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Quantum decoherence in organic charge transport is a complicated but crucial topic. In this paper, several theoretical approaches 
corresponding to it, from incoherent to coherent, are comprehensively reviewed. We mainly focus on the physical insight provid-
ed by each theory and extent of its validity. The aim of this review is to clarify some contentious issues and elaborate on the 
promising perspectives provided by different approaches. The device model approaches based on both continuous and discretized 
treatments of the transporting layer will be first discussed. The prominent focus of this review will be devoted to the dynamic 
disorder model and its variants considering that it is the most promising approach to tackle charge transport problems in organic 
materials. We will also address other theories such as the variational method.  
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As in all other molecular systems, the electronic coherence 
is an important aspect in the transport in organic semicon-
ductors (OSCs). The phonon spectrum, consisting of both 
the intra- and inter-molecular ones, covers an extensive re-
gime and makes almost all the theories about coherence 
inefficient. As opposed to the biomolecular systems in 
which the regime of interest is where the long-lived coher-
ence exists and is thus typically specific [1], a very wide 
range of issues for organic semiconductors spanning com-
pletely incoherent (classical) to completely coherent (quan-
tum) exist [2,3]. For example, to study the mobility in a 
given molecular system, one can utilize classical (device 
model [4] or kinetic Monte Carlo simulation [5]), semiclas-
sical (surface hopping algorithm [6]), mixed quantum clas-
sical (dynamic disorder model [7] and Ehrenfest method 
[8]), and quantum (variational ansatz) theories. The diverse 
theoretical treatments make the problems obscure for ex-
perimentalists and theoreticians alike. In this review, we 
will briefly introduce each of these approaches and attempt 

to provide insights related to their applicability. 
The charge carriers in OSCs are recognized to be (posi-

tively or negatively) charged polarons, due to the strong 
self-trapping effect from lattice distortion and vibration. 
Polarons could be small or large, depending on the relative 
scales of intra- and inter-molecular interactions [9]. In a 
lattice model, these interactions could be described by di-
agonal and off-diagonal electron-phonon couplings. A typi-
cal single-carrier Hamiltonian then should be as follows 
[10] 

 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ) ,ˆ(ij i j k k k k ijk k k i j
ij k ijk

H c c b b b b c c         † † † †  (1) 

here ij  is the on-site energy for i j  and the transfer 

integral for i j ; ˆ
ic† ( ˆ

ic ) is the creation (annihilation) 

operator of a carrier on site i; k  is the frequency of the 

k-th phonon mode; ˆ
kb† ( ˆ

kb ) is the creation (annihilation) 

operator of the phonon of the k-th mode; ijk is the elec-

tron-phonon coupling constant. In some polymers, the 
charge carriers might be some mobile charged defects or 
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radicals [11]. The role of this type of carriers is to increase 
the intrinsic concentration of free carriers and also the die-
lectric constant. It is deemed to contribute mostly to the 
high conductivity of these polymers, but a comprehensive 
picture for it is still lacking. 

A commonly encountered problem in OSCs is to account 
for disorder. Impurities, molecular mismatches, entangled 
kinks, segment and phase edges may all contribute to the 
static disorder [12], whereas the molecular vibrations and 
displacements make up the dynamic disorder [7]. Normally, 
in the presence of only static disorder, the carriers must be 
completely localized to a very small region and become 
immobile [5]. Two mechanisms may enable the carrier to 
escape. Firstly, if the density of carriers increases dramati-
cally, all the traps formed by static disorder will be filled 
and the additional carriers are then movable [13]. Secondly, 
dynamic disorder could help break the localization and re-
cover the coherence, eventually making the carriers hop out 
of the deep potential well. The former case occurs in the 
organic field effect transistors (OFETs), the space charge 
limited organic light emitting diodes (OLEDs), and the or-
ganic bulk heterojunction solar cells. The latter case exists 
in more general circumstances, especially in organic crys-
tals and polymers. 

Regardless of the detailed mechanisms, the origin and the 
physical picture of decoherence are of crucial importance in 
OSCs. Generally speaking, decoherence originates from 
environment induced superselection [14]. However, little is 
known about the environmental effects in organics. In this 
context, a few experimental results could be referred to for 
the estimation of, for example, the typical decoherence time 
in these materials. The first-principle calculations can pro-
vide the distribution of vibrational frequencies and coupling 
strengths, but cannot describe how these results are related 
to the decoherence [15]. Without this basic knowledge, it is 
difficult to distinguish the different regimes from the entan-
gled experimental measurements. For example, the temper-
ature dependence of mobility in most OSCs shows quite 
strange nonmonotonic behavior [16], in which incoherent 
hopping and coherent bandlike behaviors coexist with each 
other. No characteristic value of temperature or time is clar-
ified. The existing estimations are from some non-trans- 
parent assumptions, such as the results of variational theory. 
More careful research along this aspect is thus warranted. 

The optoelectronic and electro-optic processes are of 
central importance in the study of OSCs, which show 
promising potential as future energy sources and display 
devices. The carrier injection and recombination at the in-
terfaces are very important processes and many aligned is-
sues are still under active debate. On the transport aspect, 
one would be interested in the role of scattering processes. 
Especially, processes in the hopping regime, such as the 
polaron-exciton quenching, triplet-triplet annihilation, site/ 
spin blocking, are discussed frequently [17]. While moving 
in the transporting layer, the carrier may get localized in 

some coherent region (e.g., a single molecule in amorphous 
small molecule materials) until next hopping takes place. 
The waiting time is of the order of magnitude of 1ns, within 
which the carrier has a sufficiently long time to interact with 
other particles. This interaction induces local entanglement, 
which could then influence the hopping rate [18]. Detailed 
analysis should be rather complicated but important, con-
sidering the rich and novel physics these processes contain. 

The paper is organized as follows. The next section is 
contributed to the introduction of device model. The rate 
equation algorithm and kinetic Monte Carlo simulation is 
reviewed in the third section, where the Einstein’s relation 
is also elaborated upon. The dynamical disorder model and 
relative theories for it are discussed in the fourth section, 
which is followed by discussion on the other approaches, 
such as the variational theory. Conclusions are drawn in the 
final section. 

1  Device model 

In most cases, the organic semiconducting devices based on 
both small molecules and polymers function in the incoher-
ent hopping regime (e.g. room temperature, modest electric 
field and disorder, and low carrier concentration), and the 
approaches on the macroscopic, phenomenological, and 
(semi-) classical level should be sufficiently applicable and 
efficient to simulate the device measurements. In this sec-
tion, we first give a brief description of the device model. 
The notion “device model” could be ambiguous considering 
its occurrence in nearly every theory. Nevertheless, two 
types of methods for modeling the device are most fre-
quently used: One is based on drift-diffusion equations, and 
the other is the rate (master) equations. In this section, we 
will focus on the former one, and the latter will be post-
poned to the next section. Hereafter, the device model will 
be used to refer in the context of drift-diffusion equations. 

The basic idea of the device model is to assume the or-
ganic transporting layer to be a continuous medium. The 
drift-diffusion equations that account for two types of carri-
ers, electrons and holes, when coupled with the Poisson’s 
equation [4,19], yield: 
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1
,pJp

k N R
t e x


   

 
 (2) 

 d

1
,nJn

k N R
t e x


  

 
 (3) 

 
0

( ),
E e

p n
x  


 


 (4) 

where p(n) is the hole (electron) density, with Jp (Jn) the 
corresponding electric current from holes (electrons); kd is a 
constant dissociation rate for the charge transfer excitons (or 
polaron pairs) from the Onsager-Braun model with N the 
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exciton concentration, which could either be set as an ex-
ponential function with distance from the site of absorption 
of light, or given by solving the diffusion equation of exci-
tons; R is the recombination rate; E is the electric field; e is 
the electron charge; 0 and  are the static and relative die-
lectric constants, respectively. The hole/electron current Jp/n 
are of the drift-diffusion form: 

 ( ) ,B
p p

k T p
J x e pE

e x
     

 (5) 

 ( ) ,B
n n

k T n
J x e nE

e x
     

 (6) 

where ( )p n   is the mobility of holes (electrons). The 

Einstein’s relation / / /p n p n BD k T e  has been employed 

for the diffusion current. In these equations, the mobility is 
treated as a phenomenological parameter. In some cases, a 
field dependent mobility is applied caused by the disordered 
conducting paths. However, the weakness of the continuous 
medium assumption is the lack of the appropriate treatment 
of the disorder. 

Following the straightforward idea, the most important 
step is to choose the appropriate recombination and injec-
tion models. There are three typical recombination models. 
The most commonly used among them is the Langevin bi-
molecular recombination model [20], in which the recom-
bination rate is expressed as: 

 ( ),e eR np p n   (7) 

where pe(ne) is the hole (eletron) densities in the equilibrium 
state and the coefficient  is given by 

 0( ) / .n pe       (8) 

In organic bulk heterojunction solar cells, the bimolecular 
recombination usually occurs at the donor/acceptor interface, 
so the recombination rate is limited by the charge carriers 
with smaller mobility. The second recombination model 
takes into account this effect and the coefficient  is modi-
fied as [21]: 

 
0

min( , ).n p

e  
 

  (9) 

The third model accounts for the monomolecular recom-
bination due to the charge carrier trapping by the impurities 
or defects in the active layer. According to the Shockley- 
Read-Hall (SRH) theory [22,23], the recombination rate can 
be written as: 

 SRH

( )
,

( ) ( )
n p t e e

n e p e

C C N np n p
R

C n n C p p




  
 (10) 

where Nt is the density of traps; Cp(Cn) is the capture coeffi-
cients of holes (electrons).  

Charge carriers are injected into the organic layer at the 
metal/organic contact. The injection current usually con-
tains the thermionic injection current and the field-induced 
tunneling current [4]. In most cases when the internal field 
is not extremely high, the latter current can be safely ne-
glected. For example, the thermionic injection current for 
holes at position x = 0 is given as: 

 2
th exp( / ),  p BJ AT k T  (11) 

where A is the Richardson’s constant, and p  is the injec-

tion barrier of holes. If the electric field is in the proper di-
rection, the decrease in potential due to the image charge 
effect should be taken into account as 

 0| (0) | /4π .p p e e E      (12) 

where E(0) is the electric field at x = 0. There also exists a 
reversing recombination current Jir formed by the carriers 
flowing back to the electrode. In the equilibrium state, Jth 
and Jir must satisfy the detailed balance condition and thus 
cancel each other. As a result Jir is of the form 

 2
ir

0

,
p

J AT
p

   (13) 

for holes, with p0 the intrinsic density of hole. For electrons, 
the above equations take similar forms. By combining Jth 
and Jir the interfacial current is obtained: 

 th ir ,J J J   (14) 

which gives the boundary condition for the continuity eqs. 
(2) and (3) for charge carriers. Now the equations of the 
device model can be solved numerically and all the relevant 
macroscopic quantities such as current, carrier density and 
internal electric field can be obtained straightforwardly. 

By employing the device model method, we have inves-
tigated some dynamical and steady state electronic process-
es in organic solar cells. In order to explain the experi-
mental finding of the polarity change of transient photo-
voltage curves in single-layer organic solar cells shortly 
after the laser illumination is turned on, we proposed the 
important role of the interfacial dissociation of photo-gener- 
ated excitons in producing free charge carriers [24]. The 
time evolution of the transient photocurrent signal was sim-
ulated, and the results are consistent with experimental 
findings [25]. The surface loss effect due to the carrier ex-
traction from the wrong electrode was examined, and we 
found the surface losses are enhanced with increased inter-
facial dissociation rate or diffusivity of the charge transfer 
excitons [26]. In a recent work [27], we investigated a par-
ticular type of cell degradation effects which are reflected 
by the S-shaped deformation of J-V curves. 

So far, the device model has proved to be the most accu-
rate method for rebuilding the device measurements. The 
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typical diode-like J-V curves, S-shaped J-V curves, open 
circuit voltage/short circuit current/filling factor, and (time- 
involved) photocurrent and voltage, can all be simulated 
within the same theoretical framework. To a large extent, 
the behavior of OSCs is similar to that of the traditional 
semiconductors. However, what distinguishes OSCs is the 
presence of the strong disorder induced by the soft phonon 
modes. This factor gives rise to the temperature-field- and 
structure-dependence of mobility. Considering that the per-
formance and efficiency of the devices based on OSCs is 
lower than those based on traditional semiconductors, many 
peculiar properties under extreme device operational condi-
tions are not crucial at least at the current level of technolo-
gy. With further sophistication in technological develop-
ments, however, the device model may be rendered insuffi-
cient to obtain correct results. 

2  Rate equation and Kinetic Monte Carlo  
simulation 

An intuitive way to consider the influence of disorder is to 
utilize the rate equation [28]. Different from the assumption 
of continuous medium of the device model, here the trans-
porting layer is discretized into a number of sites, with each 
site representing a single molecule, a conjugated segment in 
polymers, a percolating path, or a coherent region. The car-
rier is supposed to incoherently hop among these sites with 
some specific form of hopping rate. The most commonly 
employed form of rate equation is: 

 
d

[ (1 ) (1 )],
d

i
ij i j ij j i

j

p
p p p p

t
      (15) 

where ij is the rate of the carrier to hop from site i to j; pi is 
the probability that site i is occupied by a carrier. The initial 
state of carrier distribution must be specified and its choice 
depends on the specific experimental conditions. The equa-
tions are then solved self-consistently and the mobility can 
be calculated as 

 
,

3

(1 )
,

ij i j ij Eij
p p r

nL E








 (16) 

where ri j,E is the distance between site i and j along the di-
rection of electric field E; n is the carrier density; L is the 
size of lattice considered. 

Disorder in both the site energies and hopping constants 
(intermolecular distance) could be taken into account in the 
same framework. To this end, one can use some well- 
known theories for the hopping rate, such as the Miller- 
Abrahams theory [29], and the Marcus theory [30]. For 
example, the Miller-Abrahams formula reads, for the hop-
ping rate ij from site i to j, 

0 0

0 0

exp( / ) exp[ ( ) / ]),  

exp( / ),

ij j i B j i

ij
ij j i

r r k T

r r

    


  

      
, (17) 

where 0  is the attempt-to-escape frequency; rij is the dis-

tance between site i and site j; r0 is the localization length; 

i  is the electronic energy of carrier on site i; T is temper-

ature. Here disorder is introduced in both the energy and 
distance terms, by using appropriate probability distribu-
tions. One of the most famous distribution is Bässler’s 
Gaussian disorder model (GDM) [5], in which the electron-
ic energies of sites are drawn from the Gaussian distribution 

2 1/2 2 2(2π ) exp( / 2 )    , where   is the width of the 

disorder distribution. One can easily find, by using GDM 
and solving the rate equation for one type of carrier, the 
diffusion coefficient behaves as 2exp( 1 / )T . While this 

is true for some OSCs, it is not applicable in general. 
It is worth noting that, the Einstein’s relation is always 

violated in OSCs [31]. The strong disorder makes the sys-
tem far away from the thermal equilibrium, while the Ein-
stein’s relation is valid only near the equilibrium. One way 
to avoid this contradiction is to consider the details of local 
density of states, which however is not an efficient approach. 
Unsurprisingly then, this issue is still subject to intense re-
search. 

Typically the rate equation is not easy to solve, and the 
kinetic Monte Carlo (KMC) simulation poses a possible 
way for its solution [5]. This method originates from the 
simulation of the formation of metallic tips in STM. Instead 
of calculating the evolution of charge density, the basic idea 
of KMC is to treat the carriers one by one, namely, to first 
target each carrier’s trajectory and to calculate the averaged 
property. In detail, in a simple cubic lattice with only the 
nearest-neighbor hopping allowed, for each instance of 
hopping, the carrier residing on a given site has six target 
sites. The hopping rate to each site follows the Miller- 
Abrahams formula. One then generates two random num-
bers 1  and 2  uniformly distributed within [0,1], and 

make the hopping from site m to site  happen if [32] 

1 6 1 1 6

, , 2 tot , ,
1 1 1 1 1 1
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where 1 m N  , 1 6  . Herein, tot  is the hopping 

rate of the carrier 

 tot , 1 tot
,

, ln( ) / ,n
n




        (19) 

with   the waiting time that we want to calculate. After 
averaging on a number of samplings, the obtained diffusion 
coefficient should be similar with the analytical results. By 
this method, some of the present authors have investigated 
the field and disorder dependent mobility in the OFET,  
and the details of the KMC simulation were also carefully 
studied [32]. Meng et al. [33] have also apply this method to 
polymer-blend solar cell with Poisson equation coupled. 
However, it is necessary to emphasize that, the KMC results 
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are always dominated by some deep traps in the system, 
since the waiting time there is extremely long and thereby 
bearing significance in the final results. This implies that for 
good conducting systems, KMC may lead to incorrect re-
sults. 

3  Mixed coherent and incoherent theories 

The approaches we described so far are predominantly ap-
plicable for the amorphous organic materials. However, a 
great research interest has emerged in the study of transport 
properties in crystalline and semi-crystalline materials [34]. 
These studies are motivated by the development of organic 
field-effect transistors based on materials such as pentacene. 
In such materials over a certain temperature range, the mo-
bility is found to decrease with increasing temperature [35]. 
However, spectroscopic experiments have indicated that the 
localization length of the charge carrier spans approximate-
ly 10 molecules [36,37]. The contrast between the localized 
charge carriers and “band-like” temperature dependence 
thus poses a stiff challenge in the construction of the theo-
retical approaches. 

3.1  Dynamic disorder model 

To tackle the transport problem in crystalline organic mate-
rials, Troisi et al. [7] proposed the dynamic disorder model. 
In their study, the molecules are abstracted as transport sites 
on a one-dimensional chain, with the intermolecular transfer 
integral modulated by the lattice vibrations. For the case of 

one-electron, the Hamiltonian can be written as Ĥ   

el la
ˆ ˆ ,H H  where the electronic part is 

 el 1 1 1
ˆ ˆ ˆ[ 1 ( ) ˆ] ),ˆ(j j j j j j

j

H J u u c c c c        † †  (20) 

and the lattice part is 

 2 2
la 0

1 1
,

2 2
ˆ

j j
j

H mu m u    
   (21) 

here j is the transfer integral;   is the electron-phonon 
coupling constant; uj is the displacement of the j-th transport 
site; ˆ

jc† ( ˆ
jc ) is the creation (annihilation) operator of an 

electron on site j; m is the mass of the molecules and 0  is 

the phonon frequency. The initial positions and velocities of 
the transport sites are randomly drawn from the distribution 
at temperature T. The initial states of electrons are chosen 
from the instantaneous eigenstates of the Hamiltonian ac-
cording to the Boltzmann distribution. The dynamics of the 
electron follows the Schrödinger equation. For the dynamics 
of the lattice sites, the Hellman-Feynman force is added as 

 2
0 el( ) ( ) ( ) | | ( ) .ˆ

j j
j

mu t m u t t H t
u

  
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
  (22) 

This model can be simplified further by choosing appro-
priate system of units. This procedure results in only two 
dimensionless parameters termed as the electron-phonon 
coupling constant 2 2

0( ) / (2 )J m    and the phonon 

frequency 0 /J   . If the dynamics of the lattice sites 

are ignored, i.e., uj are fixed, the electron wavefunction will 
remain localized. However, when it is taken into account, 
the electron wavefunction will spread over time, which is 
analogous to its diffusion. In this sense, this model is termed 
as the dynamic disorder model. It turns out that the variance 
of the wavefunction is roughly proportional to time. This 
makes it possible to extract a diffusion constant from the 
calculation, from which the mobility can be calculated by 
the Einstein’s relation. The mobility obtained by this meth-
od exhibits a monotonic decrease with an increase in tem-
perature over a wide range of parameters. Various other 
approaches for the generalization of this method have also 
been proposed. For example, motivated by the development 
in organic field-effect devices, two-dimensional models 
have been developed to accurately predict mobility in a cer-
tain class of materials [38]. Li et al. [39] studied the influ-
ence of the symmetric electron-phonon coupling on the 
transport properties, as compared to the more commonly 
employed anti-symmetric form. 

Here we point out that, there remain several unsolved is-
sues with the treatment proposed by Troisi et al. [31]. Of 
foremost importance among them is the lack of clarity on 
the validity of the Einstein’s relation. Furthermore, the pro-
cedure to calculate mobility from diffusion constant war-
rants a careful examination. A more important problem 
concerns the coherence of the evolution of wavefunction. 
Although the mixed quantum-classical Ehrenfest method is 
used, the evolution of the wavefunction acquires a coherent 
form. It will keep spreading with time as a pure state. In this 
sense, the “localization length” keeps growing and the car-
rier localization is broken. This is in contradiction with ei-
ther the localization length calculated from the spontaneous 
energy eigenstates, or that measured in experiments. This 
problem becomes far clearer if an electric field is added to 
the electronic Hamiltonian. The wavefunction of the carrier 
does not exhibit the expected drift motion with the electric 
field. This might be due to the Bloch oscillations, which is a 
signature of the quantum coherence due to the lack of nec-
essary scattering mechanisms. To overcome this problem, 
Böhlin et al. [40] has proposed to add a dissipative term in 
the equation of motion of transport sites. The drift motion in 
the electric field is successfully recovered, but the relation 
between the drift mobility and the diffusion constant re-
mains to be examined. 

3.2  Other theoretical treatments 

Following the work of Troisi, Ciuchi et al. [8, 41] studied a 
similar system from the perspective of correlation functions 
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and the Kubo formula. The quantity they have calculated is 

the quantum-mechanical spread 2 2( ) (0)ˆ ˆ( ) [ ] ,X t XX t      

where ˆ ( )X t  is the position operator in the Heisenberg 

representation at time t. The derivative of this quantity is 
shown to be proportional to the integral of the autocorrela-

tion function of velocity ( ) ( ) (0ˆ ˆ ˆ) (0) ˆ( ) ,C t V t V V V t     

which is 
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      (23) 

With this relation and the Kubo formula, the optical 
conductivity    , which can be measured in experiments, 

can be calculated from 2X  by 
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 



  
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where 1 / Bk T  . In another perspective, the quantity D(t) 

can be seen as a quantum diffusivity, which corresponds to 
the diffusion constant in Troisi’s work. They found that if 
the dynamic disorder is incorporated, the diffusivity will 
gradually increase with time. However, if the dynamic dis-
order is frozen, the diffusivity will tend towards zero during 
a sufficiently long time, which is also not realistic. To get a 
constant diffusivity at long times, which is what the exper-
iments yield, they introduced the relaxation time approxi-
mation and the actual diffusivity can then be given as 

RTA ( ) ( ) exp( / )D t D t t   , where   is the relaxation time. 

The results obtained with this approach are in excellent 
agreement with the experimental findings [42]. Apart from 
the above approach based on the model Hamiltonian, the 
effect of dynamic disorder on transport properties can also 
be studied from carrier hopping point of view. Geng et al. 
[43–45] pointed out that the initial assumptions for the der-
ivation of the Marcus formula of carrier hopping rate, i.e., 
low frequency and high temperature is not suitable for the 
case of organic semiconductors. The effect of high-fre- 
quency intramolecular phonon modes has to be taken into 
consideration. They combined the density functional theory 
calculations and the molecular dynamics simulations to di-
rectly calculate the charge transfer rate beyond the above 
approximations, which is named as the tunneling enabled 
hopping model. The dynamic disorder effect is included by 
the change in the intermolecular transfer integral obtained 
from the molecular dynamics. The resulting rate is incorpo-
rated in the kinetic Monte Carlo simulations to simulate the 
diffusion process. As before, the mobility is calculated from 
the Einstein’s relation. It was found that the mobility de-
creases with an increase in temperature, thereby contrasting 
with the results from the Marcus formula. The calculated 
mobility is however in quantitative agreement with the ex-
perimental value. Another interesting finding is that the 
dynamic disorder could enhance the mobility at high  

temperature, although opposite effect is observed at low 
temperature. In this way, a mechanism for transport via lo-
calized electronic states with “band-like” temperature de-
pendence is claimed. However, it should be noted that the 
actual role of dynamic disorder in the charge transport of 
organic materials is still not clear. For example, by different 
treatments, the calculated mobility can be either sensitive  
[7] or insensitive [44] to the dynamic disorder. While some 
preliminary experimental results appear to not be favorable 
towards the effect of dynamic disorder [46], further theoret-
ical and experimental studies are certainly needed to clarify 
its role. 

3.3  Measurement-induced incoherent hopping 

The inadequacies in the aforementioned approaches war-
rants for the introduction of new physics into the study of 
transport with the dynamic disorder model. As an important 
example of the decoherence effect, it has potential to over-
come the breakdown of carrier localization, and to be able 
to describe the transition between the coherent and inco-
herent transport [47,48]. Decoherence can be brought about 
by the scattering effects from high-frequency intramolecular 
phonons [49]. It has similar effects to a quantum system as 
the iterative quantum measurement, which has been one of 
the effective ways to get the localized carriers moving in 
low dimensional disordered Anderson models [49]. 

Recently, we proposed a physical picture of decoherence 
effect in dynamic disorder model, by incorporating a deco-
herence time td [50]. In this approach, the wavefunction of a 
single carrier starts from a single site at time t = 0. It 
evolves with time until time t = td, when the decoherence 
effects collapse the wavefunction of the carrier to a single 
site again, namely measure the carrier in a quantum manner. 
The site that the wavefunction collapses to is chosen ac-
cording to the probability distribution from the wavefunc-
tion at t = td. This physical picture can be termed as the fre-
quent projection method. From the point of view of statisti-
cal ensembles, it could be described by the equation of mo-
tion of the density matrix , by adding a decay term for the 
off-diagonal matrix elements. The nonvanishing off-   
diagonal matrix element is a signature of the quantum co-
herence between different sites. If td is small, the nondiago-
nal elements remain small in the evolution, and thereby the 
quantum coherence is suppressed. 

The results of these calculations, when employing the 
same parameters as those used by Troisi, show that the dif-
fusion of the carrier wavefunction slows down due to the 
addition of td. As td increases, the diffusion constant gradu-
ally increases to the value of Troisi’s work. The temperature 
dependence of diffusion constants is also investigated and 
found to change from negative to positive influence as the 
intermolecular transfer integral J decreases. This could be 
seen as an indication of the transition from coherent to  
incoherent transport. For intermediate values of transfer 
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integral, the dependence is not monotonous and exhibits 
more complicated behavior which calls for further study. 
Furthermore, the spatial extent of the carrier wavefunction 
is calculated in this framework and found similar to the car-
rier localization length determined by experiments when the 
decoherence time is 1 ps, which serves as an estimation to 
the decoherence time in real situations. Further work may 
include the realization of this phenomenological physical 
picture from more detailed models of electron-phonon in-
teractions, such as the Holstein model. It is also meaningful 
to explore the relation of this method with other approaches 
to introduce scattering into the dynamic disorder model, 
such as the relaxation time approximation mentioned above. 

4  Semiclassical and variational approaches 

In this section we comment on some other theoretical 
methods which are relevant to the charge transport in OSCs. 
They are all based on the Holstein-like models, and take 
into account the electron-phonon interactions. This should 
be more a priori idea to study the coherent and incoherent 
transitions. The Holstein model has no exact solutions for 
the whole parameter regime. More importantly, the transi-
tion point between coherent and incoherent is within the 
parameter region that is the hardest to deal with. Therefore, 
different theoretical approaches join in to make contribu-
tions. Till now, the development of methods is the core top-
ic in this subfield. 

The idea of semiclassical simulations relies on the map-
ping of electronic Hamiltonian from quantum to classical 
domain, by using a path integral formulism and a frozen 
Gaussian wavepacket [51]. The central point of this method 
is to appropriately deal with the quantum fluctuation with-
out a growth in the computational cost. The most famous 
way to achieve this is the so-called initial value representa-
tion [52], whose idea is to express the time-involved posi-
tion and momentum via their initial values. This method 
should be quite efficient, but the numerical precision is hard 
to control. Another way is the surface hopping algorithm, 
which treats the trajectory of phonons separately and makes 
the hopping eventually happen by a specific criterion. In-
terested readers are recommended to read Tully’s review 
paper on this issue [6]. 

Alternatively, one may try to solve the model on some 
approximating level. The variational theory is mostly used. 
The pioneer work is by Yarkony and Silbey [2], who stud-
ied very carefully the coherent and incoherent components 
of the mobility. The variational parameter is mainly the dis-
placement of phonon, as the phonons are supposed to be in 
the coherent states 

 *( ) 0 ,n l l l l ph
n l

D A n B b B b    †  (25) 

here, An and Bl are the variational parameter for electron on 

n-th site and phonon with l-th mode, respectively. One can 
then calculate the total energy and minimize it to obtain the 
ground state of the system. In different theories, the trial 
states can be slightly different, but the physical motivations 
behind them are identical. Within this theoretical framework, 
both weak and strong electron-phonon couplings could be 
described, but in the intermediate case, which is the most 
important, it loses the efficiency. 

5  Concluding remarks 

OSCs have emerged as promising materials for their use in 
a number of advanced applications. However, so far their 
commercial potential has not been developed sufficiently 
relative to the huge variety and low cost of organic mole-
cules. In this field, the experiment and theory were usually 
going on different branches. The key point is, in our opinion, 
the materials, technologies and observed phenomena are too 
diverse. The theoretical approaches have no common point 
as well, as we have indicated above. Even so, we still think 
the electronic coherence is in the core position. Actually, 
the electronic coherence in charge transport in OSCs has 
been studied extensively in the literature. One can make a 
large effort on this issue on the present stage. No matter 
which method mentioned above, it can definitely contribute 
to the community. For example, the clarification of the un-
known decoherence time scale could help the theoretician to 
distinguish coherent and incoherent regime more clearly. 
More novel physics could be discovered, if the fundamental 
problems were solved. Therefore, one would expect more 
comprehensive works on the charge transport in the near 
future. 

This work was supported by the National Natural Science Foundation of 
China (11134002, 10874028), and the National Basic Research Program 
of China (2009CB929204, 2012CB921402). The authors thank Dr. Pratha- 
mesh Shenai for reading the manuscript. 

1 Ishizaki A, Fleming G R. Theoretical examination of quantum co-
herence in a photosynthetic system at physiological temperature. Proc 
Natl Acad Sci USA, 2009, 106: 17255 

2 Yarkony D R, Silbey R J. Variational approach to exciton transport in 
molecular crystals. J Chem Phys, 1977, 67: 5818 

3 Cheng Y C, Silbey R J. A unified theory for charge-carrier transport 
in organic crystals. J Chem Phys, 2008, 128: 114713 

4 Davids P S, Campbell I H, Smith D L. Device model for single carri-
er organic diodes. J Appl Phys, 1997, 82: 6319 

5 Bässler H. Charge transport in disordered organic photoconductors: 
A Monte Carlo simulation study. Phys Status Solidi B, 1993, 175: 15 

6 Tully J C. Perspective: Nonadiabatic dynamics theory. J Chem Phys, 
2012, 137: 22A301   

7 Troisi A, Orlandi G. Charge-transport regime of crystalline organic 
semiconductors: Diffusion limited by thermal off-diagonal electronic 
disorder. Phys Rev Lett, 2006, 96: 086601 

8 Ciuchi S, Fratini S, Mayou D. Transient localization in crystalline 
organic semiconductors. Phys Rev B, 83: 081202 

9 Tamura H, Tsukada M, Ishii H, et al. Roles of intramolecular and   



2676 Yao Y, et al.   Chin Sci Bull   August (2013) Vol.58 No.22 

intermolecular electron-phonon coupling on the formation and transport 
of large polarons in organic semiconductors. Phys Rev B, 2012, 86: 
035208 

10 Hannewald K, Stojanović V M, Schellekens J M T, et al. Theory of 
polaron bandwidth narrowing in organic molecular crystals. Phys 
Rev B, 2004, 69: 075211 

11 Hains A W, Liang Z, Woodhouse M A, et al. Molecular semicon-
ductors in organic photovoltaic cells. Chem Rev, 2010, 110: 6689 

12 Coropceanu V, Cornil J, da Silva Filho D A, et al. Charge transport in 
organic semiconductors. Chem Rev, 2007, 107: 926 

13 Konezny S J, Bussac M N, Zuppiroli L. Hopping and trapping 
mechanisms in organic field-effect transistors. Phys Rev B, 2010, 81: 
045313 

14 Zurek W H. Decoherence, einselection, and the quantum origins of 
the classical. Rev Mod Phys, 2003, 75: 715 

15 Picon J D, Bussac M N, Zuppiroli L. Quantum coherence and carriers 
mobility in organic semiconductors. Phys Rev B, 2007, 75: 235106 

16 Sakanoue T, Sirringhaus H. Band-like temperature dependence of 
mobility in a solution-processed organic semiconductor. Nat Mater, 
2010, 9: 736 

17 Pope M, Swenberg C E. Electronic Processes in Organic Crystals. 
Oxford: Oxford University Press, 1982 

18 Wei S, Yao Y, Wu C Q. Theory of incoherent hopping transport with 
spin interactions in organic semiconductors. in press 

19 Koster L J, Smits E C P, Mihailetchi V D, et al. Device model for the 
operation of polymer/fullerene bulk heterojunction solar cells. Phys 
Rev B, 2005, 72: 085205 

20 Langevin P. Recombinaison et mobilites des ions dans les gaz. Ann 
Chim Phys, 1903, 28: 433 

21 Koster L J, Mihailetchi V D, Blom P W M. Bimolecular recombina-
tion in polymer/fullerene bulk heterojunction solar cells. Appl Phys 
Lett, 2006, 88: 052104 

22 Schockley W, Read W T. Statistics of the recombinations of holes 
and electrons. Phys Rev, 1952, 87: 835 

23 Hall R N. Electron-hole recombination in germanium. Phys Rev, 
1952, 87: 3878 

24 Yao Y, Sun X Y, Ding B F, et al. A combined theoretical and ex-
perimental investigation on the transient photovoltage in organic 
photovoltaic cells. Appl Phys Lett, 2010, 96: 203306 

25 Li D L, Si W, Yang W C, et al. Spike in transient photocurrent of or-
ganic solar cell: Exciton dissociation at interface. Phys Lett A, 2012, 
376: 227 

26 Yang W C, Li D L, Yao Y, et al. Enhanced surface losses of organic 
solar cells induced by efficient polaron pair dissociation at the met-
al/organic interface. J Appl Phys, 2012, 112: 034510 

27 Yang W C, Yao Y, Wu C Q. Mechanisms of device degradation in 
organic solar cells: Influence of charge injection at the metal/organic 
contacts. Org Electron, 2013, 14: 1992 

28 Pasveer W F, Cottaar J, Tanase C, et al. Unified description of 
charge-carrier mobilities in disordered semiconducting polymers. 
Phys Rev Lett, 2005, 94: 206601 

29 Miller A, Abrahams E. Impurity conduction at low concentrations. 
Phys Rev, 1960, 120: 745 

30 Marcus R A. On the theory of electron-transfer reactions. VI. Unified 
treatment for homogeneous and electrode reactions. J Chem Phys, 
1965, 43: 679 

31 Wetzelaer G A H, Koster L J A, Blom P W M. Validity of the ein-
stein relation in disordered organic semiconductors. Phys Rev Lett, 
2011, 107: 066605 

32 Zhou J, Zhou Y C, Zhao J M, et al. Carrier density dependence of 
mobility in organic solids: A Monte Carlo simulation. Phys Rev B, 
2007, 75: 153201 

33 Meng L, Wang D, Li Q, et al. An improved dynamic Monte Carlo 
model coupled with Poisson equation to simulate the performance of 
organic photovoltaic devices. J Chem Phys, 2011, 134: 124102 

34 Gershenson M E, Podzorov V, Morpurgo A F. Electronic transport in 
single-crystal organic transistors. Rev Mod Phys, 2006, 78: 973 

35 Podzorov V, Menard E, Borissov A, et al. Intrinsic charge transport 
on the surface of organic semiconductors. Phys Rev Lett, 2004, 93: 
086602 

36 Matsui H, Mishchenko A S, Hasegawa T. Distribution of localized 
states from fine analysis of electron spin resonance spectra in organic 
transistors. Phys Rev Lett, 2010, 104: 056602 

37 Devizis A, Meerholz K, Hertel D, et al. Ultrafast charge carrier mobility 
dynamics in poly(spirobifluorene-co-benzothiadiazole): Influence of 
temperature on initial transport. Phys Rev B, 2010, 82: 155204 

38 Troisi A. Dynamic disorder in molecular semiconductors: Charge 
transport in two dimensions. J Chem Phys, 2011, 134: 034702 

39 Li Y, Yi Y, Coropceanu V, et al. Symmetry effects on nonlocal elec-
tron-phonon coupling in organic semiconductors. Phys Rev B, 2012, 
85: 245201 

40 Böhlin J, Linares M, Stafström S. Effect of dynamic disorder on 
charge transport along a pentacene chain. Phys Rev B, 2011, 83: 
085209 

41 Ciuchi S, Fratini S. Band dispersion and electronic lifetimes in crys-
talline organic semiconductors. Phys Rev Lett, 106, 166403 

42 Li Z Q, Podzorov V, Sai N, et al. Light quasiparticles dominate elec-
tronic transport in molecular crystal field-effect transistors. Phys Rev 
Lett, 2007, 99: 016403 

43 Geng H, Peng Q, Wang L, et al. Toward quantitative prediction of 
charge mobility in organic semiconductors: Tunneling enabled hop-
ping model. Adv Mater, 2012, 24: 3568 

44 Wang L, Li Q, Shuai Z, et al. Multiscale study of charge mobility of 
organic semiconductor with dynamic disorders. Phys Chem Chem 
Phys, 2010, 12: 3309 

45 Nan G, Yang X, Wang L, et al. Nuclear tunneling effects of charge 
transport in rubrene, tetracene, and pentacene. Phys Rev B, 2009, 79: 
115203 

46 Platt A D, Kendrick M J, Loth M, et al. Temperature dependence of 
exciton and charge carrier dynamics in organic thin films. Phys Rev 
B, 2011, 84: 235209 

47 Landry B R, Subotnik J E. Standard surface hopping predicts incor-
rect scaling for Marcus’ golden-rule rate: The decoherence problem 
cannot be ignored. J Chem Phys, 2011, 135: 191101 

48 Landry B R, Subotnik J E. How to recover Marcus theory with fewest 
switches surface hopping: Add just a touch of decoherence. J Chem 
Phys, 2012, 137: 22A513 

49 Flores J C. Iterative quantum local measurements and Anderson lo-
calization inhibition. Phys Rev B, 2004, 69: 012201 

50 Yao Y, Si W, Hou X Y, et al. Monte Carlo simulation based on dy-
namic disorder model in organic semiconductors: From coherent to 
incoherent transport. J Chem Phys, 2012, 136: 234106 

51 Heller E J. Frozen Gaussians: A very simple semiclassical approxi-
mation. J Chem Phys, 1981, 75: 2923 

52 Kluk E, Herman M F, Davis H L. Comparison of the propagation of 
semiclassical frozen Gaussian wave functions with quantum propaga-
tion for a highly excited anharmonic oscillator. J Chem Phys, 1986, 
84: 326 

 
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction 

in any medium, provided the original author(s) and source are credited. 


