholar 

  37. Kelzenberg MD, Boettcher SW, Petykiewicz JA et al (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244

    Article  Google Scholar 

  38. Fortuna SA, Li XL (2009) GaAs MESFET with a high-mobility self-assembled planar nanowire channel. IEEE Electron Device Lett 30:593–595

    Article  Google Scholar 

  39. Spirkoska D, Arbiol J, Gustafsson A et al (2009) Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys Rev B 80:245325

    Article  Google Scholar 

  40. Parkinson P, Joyce HJ, Gao Q et al (2009) Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett 9:3349–3353

    Article  Google Scholar 

  41. Walukiewicz W, Lagowski J, Jastrzebski L et al (1979) Minority-carrier mobility in P-type GaAs. J Appl Phys 50:5040–5042

    Article  Google Scholar 

  42. Perera S, Fickenscher MA, Jackson HE et al (2008) Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures. Appl Phys Lett 93:053110

    Article  Google Scholar 

  43. Zhang W, Lehmann S, Mergenthaler K et al (2015) Carrier recombination dynamics in sulfur-doped InP nanowires. Nano Lett 15:7238–7244

    Article  Google Scholar 

  44. Gutsche C, Niepelt R, Gnauck M et al (2012) Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions. Nano Lett 12:1453–1458

    Article  Google Scholar 

  45. Lysov A, Vinaji S, Offer M et al (2011) Spatially resolved photoelectric performance of axial GaAs nanowire pn-diodes. Nano Res 4:987–995

    Article  Google Scholar 

  46. Thelander C, Caroff P, Plissard S et al (2011) Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett 11:2424–2429

    Article  Google Scholar 

  47. Wallentin J, Ek M, Wallenberg LR et al (2012) Electron trapping in InP nanowire FETs with stacking faults. Nano Lett 12:151–155

    Article  Google Scholar 

  48. Joyce HJ, Wong-Leung J, Gao Q et al (2010) Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters. Nano Lett 10:908–915

    Article  Google Scholar 

  49. Krogstrup P, Popovitz-Biro R, Johnson E et al (2010) Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). Nano Lett 10:4475–4482

    Article  Google Scholar 

  50. Joyce HJ, Gao Q, Tan HH et al (2009) Unexpected benefits of rapid growth rate for III–V nanowires. Nano Lett 9:695–701

    Article  Google Scholar 

  51. Breuer S, Pfüller C, Flissikowski T et al (2011) Suitability of Au-and self-assisted GaAs nanowires for optoelectronic applications. Nano Lett 11:1276–1279

    Article  Google Scholar 

  52. Hemesath ER, Schreiber DK, Gulsoy EB et al (2011) Catalyst incorporation at defects during nanowire growth. Nano Lett 12:167–171

    Article  Google Scholar 

  53. Han N, Hou JJ, Wang FY et al (2013) GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties. ACS Nano 7:9138–9146

    Article  Google Scholar 

  54. Han N, Wang F, Hou JJ et al (2012) Manipulated growth of GaAs nanowires: controllable crystal quality and growth orientations via a supersaturation-controlled engineering process. Cryst Growth Des 12:6243–6249

    Article  Google Scholar 

  55. Zhang Z, Lu ZY, Chen PP et al (2013) Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy. Appl Phys Lett 103:073109

    Article  Google Scholar 

  56. O’Regan C, Biswas S, Barth S et al (2014) Size-controlled growth of germanium nanowires from ternary eutectic alloy catalysts. J Mater Chem C 2:4597–4605

    Article  Google Scholar 

  57. O’Regan C, Biswas S, O’Kelly C et al (2013) Engineering the growth of germanium nanowires by tuning the supersaturation of Au/Ge binary alloy catalysts. Chem Mater 25:3096–3104

    Article  Google Scholar 

  58. Mariani G, Wong PS, Katzenmeyer AM et al (2011) Patterned radial GaAs nanopillar solar cells. Nano Lett 11:2490–2494

    Article  Google Scholar 

  59. Kim DR, Lee CH, Rao PM et al (2011) Hybrid Si microwire and planar solar cells: passivation and characterization. Nano Lett 11:2704–2708

    Article  Google Scholar 

  60. Tajik N, Peng Z, Kuyanov P et al (2011) Sulfur passivation and contact methods for GaAs nanowire solar cells. Nanotechnology 22:225402

    Article  Google Scholar 

  61. Mariani G, Scofield AC, Hung CH et al (2013) GaAs nanopillar-array solar cells employing in situ surface passivation. Nat Commun 4:1497

    Article  Google Scholar 

  62. Yang ZX, Han N, Fang M et al (2014) Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat Commun 5:5249

    Article  Google Scholar 

  63. Kelzenberg MD, Turner-Evans DB, Putnam MC et al (2011) High-performance Si microwire photovoltaics. Energy Environ Sci 4:866–871

    Article  Google Scholar 

  64. Kempa TJ, Tian BZ, Kim DR et al (2008) Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett 8:3456–3460

    Article  Google Scholar 

  65. Aashir W, Zhang Q, Tavakoli MM et al (2016) Performance improvement of solution-processed CdS/CdTe solar cells with a thin compact TiO2 buffer layer. Sci Bull 61:86–91

    Article  Google Scholar 

  66. Holm JV, Jorgensen HI, Krogstrup P et al (2013) Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nat Commun 4:1498

    Article  Google Scholar 

  67. Wallentin J, Anttu N, Asoli D et al (2013) InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339:1057–1060

    Article  Google Scholar 

  68. Léonard F, Talin AA (2011) Electrical contacts to one-and two-dimensional nanomaterials. Nat Nanotechnol 6:773–783

    Article  Google Scholar 

  69. del Alamo JA (2011) Nanometre-scale electronics with III–V compound semiconductors. Nature 479:317–323

    Article  Google Scholar 

  70. Li HY, Wunnicke O, Borgström M et al (2007) Remote p-doping of InAs nanowires. Nano Lett 7:1144–1148

    Article  Google Scholar 

  71. Han N, Wang F, Yip S et al (2012) GaAs nanowire schottky barrier photovoltaics utilizing Au–Ga alloy catalytic tips. Appl Phys Lett 101:013105

    Article  Google Scholar 

  72. Ye Y, Dai Y, Dai L et al (2010) High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with au/graphene Schottky electrodes. ACS Appl Mater Interfaces 2:3406–3410

    Article  Google Scholar 

  73. Yang LJ, Wang S, Zeng QS et al (2011) Efficient photovoltage multiplication in carbon nanotubes. Nat Photonics 5:673–677

    Article  Google Scholar 

  74. Heurlin M, Wickert P, Falt S et al (2011) Axial InP nanowire tandem junction grown on a silicon substrate. Nano Lett 11:2028–2031

    Article  Google Scholar 

  75. Han N, Yang ZX, Wang F et al (2015) High performance GaAs nanowire solar cells for flexible and transparent photovoltaics. ACS Appl Mater Interfaces. doi:10.1021/acsami.1025b06452

    Google Scholar 

  76. Kelzenberg MD, Turner-Evans DB, Kayes BM et al (2008) Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett 8:710–714

    Article  Google Scholar 

  77. Tian BZ, Zheng XL, Kempa TJ et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–890

    Article  Google Scholar 

  78. Tang YB, Chen ZH, Song HS et al (2008) Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett 8:4191–4195

    Article  Google Scholar 

  79. Garnett EC, Yang PD (2008) Silicon nanowire radial p-n junction solar cells. J Am Chem Soc 130:9224–9225

    Article  Google Scholar 

  80. Colombo C, Heiss M, Gratzel M et al (2009) Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl Phys Lett 94:173108

    Article  Google Scholar 

  81. Tang JY, Huo ZY, Brittman S et al (2011) Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat Nanotechnol 6:568–572

    Article  Google Scholar 

  82. Dhaka V, Haggren T, Jussila H et al (2012) High quality GaAs nanowires grown on glass substrates. Nano Lett 12:1912–1918

    Article  Google Scholar 

  83. Han N, Wang FY, Hui AT et al (2011) Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates. Nanotechnology 22:285607

    Article  Google Scholar 

  84. Colombo C, Krogstrup P, Nygard J et al (2011) Engineering light absorption in single-nanowire solar cells with metal nanoparticles. New J Phys 13:123026

    Article  Google Scholar 

  85. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  86. Li YH, Yan X, Wu Y et al (2015) Plasmon-enhanced light absorption in GaAs nanowire array solar cells. Nanoscale Res Lett 10:436

    Article  Google Scholar 

  87. Wu K, Chen J, McBride JR et al (2015) Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349:632–635

    Article  Google Scholar 

  88. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103

    Article  Google Scholar 

  89. DuChene JS, Sweeny BC, Johnston-Peck AC et al (2014) Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew Chem Int Edit 53:7887–7891

    Article  Google Scholar 

  90. Davis NJLK, Bohm ML, Tabachnyk M et al (2015) Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120 %. Nat Commun 6:8259

    Article  Google Scholar 

  91. Dorodnyy A, Alarcon-Llado E, Shklover V et al (2015) Efficient multiterminal spectrum splitting via a nanowire array solar cell. ACS Photonics 2:1284–1288

    Article  Google Scholar 

  92. Yuhas BD, Yang PD (2009) Nanowire-based all-oxide solar cells. J Am Chem Soc 131:3756–3761

    Article  Google Scholar 

  93. Musselman KP, Wisnet A, Iza DC et al (2010) Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells. Adv Mater 22:E254–E258

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Early Career Scheme of the Research Grants Council of Hong Kong SAR, China (CityU 139413), the National Natural Science Foundation of China (51202205 and 61504151), the State Key Laboratory of Multiphase Complex Systems (MPCS-2014-C-01 and MPCS-2015-A-04), the Science Technology and Innovation Committee of Shenzhen Municipality (JCYJ20140419115507588), and a Grant from the Shenzhen Research Institute, City University of Hong Kong.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Han or Johnny C. Ho.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, N., Yang, Z., Shen, L. et al. Design and fabrication of 1-D semiconductor nanomaterials for high-performance photovoltaics. Sci. Bull. 61, 357–367 (2016). https://doi.org/10.1007/s11434-016-1028-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1028-8

Keywords

关键词

Navigation