Skip to main content
Log in

Synthesis of well-defined functional crystals by high temperature gas-phase reactions

  • Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

Over the past decades, there have been many synthesis methods on producing well-defined crystals, due to their enormous application potentials in industrial field. Among them, high temperature gas-phase reactions (HTGR) approach may be one of the most promising processes for fabrication of well-defined crystals with controllable structure, size, shape, and composition. This review is focused on the recent progresses in synthesizing well-defined crystalline TiO2 dominated with, respectively, {001} facets and {105} facets, one-dimensional ZnO and SnO2 nanorods/nanowires, MoS2 nanosheets as well as GaP, InP, and GaAs nanowires via HTGR approach. Although these research works were currently carried out on experimental scale, it is worth to note that the industrial importance of this HTGR approach for design and fabrication of well-defined crystals in the future owing to its advantages of continuous and scalable production with controlled dimensions and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tian N, Zhou ZY, Sun SG et al (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  Google Scholar 

  2. Vittadini A, Selloni A, Rotzinger FP et al (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett 81:2954–2957

    Article  Google Scholar 

  3. Vittadini A, Casarin M, Selloni A (2007) Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review. Theor Chem Acc 117:663–671

    Article  Google Scholar 

  4. Lazzeri M, Selloni A (2001) Stress-driven reconstruction of an oxide surface: the anatase TiO2 (001)-(1 × 4) surface. Phys Rev Lett 87:266105

    Article  Google Scholar 

  5. Liu SW, Yu JG, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets. J Am Chem Soc 132:11914–11916

    Article  Google Scholar 

  6. Zhang D, Li G, Yang X et al (2009) A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80 % level of reactive facets. Chem Commun 29:4381–4383

    Article  Google Scholar 

  7. Han XG, Jin MS, Xie SF et al (2009) Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew Chem Int Ed 48:9180–9183

    Article  Google Scholar 

  8. Xing J, Fang WQ, Zhao HJ et al (2012) Inorganic photocatalysts for overall water splitting. Asian J Chem 7:642–657

    Article  Google Scholar 

  9. Yang HG, Sun CH, Qiao SZ et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641

    Article  Google Scholar 

  10. Yang HG, Liu G, Qiao SZ et al (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J Am Chem Soc 131:4978

    Google Scholar 

  11. Ma XY, Chen ZG, Hartono SB et al (2010) Fabrication of uniform anatase TiO2 particles exposed by 001 facets. Chem Commun 46:6608–6610

    Article  Google Scholar 

  12. Han XG, Kuang Q, Jin MS et al (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153

    Article  Google Scholar 

  13. Amano F, Prieto-Mahaney OO, Terada Y et al (2009) Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity. Chem Mater 21:2601–2603

    Article  Google Scholar 

  14. Jiang HB, Cuan Q, Wen CZ et al (2011) Anatase TiO2 crystals with exposed high-index facets. Angew Chem Int Ed 50:3764–3768

    Article  Google Scholar 

  15. Pratsinis SE, Spicers PT (1998) Competition between gas phase and surface oxidation of TiCl4 during synthesis of TiO2 particles. Chem Eng Sci 53:1861–1868

    Article  Google Scholar 

  16. Jang HD, Kim SK, Kim SJ (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3:141–147

    Article  Google Scholar 

  17. Yeha CL, Yehb SH, Ma HK (2004) Flame synthesis of titania particles from titanium tetraisopropoxide in premixed flames. Powder Technol 145:1–9

    Article  Google Scholar 

  18. Sun Y, Raman V, Fox RO (2011) Large-eddy-simulation-based multiscale modeling of TiO2 nanoparticle synthesis in a turbulent flame reactor using detailed nucleation chemistry. Chem Eng Sci 66:4370–4381

    Article  Google Scholar 

  19. Mehta M, Sung Y, Raman V et al (2010) Multiscale modeling of TiO2 nanoparticle production in flame reactors: effect of chemical mechanism. Ind Eng Chem Res 49:10663–10673

    Article  Google Scholar 

  20. Spicer PT, Chaoul O, Tsantilis S et al (2002) Titania formation by TiCl4 gas phase oxidation, surface growth and coagulation. J Aerosol Sci 33:17–34

    Article  Google Scholar 

  21. West RH, Celnik MS, Inderwildi OR et al (2007) Toward a comprehensive model of the synthesis of TiO2 particles from TiCl4. Ind Eng Chem Res 46:6147–6156

    Article  Google Scholar 

  22. West RH, Beran GJO, Green WH et al (2007) First-principles thermochemistry for the production of TiO2 from TiCl4. J Phys Chem A 111:3560–3565

    Article  Google Scholar 

  23. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  Google Scholar 

  24. Han N, Hu P, Zuo S (2010) Photoluminescence investigation on the gas sensing property of ZnO nanorods. Sens Actuators B 145:114–119

    Article  Google Scholar 

  25. Chang PC, Fan ZY, Wang DW (2004) ZnO nanowires synthesized by vapor trapping CVD method. Chem Mater 16:5133–5137

    Article  Google Scholar 

  26. Height MJ, Ma’dler L, Pratsinis SE (2006) Nanorods of ZnO made by flame spray pyrolysis. Chem Mater 18:572–578

    Article  Google Scholar 

  27. Jood P, Mehta RJ, Zhang YL (2011) Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett 11:4337–4342

    Article  Google Scholar 

  28. Remes Z, Vanecek M, Yates HM et al (2009) Optical properties of SnO2:F films deposited by atmospheric pressure CVD. Thin Solid Films 517:6287–6289

    Article  Google Scholar 

  29. Vlahović B, Peršin M (1990) A simple and new modified CVD technique for fabrication of SnO2 films. J Phys D 23:1324–1326

    Article  Google Scholar 

  30. Liu J, Gu F, Hu YJ et al (2010) Flame synthesis of tin oxide nanorods: a continuous and scalable approach. J Phys Chem C 114:5867–5870

    Article  Google Scholar 

  31. Li Y, Wang H, Xie L et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  Google Scholar 

  32. Chianelli RR, Siadati MH, De la Rosa MP et al (2006) Catalytic properties of single layers of transition metal sulfide catalytic materials. Catal Rev 48:1–41

    Article  Google Scholar 

  33. Gao MR, Jiang J, Yu SH (2012) Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 8:13–27

    Article  Google Scholar 

  34. Lee C, Li Q, Kalb W et al (2010) Frictional characteristics of atomically thin sheets. Science 328:76–80

    Article  Google Scholar 

  35. Late DJ, Liu B, Matte HSSR et al (2012) Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6:5635–5641

    Article  Google Scholar 

  36. Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  Google Scholar 

  37. Lee HS, Min SW, Chang YG et al (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12:3695–3700

    Article  Google Scholar 

  38. Gao MR, Xu YF, Jiang J et al (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42:2986–3017

    Article  Google Scholar 

  39. Lai CH, Lu MY, Chen LJ (2012) Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem 22:19–30

    Article  Google Scholar 

  40. Xu M, Liang T, Shi M et al (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798

    Article  Google Scholar 

  41. Brito JL, Ilija M, Hernández P (1995) Thermal and reductive decomposition of ammonium thiomolybdates. Thermochim Acta 256:325–338

    Article  Google Scholar 

  42. Shi Y, Zhou W, Lu AY et al (2012) Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett 12:2784–2791

    Article  Google Scholar 

  43. Liu KK, Zhang W, Lee YH et al (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 12:1538–1544

    Article  Google Scholar 

  44. Helveg S, Lauritsen JV, Lægsgaard E et al (2000) Atomic-scale structure of single-layer MoS2 nanoclusters. Phys Rev Lett 84:951–954

    Article  Google Scholar 

  45. Kibsgaard J, Lauritsen JV, Lægsgaard E et al (2006) Cluster–support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst. J Am Chem Soc 128:13950–13958

    Article  Google Scholar 

  46. Jaramillo TF, Jorgensen KP, Bonde J et al (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  Google Scholar 

  47. Zhan Y, Liu Z, Najmaei S et al (2012) Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8:966–971

    Article  Google Scholar 

  48. Lee YH, Zhang XQ, Zhang W et al (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320–2325

    Article  Google Scholar 

  49. Lee YH, Yu L, Wang H et al (2013) Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett 13:1852–1857

    Google Scholar 

  50. Shen G, Chen D, Chen PC et al (2009) Vapor–solid growth of one-dimensional layer-structured gallium sulfide nanostructures. ACS Nano 3:1115–1120

    Article  Google Scholar 

  51. Ho CH, Lin SL (2006) Optical properties of the interband transitions of layered gallium sulfide. J Appl Phys 100:083508

    Article  Google Scholar 

  52. Schlaf R, Armstrong NR, Parkinson BA et al (1997) Van der Waals epitaxy of the layered semiconductors SnSe2 and SnS2: morphology and growth modes. Surf Sci 385:1–14

    Article  Google Scholar 

  53. Li C, Huang L, Snigdha GP et al (2012) Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS. ACS Nano 6:8868–8877

    Article  Google Scholar 

  54. Peters ES, Carmalt CJ, Parkin IP (2004) Dual-source chemical vapour deposition of titanium sulfide thin films from tetrakisdimethylamidotitanium and sulfur precursors. J Mater Chem 14:3474–3477

    Article  Google Scholar 

  55. Kong D, Wang H, Cha JJ et al (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347

    Article  Google Scholar 

  56. Elias AL, Perea-Lopez N, Castro-Beltran A et al (2013) Controlled synthesis and transfer of large area WS2 sheets: from single-layer to few-layers. ACS Nano 7:5235–5242

    Article  Google Scholar 

  57. Novak J, Šoltýs J, Eliáš P et al (2012) Electrical properties of individual GaP nanowires doped by zinc. Phys Status Solidi 209:2505–2509

    Article  Google Scholar 

  58. Xiong Q, Gupta R, Adu KW et al (2003) Raman spectroscopy and structure of crystalline gallium phosphide nanowires. J Nanosci Nanotechnol 3:335–339

    Article  Google Scholar 

  59. Gu ZJ, Paranthaman MP, Pan ZW (2009) Vapor-phase synthesis of gallium phosphide nanowires. Cryst Growth Des 9:525–527

    Article  Google Scholar 

  60. Kim YH, Jun Y, Jun BH et al (2002) Sterically induced shape and crystalline phase control of GaP nanocrystals. J Am Chem Soc 124:13656–13657

    Article  Google Scholar 

  61. Johansson J, Karlsson LS, Svensson CP et al (2006) Structural properties of 〈111〉 B-oriented III–V nanowires. Nat Mater 5:574–580

    Article  Google Scholar 

  62. Muskens OL, Diedenhofen SL, Kaas BC et al (2009) Large photonic strength of highly tunable resonant nanowire materials. Nano Lett 9:930–934

    Article  Google Scholar 

  63. Borgström MT, Immink G, Ketelaars B et al (2007) Synergetic nanowire growth. Nat Nanotechnol 2:541–544

    Article  Google Scholar 

  64. Borgström MT, Wallentin J, Ramvall P et al (2010) In situ etching for total control over axial and radial nanowire growth. Nano Res 3:264–270

    Article  Google Scholar 

  65. Assali S, Zardo I, Plissard S et al (2013) Direct band gap wurtzite gallium phosphide nanowires. Nano Lett 13:1559–1563

    Article  Google Scholar 

  66. Algra RE, Verheijen MA, Borgström MT et al (2008) Twinning superlattices in indium phosphide nanowires. Nature 456:369–372

    Article  Google Scholar 

  67. Piret G, Perez MT, Prinz CN (2013) Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials 34:875–887

    Article  Google Scholar 

  68. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211

    Article  Google Scholar 

  69. Shi WS, Zheng YF, Wang N et al (2001) Synthesis and microstructure of gallium phosphide nanowires. J Vac Sci Technol B 19:1115–1118

    Article  Google Scholar 

  70. Chen ZG, Cheng L, Lu GQ et al (2010) Sulfur-doped gallium phosphide nanowires and their optoelectronic properties. Nanotechnology 21:375701–375706

    Article  Google Scholar 

  71. Wu Q, Hu Z, Liu C et al (2005) Synthesis and optical properties of gallium phosphide nanotubes. J Phys Chem B 109:19719–19722

    Article  Google Scholar 

  72. Han W, Fan S, Li Q et al (1997) Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277:1287–1289

    Article  Google Scholar 

  73. Lin HM, Chen YL, Yang J et al (2003) Synthesis and characterization of core–shell GaP@GaN and GaN@GaP nanowires. Nano Lett 3:537–541

    Article  Google Scholar 

  74. Fu LT, Chen ZG, Zou J et al (2010) Fabrication and visible emission of single-crystal diameter-modulated gallium phosphide nanochains. J Appl Phys 107:124321–124325

    Article  Google Scholar 

  75. Ishizaka A, Shiraki Y (1986) Low temperature surface cleaning of silicon and its application to silicon MBE. J Electrochem Soc 133:666–671

    Article  Google Scholar 

  76. Zou J, Paladugu M, Wang H et al (2007) Growth mechanism of truncated triangular III–V nanowires. Small 3:389–393

    Article  Google Scholar 

  77. Heurlin M, Magnusson MH, Lindgren D et al (2012) Continuous gas-phase synthesis of nanowires with tunable properties. Nature 492:90–94

    Article  Google Scholar 

  78. Gudiksen MS, Wang J, Lieber CM (2002) Size-dependent photoluminescence from single indium phosphide nanowires. J Phys Chem B 106:4036–4039

    Article  Google Scholar 

  79. Ford AC, Ho JC, Chueh YL et al (2009) Diameter-dependent electron mobility of InAs nanowires. Nano Lett 9:360–365

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91022023, 21076076), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (SRF for ROCS, SEM), Programme for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Major Basic Research Programme of Science and Technology Commission of Shanghai Municipality (10JC1403200), and Shanghai Municipal Natural Science Foundation (12ZR1407500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Gui Yang.

Additional information

SPECIAL ISSUE: Advanced Materials for Clean Energy

About this article

Cite this article

Jiang, HB., Pan, LF., Liu, PF. et al. Synthesis of well-defined functional crystals by high temperature gas-phase reactions. Chin. Sci. Bull. 59, 2135–2143 (2014). https://doi.org/10.1007/s11434-014-0249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0249-y

Keywords

Navigation