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Classical theories explaining the evolution of cooperation often rely on the assumption that the involved players are symmetrically 
interacted. However, in reality almost all well-documented cooperation systems show that cooperative players are in fact asym-
metrically interacted and that this dynamic may greatly affect the cooperative behavior of the involved players. Here, we devel-
oped several models based on the most well known spatial game of the Hawk-Dove game, while also considering the effects of 
asymmetric interaction. Such asymmetric games possess four kinds of strategies: cooperation or defection of strong player and 
cooperation or defection of weak player. Computer simulations showed that the probability of defection of the strong player de-
creases with decreasing the benefit to cost ratio, and that all kinds of strategy will be substituted by cooperation on behalf of the 
strong player if the benefit to cost ratio is sufficiently small. Moreover, weak players find it difficult to survive and the surviving 
weak players are mostly defectors, similar to the Boxed Pigs game. Interestingly, the patterns of kinds of strategies are chaotic or 
oscillate in some conditions with the related factors. 
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Explaining how different individuals or units could be co-
herent to a functional unit (i.e. how an individual organism 
or group fit in within a cooperation system) remains one of 
the most elusive questions in biology. In genetics, if genes 
do not cooperate but over-exploit the resource of other 
genes by over-copying itself, the healthy tissue or organism 
becomes a tumor or cancer [1]. Similarly, if individuals 
within a group, team or society do not cooperate and over- 
exploit the common resources at the expense of others, the 
group, team or society will be disrupted [2]. This problem is 
equally true for species within an eco-system, since other 
studies have shown that almost all the species cooperate 
with at least one other species [3]. The eco-systems could 
not have evolved in to a functional unit if without coopera-
tion [4,5].  

Although cooperation interactions are one of the basic 
existence in both biological and social systems, the funda-
mental conundrum is why selfish individuals, or any other 
unit for that matter, do not over-exploit common resources 
at the expense of others, thereby disrupting the cooperation 
systems, especially when the common resource utilization 
are saturated, even when the interacted individuals are 
highly genetically or reciprocally related [6,7]. Classical 
explanatory theories including kin selection (i.e. Hamilton’s 
rule), reciprocity selection (i.e. Iterated Prisoners’ Dilemma) 
or group selection, argued, with the idea of the “contract”, 
that spatial heterogeneity of the common resources or self- 
restraint will maintain the cooperation interaction when the 
conflict for the common resource exist among cooperative 
partners [5,8–11]. These theories suggested maintaining 
mechanisms, however, encounter an unsolvable problem: 
why do both mutants that could overcome the spatial heter-
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ogeneity or abandon the self-restraint do not reproduce and 
pass their behaviors down to their offspring or continue 
their actions? Logically, such a mutant or more selfish indi-
viduals lacking self-restraint should be able to utilize the 
common resources at the expense of others, receiving a 
benefit advantage after the saturation of the common re-
source utilization [2,5,12].  

However, recent findings—especially in the experimental 
evidence of one of the most famous inter-specific coopera-
tion between fig and its obligate pollinators—that spatial 
heterogeneity and self-restraint are not credible mechanisms 
to maintaining a cooperation system [5,13,14]. The empiri-
cal data in fig-fig wasp systems suggested that the asym-
metric interaction between cooperative actors and the recip-
ient might be a critical mechanism in maintaining the coop-
eration, but such an asymmetric interaction may potentially 
lead to indeterminate interaction (e.g., chaotic interaction) 
between the cooperative actors and the recipient. Such 
asymmetric interactions that may maintain the cooperation 
have also been implied to exist in other inter-specific coop-
eration [15,16], and intra-specific cooperation systems in-
cluding ants, bees and a society of mammals [17–19]. Here, 
we modified this understanding of how asymmetric interac-
tion maintains the cooperative interaction between the co-
operative actors and recipients, based on one of the most 
well-known models, the Hawk-Dove game. Likewise, we 
explain how the cooperative interaction between coopera-
tive actors and recipient chaotically vary or oscillate based 
on the change of related factors. 

1  Background of the Hawk-Dove model 

The Iterated Prisoners’ Dilemma (IPD) is widely used to 
explain the evolution of cooperation [8,11]. In IPD, when 
they receive cooperation behavior from donors, cooperating 
and not defecting with counter partners becomes the pre-
dominant strategy for any involved players via Tit-for-Tat 
in a repeated game. This unique cooperating strategy for 
any players in IPD model does not, in fact, conform to real 
cooperation systems. In almost all real cooperation systems, 
ranging from the eusocial-society of insects to inter-specific 
cooperation systems, almost all cooperative partners take a 
mixed strategy of either cooperating or competing with their 
counter-partners [13,18,20–23]; as the same is true in the 
genetic expression of a coherent cell [24]. 

An alternate but equally famous model describing the 
evolution of cooperation is the Hawk-Dove game (HDG). In 
HDG, the payoff of different strategies satisfy T>R>S>P, 
differing from IPD in which the payoff satisfies T>R>P>S 
and 2R>T+S, where T and S are the respective payoffs of 
the defector and cooperator in the circumstance of unilateral 
cooperation, while R (P) are the payoff of cooperators (de-
fector) during mutual cooperation (defection) [8,11,24]. The 
reverse between the payoffs P and S in the Hawk-Dove 

model fundamentally changes situation of the evolution of 
cooperation. In IPD, the recipient will predominantly re-
ward the original donor because of the reciprocal exchange 
and Tit-for-Tat in the indefinitely iterated game between the 
recipient and donors. Taking a cooperative strategy will the 
predominant strategies for the involved partner of the coop-
eration systems in such a game. However, in HDG, the in-
volved partners take a mixed strategy of either cooperation 
or defection, but not a pure strategy of cooperation, greatly 
differing from IPD. Assumptions that players in cooperation 
strategies will opt for mixed strategies is likewise more 
reasonable when examining real cooperation systems. 
Based on HDG, we would like to exploit how asymmetric 
interactions between the recipient and cooperative donor 
affect the cooperative behavior.  

2  Model assumption and simulation 

The Hawk-Dove model imagines that two players (e.g., 
gene of chromosome, individuals of animals, different spe-
cies, etc.) are contesting a resource of value (v). Each player 
simultaneously decides whether to “Hawk” (i.e., defect, 
marked H) or “Dove” (i.e., cooperate, marked D). The game 
has four strategy profiles: (H, H), (H, D), (D, H), (D, D). 
The payoff of each player depends on both its own actions 
and those of its counter-partner. In the classical model based 
on pairwise and symmetric interaction between the players, 
there are four possible values for this payoff. The two co-
operators thus get a reward (R=v/2) while two defectors 
receive a punishment (P=(v−c)/2) because mutual defection 
involves a cost (c) to both players. The trade between a co-
operator and a defector gives temptation (T=v) for the latter, 
while the former receives the sucker’s payoff (S=0) [14,24].  

In classic HDG, the co-players’ strength is equal; how-
ever, most actual contests are asymmetric interactions. The 
interacting players may be different in size or strength, in-
fluencing the outcome of the game [21,24]. In asymmetric 
cooperation systems, the payoff for the players may depend 
on their strength and the strength ratio of the two players, 
k:(1k) therefore describes the degree of asymmetry be-
tween the interacting players, here k and 1k can be the 
percentage of resources dominated by each player, the 
probability of winning the fight with others, or any other 
parameters similarly characterized by an interaction be-
tween a dominate and sub-ordinates. We likewise assume 
that the cost (c) of defecting is greater than the benefit (v) of 
cooperation. If both then cooperate, their payoff depends on 
their strength, that is, RS=kv, RW=(1k)v. If both defect, the 
injury level of players is inversely proportional to their 
strength, namely, PS=(vc)/4k, PW=(vc)/4(1k). Here, the 
indices “S” and “W” represent “the strong players” and “the 
weak players”, respectively. In this payoff assumption, the 
payoff of each strategy will transform to the payoff of the 
classic Hawk-Dove game if k=0.5. With unilateral coopera-
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tion, the player’s payoff is the same with that in the classic 
HDG model. According to the above assumptions, the pay-
off matrix is as shown in Table 1 [14]. 

Here, we analyzed the effects of asymmetric interaction 
and the benefit to cost ratio in spatial games via the asym-
metric Hawk-Dove game. Classical spatial game theory 
does not include the effects of asymmetric interaction of 
individuals [24–28]. Considering these effects, we propose 
four simple kinds of strategies: defection of the strong play-
er, cooperation of the strong player, defection of the weak 
player and cooperation of the weak player. These four 
strategies can be denoted by vectors as SH=(1,0,0,0), 
SD=(0,1,0,0), WH=(0,0,1,0), WD=(0,0,0,1), respectively. Us-
ing the method of Nowak and May [26], we explored the 
spatial array in the asymmetric Hawk-Dove game: in each 
round, every individual “plays the game” with its immediate 
neighbors. Afterward, each site is occupied either by its 
original owner or by one of the neighbors, depending on 
who scores the highest total in that round, and so on through 
the next round of the game [26]. This rule is named 
win-stay and lose-shift [27]. In order to calculate the scores 
of each player, we used the transformation of Harsnyi [29], 
based on Table 1, and created a new payoff matrices of the 
spatial game (Table 2).  

Table 2 can be denoted by matrix as 
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Then the total score of player i is  
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  . 

Here xi is the vector of the kind of player i and xj
T is  

Table 1  Payoff matrices for the asymmetric Hawk-Dove game 

  Weak player 

  Hawk (H) Dove (D) 

Strong player 
Hawk (H) ((v−c)/4k, (v−c)/4(1−k)) (v, 0) 

Dove (D) (0, v) (kv, (1−k)v) 

Table 2  Payoff matrices for the symmetric after transformation of asym-
metric Hawk-Dove gamea) 

  Player B 
  SH SD WH WD 

Player A 

SH (v−c)/2 v (v−c)/4k v 
SD 0 v/2 0 kv 
WH (v−c)/4(1−k) v (v−c)/2 v 
WD 0 (1−k)v 0 v/2 

a) Payoff is same to the classic HDG model when strong counter strong 
players or weak counter weak players, viz. the payoff of both players is 
symmetric. Additionally, parameters satisfy k>0.5 and v<c. 

transposition vector of strategy of player j, it can be 
SH=(1,0,0,0) or SD=(0,1,0,0) or WH=(0,0,1,0) or WD= 
(0,0,0,1); and i is the neighbor set of player i. 

For convenience, the degree of asymmetry can be 
mathematically defined by h=k/(1k), where k and 1k are 
the respective strengths of dominates and sub-ordinates [14]. 
In HDG, the benefit to cost ratio (m) can also greatly affect 
the cooperation probability [14,30], where the m=v/c, and v 
and c are respectively the benefit of the resource and the 
cost of defect. In this model, it is interesting to explore how 
asymmetric interactions and the benefit to cost ratio intrin-
sically affect individual behavior in a cooperation systems 
under the fundamental mechanism of win-stay, lose-shift; 
wherein the win-stay and lose-shift is widespread rule in 
spatial evolution of cooperation [27,31]. 

3  Results and discussion  

Considering the asymmetric payoff between the cooperative 
partners in HDG, our developed model shows that involved 
partners will change their strategies in different situations 
(e.g., difference in the benefit to cost ratio and the degree of 
asymmetry between strong and weak players). The simula-
tions we illustrated showed that the cooperation of strong 
player, the defection of weak player, the defection of strong 
player could coexist if the benefit to cost ratio is lower than 
1/2, but it should not be too small (e.g., m=1/2, 1/4, 1/7 in 
Figure 1 Lower); whereas, if the benefit to cost ratio is suf-
ficient small (e.g., m=1/8 in Figure 1 Lower and Figure 
2(a)), all kinds of strategy will be substituted by the cooper-
ation of strong player. However, most of the involved part-
ners will be substituted by the defection of strong player if 
the benefit to cost ratio is great (e.g. b/c is equal to 0.99 in 
Figure 1). The benefit to cost ratio can be seen as an im-
portant factor for limited dispersal or exit cost of coopera-
tion systems. The less limited dispersal or more exit cost for 
the involved individuals, the more difficult it would be for the 
involved individuals to disperse to other colonies or groups 
[14,32]. More precisely, decreasing the limited dispersal or 
increasing exit cost for players in a system (i.e., decreasing 
the benefit to cost ratio, Figure 1), the cooperative partici-
pants may accordingly tend to cooperate in such a system. 

We went further and simulated how the degree of asym-
metry and the benefit to cost ratio affect the frequency of 
each kind of strategy in this model. Given the degree of 
asymmetry, the probability of cooperation of strong player 
will increase with the increasing benefit to cost ratio, but the 
other three strategies will subsequently decrease (Figure 3). 
Moreover, if the benefit to cost ratio is given, the probabil-
ity of defection by the strong player reduces with increasing 
the degree of asymmetry, while the probability of defection 
of weak player increases; however, the probability of coop-
eration of strong and weak players are almost invariable 
under the variation of degree of asymmetry (Figure 4). Here,  
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Figure 1  Spatial dynamics of four strategy players for discrete time simulations in the asymmetric spatial Hawk-Dove game. Simulations were performed 
on an 200×200 square lattice with periodic boundaries. Interaction occurs between the eight nearest neighbors and also includes self-interaction. Each picture 
shows the spatial distribution after 100 generations. The parameter m denotes the benefit to cost ratio (b/c) and h denotes the degree of asymmetry (k/(1k), 
here k>0.5). Color codes are as follows: blue, defection of strong player (SH); green, cooperation of strong player (SD); red, defection of weak player (WH); yellow, 
cooperation of weak player (WD). The benefit of cooperation (v) is fixed at 1 and the initial value of the four strategies for all simulation is fixed at 0.25.  

it is necessary to point out that the initial values for each of 
the four strategies are equal to 0.25 while the ratio of benefit 
to cost is lower than 1/2 in the above simulations.  

Interestingly, when the benefit to cost ratio is greater 
than 1/2, the changing spatial patterns of each strategy pre-
sent chaotic (Figure 1 Upper). In many situations with the 
condition that the cost ratio is greater than 1/2, both cooper-
ation and defection of strong player could overtake the 
whole lattices, and the frequency of defection by the strong 
player will increase with increasing the benefit to cost ratio 
(Figure 1 Upper and Figure 3). There are a variety of kinds  

of strategies if the benefit to cost ratio is adjacent to 1/2, 
especially when the asymmetric interaction approaches 
symmetry (i.e., the degree of asymmetry equal to 1:1) (Fig-
ure 1). This reality implies that cooperation systems may 
exists as the most appropriate condition for coexistence de-
spite players employing a variety of different strategies. 

Relative to the simulations of the symmetric model 
[26,27,30,33], the presence of asymmetric interaction in-
creases the diverse forms of cooperation in the model we 
developed (Figures 1 and 2). If the benefit to cost ratio is 
small (e.g. b/c is less than 1/2 in Figure 1 Lower), the  
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Figure 2  Scatter of four strategy players for different the benefit to cost ratio (a–c) and the degree of asymmetry (d–f) in the asymmetric spatial 
Hawk-Dove game. Vectors of the benefit to cost ratio and degree of asymmetry are (1/8, 8), (1/6, 2), (1/2, 1.004), (0.51, 8), (0.67, 2), (0.77, 1.004) in (a), (b), 
(c), (d), (e), (f), respectively.  

 

Figure 3  Probability of four strategies for different the benefit to cost ratio. The benefit to cost ratio are 1/2 and 1/6 in (a) and (b), respectively. The degree 
of asymmetry is fixed at 2. Note: The notations of WH/WD and SH/SD represent the probability of defection/cooperation of weak player and the probability of 
defection/cooperation of strong player (respectively).  

weak players are all defector (“red”), and the probability of 
defection of strong player (“blue”) will decrease with the 
concurrent decrease in the benefit to cost ratio (Figure 1 

Lower). In essence, the strong players tend to cooperate 
while weak players defect, similar to the results of Boxed 
Pigs game [34]. However, if the benefit to cost ratio is great  
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Figure 4  Probability of four strategies for different degrees of asymmetry. The degrees of asymmetry are 1.2 and 100 in (a) and (b), respectively. The 
benefit to cost ratio is fixed at 0.5. 

(e.g. b/c is more than 1/2 in Figure 1 Upper), uncertainty in 
the cooperation systems will increase (Figure 1 Upper). In 
this situation, the weak players find it difficult to survive if 
the asymmetric interaction is great enough (e.g. h is more 
than 2 in Figure 1 Upper). 

4  Conclusion 

The Hawk-Dove game has often been given attention as a 
metaphor for understanding and analyzing the problems 
surrounding how cooperative behavior evolved. HDG has 
been considered useful in these endeavors because of the 
assumption in both biology and the social sciences that 
partners interact symmetrically [14,24,32,35,36]. This study 
has illustrated the effect of both the benefit to cost ratio and 
the degree of asymmetry on a spatial game of HDG. Our 
analysis demonstrates that these two factors greatly affect 
cooperative behavior of participants in cooperation systems.  

Our simulations showed that the probability of coopera-
tion of the system will increase with increasing the benefit 
to cost ratio; likewise, the probability of defection of the 
strong player will decrease while the probability of defec-
tion by the weak players will increase with increasing the 
degree of asymmetry. The variations between the other 
strategies were not as obvious. Moreover, the surviving 
weak players are mostly defectors, and the other kinds of 
strategy will be substituted by cooperation of strong player 
if the benefit to cost ratio is sufficiently small. These simu-
lations also showed that there are a variety of viable strate-

gies if the benefit to cost ratio is adjacent to 1/2, and the 
patterns this variety are chaotic or oscillate based on the 
change of related factors if the benefit to cost ratio is greater 
than 1/2. These findings have several implications that may 
help us more fully understand the dynamic of meta-popula-     
tions [37]. Furthermore, the results potentially implicate that 
the dynamics of spatially extended systems possesses a 
wide variety of forms in both biological and social systems. 
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