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The Paiku composite leucogranitic pluton in the Malashan gneiss dome within the Tethyan Himalaya consists of tourmaline leu-
cogranite, two-mica granite and garnet-bearing leucogranite. Zircon U-Pb dating yields that (1) tourmaline leucogranite formed at
28.2+0.5 Ma and its source rock experienced simultaneous metamorphism and anatexis at 33.6+0.6 Ma; (2) two-mica granite
formed at 19.8+0.5 Ma; (3) both types of leucogranite contain inherited zircon grains with an age peak at ~480 Ma. These leu-
cogranites show distinct geochemistry in major and trace elements as well as in Sr-Nd-Hf isotope compositions. As compared to
the two-mica granites, the tourmaline ones have higher initial Sr and zircon Hf isotope compositions, indicating that they were
derived from different source rocks combined with different melting reactions. Combined with available literature data, it is sug-
gested that anatexis at ~35 Ma along the Himalayan orogenic belt might have triggered the initial movement of the Southern Ti-
betan Detachment System (STDS), and led to the tectonic transition from compressive shortening to extension. Such a tectonic
transition could be a dominant factor that initiates large scale decompressional melting of fertile high-grade metapelites along the
Himalayan orogenic belt. Crustal anatexis at ~28 Ma and ~20 Ma represent large-scale melting reactions associated with the

movement of the STDS.
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Cenozoic leucogranites within the Himalayan collisional
orogenic belt is one of the type examples of S-type granite
worldwide. Knowledge of their geochemical nature and
timing of formation could not only potentially promote our
understanding of the melting behaviors of deep crustal rocks
during collisional orogenic processes, but also provide key
geochemical and temporal constraints on the tectonic evolu-
tion of the Himalayan orogenic belt. Earlier studies on these
Cenozoic granites have demonstrated that most of them
formed at 27-10 Ma [1-4] and were derived from in situ
partial melting of high-grade metapelites [3,5,6]. Experi-
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mental results have demonstrated that partial melting of
Formation-I kyanite-bearing metapelite indeed can produce
melts with elemental and isotopic compositions resembling
the Himalayan Cenozoic leucogranites [6,7], however, in-
creasing number of updated studies have documented that
episodic anatexis occurred in the Northern Himalayan
Gneiss Domes (NHGD) as well as in the High Himalayan
Crystalline Sequence (HHCS) since the continental collision
between India and Eurasia. These anatectic episodes include
(1) dehydration melting of a source consisting dominantly
of amphibolite with subordinate pelitic gneiss at thickened
crustal conditions [8—14]. These melting events are repre-
sented by older than 35 Ma peraluminous granitoids with
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relatively high Na/K and Sr/Y ratios; (2) fluid-present
melting of metapelite since ~38 Ma to produce granitic
melts with high CaO and Sr contents and low Rb/Sr ratios
[15-18]; and (3) late Eocene to early Oligocene anatexis
recorded in syn-collision leucogranites and migmatites in
the Gyirong area and the Mabja Gneiss Dome [19-21]. A
large number of studies have demonstrated that metapelites
are fertile and could undergo progressive partial melting
with variations in temperature, pressure, and water content,
which leads to the formation of granites with different geo-
chemical characteristics in major and trace element as well
as in isotope (e.g. Sr, Nd) geochemistry [4,6,7,16,18,22,23].
Therefore, these granites provide an important probe to in-
vestigate how the middle-lower crustal rocks respond to the
tectonic evolution of orogenic belts. Data summarized
above indicate that partial melting in the Himalayan oro-
genic belt could be traced back to the middle Eocene and
sources and mechanisms of anatexis are more complex than
previous thought, therefore, more studies are required to
determine the geochemical nature and the timing of partial
melting processes along the Himalayan orogen in order to
refine our understanding on the deep processes in large
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orogenic belts and draw broader tectonic implications.
Limited studies have been performed on the Malashan
Gneiss Dome (MGD) in the west of NHGD. Aoya et al. [24]
and Kawakami et al. [25] had investigated the nature and
sequence of metamorphism and deformation in the wall-
rocks of Malashan granites and shown that the wall-rocks
had experienced contact metamorphism due to the intrusion
of the Malashan granite. Zircon U-Pb and mica **Ar/*Ar
dating results reported by Aoya et al. [26], Kawakami et al.
[25] and Zhang et al. [21] suggested that the Malashan
granite crystallized over a long time span (~10 myr), which
could be due to mixing ages from domains straddling across
different growth zonings. To the south of the Malashan
granite, recent field investigations found that the Paiku leu-
cogranite is a composite pluton rather than a single one
[25,26]. This pluton consists of tourmaline leucogranite,
two-mica leucogranite, and garnet-bearing granite. In order
to narrow down the formation age and characterize the
mineral and geochemical composition of this leucogranitic
pluton, we have sampled along traversals across this pluton
as shown in Figure 1(b) and conducted bulk-rock major and
trace element and radiogenic isotope (Sr and Nd), as well as

- LH

Y A .

/ £ T __-‘_
Vs = - >
haaail™ oSl
S ey / Tethyan Him }
]' rd
STDg

I
90° 92°30°
Lhasa Block En

Xigaze

High Himalaya

afrya
L

86° 88°

90° 92°

(b)

Cuobu "
granite Malashan

granite

Two-mica
granite

Leucogranite

U E R

Pelitic schist

Calcareous
schist

Tertiary-
Quaternary

Lake

» [ [0 H

Sample for
U/Pb dating

Sample
traverse

Figure 1 (a) Simplified geologic map of the Himalayan orogenic belt, southern Tibet (after Zeng et al. [12]); (b) simplified geological map of the Malashan
Gneiss Dome (after Aoya et al. [24]). YTS, Yarlung-Tsangpo suture; STDS, Southern Tibet Detachment System; MCT, Main Center Thrust; MBT, Main

Boundary Thrust; LH, Lower Himalayan Crystalline Sequence.
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LA-MC-ICP-MS zircon U/Pb and Hf isotope analyses on
tourmaline- and two-mica granites.

1 Geological setting and sample descriptions

Leucogranites in the Himalayan orogen are distributed along
two sub-parallel belts, HHCS and NHGD, which are sepa-
rated by the Southern Tibetan Detachment System (STDS)
(Figure 1(a)). Granites, migmatites, and high-grade meta-
morphic rocks are important components within these two
belts and record distinct types of metamorphism and partial
melting reactions of middle-lower crustal materials in re-
sponse to the tectonic evolution of the Himalayan orogen
[1,4,8,13,14,16,26-29]. NHGD within the Tethyan Himalaya
consists of a series of semi-continuous oval shape gneiss
dome. These domes share similar features and consist of high-
grade metamorphic rocks and intruded granites in the core
and low grade metamorphic or unmetamorphosed sedimen-
tary toward the margin. All these rock units are separated by
ductile detachment fault. Except for the Kangmar Dome, all
granites within the NHGD are younger than ~44 Ma
[3,4,8,12,13,16,19,26,30]; whereas the granites within the
HHCS formed at 37-10 Ma and are characterized by ap-
parently lower melt temperature [3].

Granites in the Malashan Gneiss Dome include the Cuo-
bu two-mica granite (TMG), Malashan two-mica granite
(TMG) and Paiku leucogranite (Figure 1(b)). These granites
intruded into pelitic and calcareous schist mapped as Juras-
sic and Cretaceous in age [31]. Presence of andalusite and
skarn formation in the metasediments within the proximity
of these granites indicates relatively intensive contact met-
amorphism in the sedimentary wall-rocks induced by the
emplacement of granitic plutons [24,25]. The Paiku compo-
site leucogranite pluton consists of tourmaline leucograntie,
two-mica granite and garnet-bearing leucogranite. Detailed
field investigations on the cross-cutting relationship be-
tween these leucogranites indicate that the pelitic sediments
were first intruded by the tourmaline leucogranites, fol-
lowed by the intrusion of the Paiku TMG, and finally the
Malashan TMG. Major features in the Malashan dome in-
clude: (1) the Malashan TMG experienced strong defor-
mation, but others not [24,26,32]; (2) presence of Barrovian-
type metamorphism with grade increasing toward the granite
core [25]; (3) development of two major episodes of ductile
deformation represented by earlier top-to-the south D1 and
later top-to-the north D2 fabric, respectively. The intensity
of D2 fabric increased toward the granite contact; (4)
roughly north-south D2 flow direction indicated by the D2
stretching lineation; and (5) no sillimanite or migmatite
found in the metasedimentary wall-rocks implies relatively
lower metamorphic grade than the other gneiss domes [24,26].
The least deformed Cuobu granite has strikingly similar bulk
chemical compositions to those of the Malashan granite, but
is apparently different from the Paiku leucogranite [26].
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Sensitive high-resolution ion microprobe zircon U-Pb da-
ting yielded that the Cuobu TMG formed at 26.0-13.7 Ma
[26], Malashan TMG at 30.2-17.2 Ma [21,26]. “Ar-"Ar
dating on muscovite and biotite yielded similar cooling ages
of 17.6-15.3 Ma for the Cuobu and Malashan TMG, re-
spectively [21,26]. The Paiku leucogranite formed at
22.2-16.2 Ma, and “’Ar-*Ar cooling age is 15.9 Ma [25].

Leucogranites within the Paiku pluton contain largely
similar mineral assemblage and textures with variations in
relative proportion in muscovite. All three types of leu-
cogranite consist of quartz, plagioclase, muscovite, and ac-
cessory phases of zircon, apatite and monazite. The tourma-
line leucogranite contains more muscovite (~20%) than
others (<15%). The tourmaline leucogranites contain abun-
dant (up to ~10%) large, euhedral, and compositionally zoned
tourmaline grains (Figure 2(b)), in contrast, two-mica granite
contains 5%—-10% biotite (Figure 2(c)) and garnet-bearing
leucogranite contains up to 2% large and subhedral garnet
grains (Figure 2(d)). Sample T0659-A is a representative
tourmaline leucogranite and has a similar mineral assem-
blage and microstructure to sample T0659-1 to T0659-6,
whereas T0659-B is two-mica granite similar to sample
T0659-11 to T0O659-14.

2 Analytical methods
2.1 LA-MC-ICP-MS zircon U-Pb dating

Zircons were separated from representative sample T0659-
A and sample T0659-B from Paiku Cuo (Figure 1(b)) by
using standard heavy-liquid and magnetic techniques, and
then handpicked under a binocular microscope. The selected
grains were embedded in 25 mm epoxy discs and grounded
to approximately half of their thickness. The internal growth
structure of zircon grains was revealed by cathodolumines-
cence (CL) and BSE imaging technique. CL images were
obtained at the Beijing SHRIMP Centre, Chinese Academy
of Geological Sciences (CAGS). BSE images were obtained
with a JSM-5610LV scanning microscope at the Institute of
geology, CAGS.

The zircons were analyzed for U, Th, and Pb using LA-
MC-ICP-MS at Key Laboratory of Metallogeny and Mineral
Assessment, Institute of Mineral Resources, CAGS, fol-
lowing the procedures described by Hou et al. [33]. Spot
sizes were ~25 um and data were calibrated by the M127
reference zircon (U: 923 ppm; Th: 439 ppm; Th/U: 0.475)
[34]. The standard zircon was analyzed first and then after
every five unknowns. The GJ-1 zircon with an age of 599.8+
1.7 Ma (20) [35] was used as a standard. Data process was
carried out using the ICPMSDataCal programs [36], and for
the °Pb/***Pb values of most analysis spots larger than 1000,
measured “*Pb was not applied for the common lead correc-
tion, thus those analysis with unusual high ***Pb are deleted
due to the influence of common lead in inclusions. The an-
alytical data are summarized in Table 1, and graphically
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Figure 2 Photomicrographs showing the texture and mineral assemblage of three types of leucogranite in the Paiku area. (a) and (b) tourmaline leucogran-
ite T0659-03 consists of quartz, plagioclase, muscovite and euhedral compositionally zoned tourmaline; (c) two-mica granite T0659-11 consists of quartz,
plagioclase, muscovite and biotite; (d) garnet-bearing leucogranite T0659-09 consists of quartz, plagioclase, muscovite and garnet. Except for (a) and (c)
with a 500-pm-long scale bar, the others are 250 um long. Bt, biotite; Grt, garnet; Mus, muscovite; Pl, plagioclase; Qtz, quartz; Tour, tourmaline.

presented on concordia diagrams with 1o error. The ages

are weighted means with 2c errors calculated using Isoplot
at 95% confidence levels [37].

2.2 Zircon Hf isotope analysis

Zircon Hf isotope analysis was carried out in-situ using a
Newwave UP213 laser-ablation microprobe, attached to a
Neptune multi-collector ICP-MS at Institute of Mineral Re-
sources, CAGS, Beijing. Instrumental conditions and data
acquisition were comprehensively described by Hou et al.
[38]. A stationary spot was used for the present analyses,
with a beam diameter of 40 um. The analyses were per-
formed on the same zircon domains where the U-Pb dating
had been conducted or on the zircons with similar texture.
Helium was used as carrier gas to transport the ablated
sample from the laser-ablation cell to the ICP-MS torch via
a mixing chamber mixed with Argon. In order to correct the
isobaric interferences of '"*Lu and '"°Yb on 176Hf, 1761 v/
Lu=0.02658 and '"*Yb/'"*Yb=0.796218 ratios were applied
[39]. For instrumental mass bias correction, Yb isotope ra-
tios were normalized to '"*Yb/'”*Yb of 1.35274 [39] and Hf
isotope ratios to '"’Hf/'""Hf of 0.7325 using an exponential
law. The mass bias behavior of Lu was assumed to follow
that of Yb, mass bias correction protocols details was de-
scribed as Wu et al. [40] and Hou et al. [38]. Zircon GJ-1

and Plesovice were used as the reference standards during
our routine analyses, with a weighted mean '"°Hf/'""Hf ratio
of 0.282007+0.000007 (20, n=36) and 0.282476+0.000004
(20, n=27), respectively. It is not distinguishable from a
weighted mean ""°Hf/!""Hf ratio of 0.2820000.000005 (20)
and 0.282482+0.000008 (20) using a solution analysis method
by Morel et al. [41] and Slama et al. [42], respectively. To
calculate the initial Hf isotope compositions, age of ~28 Ma
and ~20 Ma were assigned for the Paiku tourmaline leu-
cogranites and two-mica granites based on their U/Pb zircon
age, respectively. Analytical results are listed in Table 2.

2.3 Major and trace element analysis

Whole rock powders for 12 whole-rock samples were prepared
by using a tungsten carbide shatter box. Bulk rock major,
trace and rare earth element concentrations were obtained
by X-ray fluorescence (XRF) and inductively coupled plasma
mass spectrometry (ICP-MS) at the National Research Cen-
ter for Geoanalysis, CAGS, Beijing. Major elements were
analyzed by the XRF method with analytical uncertainties
<5%. Trace and rare earth elements were analyzed by ICP-
MS. REE were separated using cation-exchange techniques.
Analytical uncertainties are 10% for elements with abundances
<10 ppm, and around 5% for those >10 ppm. Analytical
results are listed in Table 3.
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2.4 Sr and Nd isotope analysis

Rb-Sr and Sm-Nd isotope analyses were performed in the
Laboratory for Isotope Analysis, Institute of Geology, CAGS.
The Sr isotope compositions and concentrations of Rb, Sr,
Sm, and Nd were measured by isotope dilution on a Finni-
gan MAT-262 mass spectrometer. Nd isotope compositions
were acquired by a Nu Plasam HR MC-ICP-MS (Nu In-
struments). The Nd and Sr measurements were corrected for
mass fractionation by normalization to "**Nd/"**Nd=0.7219,
and *°Sr/*Sr=0.1194. External precisions during this period
of measurement for Sr and Nd isotopic compositions are
+0.000010 (n=18) and +£0.000011 (n=18), respectively. 871/
%Sr for the NBS987 standard is 0.710247+12 (20) and
"“Nd/"*Nd for IMC Nd standard is 0.51112712 (20). At
~28 Ma and ~20 Ma were assigned to calculate the initial Sr
and Nd isotope compositions for the Paiku tourmaline leu-
cogranites and two-mica granites based on their U/Pb zircon
age. Analytical results are listed in Table 4.

3 Date and results

3.1 The U/Pb zircon age of leucogranites

Sample T0659-A is a representative sample of tourmaline
leucogranite that consists of quartz, plagioclase, muscovite,
tourmaline, and accessory zircon, apatite, and monazite.
Most of zircon grains in this sample are euhedral to subhe-
dral, long prismatic, 100—150 um long with aspect ratios
commonly of 2.5. These zircons show a similar
core-mantle-rim texture both in CL and in BSE images
(Figure 3(a)—(d)). The cores are either homogeneous (Figure
3(a), (b)) or weak oscillatory zoning (Figure 3(c), (d)). The
mantles are characterized by either weak oscillatory growth
zoning or gray homogeneous (Figure 3(a)—(d)), which im-

(b)
@ 28.0£0.4 Ma

9@
473_;1_15. 7 Ma

33.6:0.5 Ma

50 mm
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plies that the source for this granite had experienced simul-
taneous metamorphism and partial melting. The zircon rims
have very high U concentration (>2000 ppm), and due to
radioactive decay of U, a large portion of zircon crystals
experienced intensive destruction and recrystallization and
show sponge-like textures. However, many zircon grains
still preserve rims with typical oscillatory growth zoning,
characteristics of magmatic zircon. In addition, the outer-
most part of a few of zircon grains also contain white nar-
row rims about 5-10 pm thick (Figure 3(a)-(c)), which
could be due to hydrothermal or metamorphic events post-
dated the crystallization.

To constrain more precisely on the crystallization age
and possible hydrothermal event of the Paiku tourmaline
leucogranite, U/Pb analyses were focused on different zir-
con domains in sample T0659-A. The cores are character-
ized by (1) relatively low but wide variations in U (35-814
ppm) and Th (5-153 ppm), respectively, which results in
great variations in Th/U ratio from 0.02 to 1.65; (2) rela-
tively wide range in ***Pb/**U age from 297.3 Ma to 1922.4
Ma (Table 1); (3) a cluster of grains with concordant 206ppy,
U ages of 470.4-488.2 Ma with a weighted mean age of
483.3 Ma; and (4) another cluster at ~851.0 Ma, the others
are discordant due to various degrees of Pb loss.

Many analyses performed on mantle and a few on rim
domains yielded discordant ages with concordance down to
—8%, therefore we choose points with concordance higher
than 95% to calculate meaningful ages. Analyses on the
mantles show that they have a relatively wide range of U
and Th concentrations from 94 to 2488 ppm, and from 4 to
248 ppm, respectively, and Th/U from 0.01 to 0.11. The
mantles yield °Pb/**U ages from 33.5+0.2 Ma to 35.1+0.7
Ma (Figure 3(e)) with a cluster around 33.6 Ma. The mean
age of 4 points is 33.6£0.6 Ma (MSWD=1.6). The mantle
domains either with weak oscillatory growth zoning or with

0.00s8} ©
0.0054}
e
% 0.0050} Mean=33.6:0.6 Ma
a MSWD=1.6
E] 4 analysis spots
0.0046}+

Mean=28.2+0.5 Ma
MSWD=0.9
8 analysis spots

0.0042

0.0038LZ : : : .
0.024 0.028 0.032 0.036 0.040

ZD?P bj,z 35, U

Figure 3 Cathodoluminescence (CL) and Backscatter images (BSE) showing the texture, spot, and respective age of LA-MC-ICP-MS zircon U/Pb dating

(a)—(d) and U/Pb concordia diagram (e) for the tourmaline leucogranite T0659-A.
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gray homogeneous texture yield similar *“Pb/**U ages,
therefore we interpret this age as the timing of high-grade
metamorphism and simultaneous parting melting experi-
enced in the source rocks. Except for few zircon grains, the
rims with well-developed oscillatory zoning commonly yielded
206pp/>¥U ages with concordance higher than 95%. U and
Th concentrations in the rim are also relatively wide and
range from 751 to 10184 ppm and 39 to 553 ppm, respec-
tively, which lead to low Th/U ratios (<0.08). Eight anal-
yses yield relatively concentrated “°Pb/***U ages ranging
from 27.3+£0.1 Ma to 28.7+0.9 Ma (Figure 3(e)) and a clus-
ter around 28.2 Ma in a Pb/U concordia diagram, which
define a weighted mean age of 28.2+0.5 Ma (MSWD=0.9).
Though the rims have low Th/U ratios, well-developed os-
cillatory overgrowth zoning indicates that they crystallized
from granitic melts. Therefore, we interpret this age as the
time of crystallization for the Paiku tourmaline leucogranite.
Although some ages from the mantle or the rim are similar
to data presented as above, they are strongly discordant and
plotted to the right of the U/Pb concordia (Figure 3(e)). This
suggests that these zircon domains have been influenced by
various degrees of Pb loss due to later hydrothermal events.
Sample T0659-B is a representative sample of two-mica
granite that consists of quartz, plagioclase, muscovite, bio-
tite, and accessory zircon, apatite, and monazite. Most of
zircon grains in this sample are euhedral to subhedral, long
prismatic, 100-150 pm long with aspect ratios commonly of
2.0-3.0. Most zircon grains show a similar core-mantle-rim

C)]

483.0£4.9 Ma ; 22.3£0.3 Ma

o ©®

481.4154Ma .

414.747.1 Ma e

911584 Ma

480.945.2 Ma

19.2+0.3 Ma

21.5£0.4 Ma

texture in CL and BSE images (Figure 4(a)—(d)). The cores
display weak oscillatory zoning (Figure 4(a),(b)) and are
surrounded by mantles with typical oscillatory growth zon-
ing, indicative of magmatic origin, and in turn surrounded
by sponge-like (Figure 4(b)) or thin grey rims (Figure
4(a),(c),(d)), whereas a few of zircon grains only display
core-rim texture (Figure 4(a),(b)).

To constrain the timing of formation of this leucogranites,
U/Pb analyses were focused mainly on zircon rims with well-
developed oscillatory zoning. Similar to those in sample
T0659-A, U and Th concentrations in the cores are highly
variable and range from 99 to 1085 ppm and from 3 to 329
ppm, respectively, which results in large variations in Th/U
ratios (0.02-0.94). The cores also yield a relatively wide
range of **Pb/**U ages from 322.8 to 911.5 Ma (Table 1).
Again, they cluster around 481.3 Ma in a Pb/U concordia
diagram (Figure 4(e)) and define a weighted mean age of
481.3+4.0 Ma (MSWD=0.1), whereas spots with ages from
322.8 to 414.7 Ma are discordant due to various degrees of
Pb loss. The mantles with typical oscillatory growth zoning
show similar features in U (110-2991 ppm) and Th (2-439
ppm) concentrations and Th/U ratios (0.01-0.69) to those in
the core. Analyses performed on the mantles yield a rela-
tively narrow “°Pb/***U age ranging from 19.2+0.3 Ma to
25.6+0.3 Ma (Figure 4(f)), which cluster around 19.8 Ma in
a Pb/U concordia diagram and define a weighted mean age
of 19.8£0.5 Ma (MSWD=2.3). Due to the well-developed
oscillatory overgrowth zoning, we interpret this age as the
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Figure 4 Cathodoluminescence (CL) and Backscatter images (BSE) showing the texture, spot, and respective age of LA-MC-ICP-MS zircon U/Pb dating
(a)—(d) and U/Pb concordia diagram (e), (f) for the tourmaline leucogranite T0659-B.
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timing of crystallization to form the Paiku two-mica granite.
The rims are sponge-like or grey homogenous, indicating
that these zircon grains have been affected by later hydro-
thermal events.

3.2 Zircon Hf isotope geochemistry

We perform in situ zircon Hf isotope analysis on sample
T0659-A and T0659-B in order to characterize their Hf iso-
tope compositions of these two types of leucogranite. Some
zircon grains with similar textures have no **Pb/**U ages,
they are not shown in Figure 5. For our purpose with a fo-
cus on the nature of partial melting to produce the Paiku
composite leucogranites pluton, we only discriminate anal-
yses on the rim from those either from core or from mantle.
Analytical results of zircon grains from the tourmaline leu-
cogranite show that (1) the magmatic rims are characterized
by highly heterogenous Hf isotope compositions (‘"°Hf/
YTHI(1)=0.28237-0.28267, &(1)=—13.8 to —2.8), and young
crustal modal age with Tpy=857-1283 Ma (Figure 5(a),
Table 2), and (2) though the core or mantle show similarly
wide range in Hf isotope compositions and crustal modal
ages, they are substantially more negative (gu(f)=—24.5 to
—10.5) and older (Tpy=1169-1662 Ma), respectively (Table 2).

In contrast, Hf analyses on zircon grains from the two-
mica granites show different patterns from those in the
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Figure 5 Zircon U/Pb ages and Hf isotope compositions of the tourma-
line leucogranite T0659-A (a) and the two-mica granite T0659-B (b) in the
Paiku area.
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tourmaline leucogranites. Major differences include (1) rel-
atively smaller variations in the Hf isotope compositions
with "Hf/"HI(t) from 0.28233 to 0.28249 and &y(7) from
—15.0 to —9.3 (Figure 5(b), Table 2) and older crustal modal
age Tpyy of 11161315 Ma from the magmatic rims; (2)
much wider range of Hf isotope compositons in cores with
au(f) from -34.3 to —10.1 and "°Hf/'"’Hf ratio from
0.28179 to 0.28247 (Table 2), and relatively older crustal
modal age Tpy of 1120-2041 Ma.

3.3 Buck-rock major and trace element geochemistry

Three types of leucogranite in the Paiku pluton show major
differences in major as well as in trace element composi-
tions. Major element abundance is listed in Table 3 and is
shown graphically in Figure 6. The tourmaline leucogranites
have relatively lower SiO; (72.5%-73.2%) than two-mica
granites and garnet-bearing leucogranite (73.3%-75.0%), in
contrast, the content of Al,O;in the tourmaline leucogranite
(>14.8%) is higher than others with Al,O; ranging from
14.3% to 14.8% (Figure 6(a)). As compared to other leu-
cogranites, the tourmaline leucogranite have higher K,O
(>4.9%), lower CaO (<0.7%), and similar contents of Na,O,
FeO, MgO, and MnO (Table 3). Data presented above indi-
cate that all the leucogranites within the Paiku pluton are of
K-rich peraluminous granite with A/CNK>1.1 and K,O>
4.2%.

Similar to major element contents, these leucogranites
also show substantial differences in trace element composi-
tions (Figure 7, Table 3). The tourmaline leucogranites
contain strikingly highest B (1033—1089 ppm) but lowest Sr
concentration (<39 ppm), and the garnet-bearing leucogran-
ite have the lowest Ba concentration among these rocks
(Figures 7 and 8(a)). These leucogranites also display simi-
lar primitive mantle normalized trace element distribution
patterns (Figure 7(a)) characterized by positive anomalies of
K and Rb but negative anomalies of Nb, Ti, Sr and Ba. In-
terestingly, the tourmaline leucogranite show strong posi-
tive P anomalies in contrast with negative anomalies in the
other types of leucogranite.

All these leucogranites are enriched in light rare earth
elements (LREE) and show pronounced negative Eu anom-
alies except for T0659-12, among which the garnet-bearing
ones have the greatest magnitude of negative Eu anomalies.
However, heavy rare earth element (HREE) contents in
these leucogranites are different. Garnet-bearing leucogran-
ites are weakly enriched in HREE with (Gd/Yb)y=0.6—-1.0,
whereas the others are weakly depleted in HREE with (Gd/
Yb)y=1.5-1.9.

3.4 Sr and Nd isotope geochemistry

In order to characterize the source regimes for these leu-
cogranites within the Paiku pluton, we conduct Sr and Nd
isotope analyses on the tourmaline leucogranite and two-
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mica granite. Analytical data are listed in Table 4. Tourma-
line leucogranites have relatively higher Rb (>338.0 ppm)
and lower Sr (<38.9 ppm), Sm (<4.1 ppm) and Nd (<1.2
ppm) than those in the two-mica granite. The initial Sr iso-
topic compositions in the tourmaline leucogranites with
7S1/*°Sr(t)=0.7495-0.7525 are higher than in the two-mica
granites with ¥'Sr/*Sr(t)=0.7285-0.7454 (Figure 8(b)), where-
as both leucogranites are characterized by similarly unradi-
ogenic initial Nd isotopic compositions with &ya(#)=—13.0 to
—13.3 in the tourmaline leucogranites and &vy(f)=—13.4 to
—13.9 in the two-mica granites, respectively.

4 Discussions

4.1 Timing of crustal anatexis in the Paiku composite
leucogranitic pluton

Previous studies considered the Paiku leucogranitic pluton
as a single pluton [24-26], and reported its crystalline ages
of 22.2-16.2 Ma [25]. Such a wide age span could be due to
analysis on zircon domains straddling cross different over-
growth zoning. Field investigations, petrographic examina-
tions (Figure 2), geochemical analyses (Figures 6-8) and
updated zircon U/Pb dating (Figures 3-5) all demonstrate
that the Paiku pluton is a composite pluton consisting of
tourmaline leucogranite, two-mica granite, and garnet-bearing
leucogranite.

Zircon grains in the tourmaline leucogranite show a well-
preserved core-mantle-rim texture. Inherited cores show
two dominant age groups at ~483.3 and ~851.0 Ma. Mantles
with **Pb/**U age of 33.6+0.6 Ma are characterized by
either weak oscillatory overgrowth zoning indicative of zir-
con growth from granitic melts or by grey homogenous
texture from metamorphic recrystallization (Figure 3(a)—(d))
and low Th/U ratios (<0.11). The co-existence of these zir-
con overgrowth textures in the mantle domains at 33.6+0.6
Ma indicates that the source regime for the tourmaline leu-
cogranite had experienced metamorphism under P-T condi-
tions higher enough to induce partial melting at the same
time. This event could correspond to crustal anatexis at
~35.3 Ma during the tectonic transition from compressive
shortening to extension in the Yardoi dome at the eastmost
of NHGD [12], migmatization at 35.0+0.8 Ma in the Mabja
Dome [19], and the earliest phase of partial melting at
36.5+2.2 Ma recorded in the deformed granites within the
STDS in the Gyirong areas [20]. Similar to zircon grains
from leucogranites along the Himalayan belt, zircons from
sample T0659-A also contain up to 2000 ppm U. Due to
radioactive decay of U, such zircons experienced extensive
destruction and recrystallization and develop sponge-like
textures. However, the well-developed typical oscillatory
overgrowth zoning in most rims indicates that they crystal-
lized from granitic melts. These domains yield relatively
low Th/U ratios from 0.02 to 0.08, characteristics of anatec-
tic zircons. Therefore, The 206pp,238y age of 28.2+0.5 Ma
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represents the timing of crystallization to form the tourma-
line leucogranite, similar to that of Kuday granites at 27.5+
0.5 Ma in the central NHGD [44].

Zircons in the two-mica granites also show a core-mantle-
rim texture. The inherited zircon cores show weak oscilla-
tory zoning (Figure 4(a), (b)) and yield dominant **Pb/**U
age group at 481.3+4.0 Ma. This indicates that the source
regime consists of major components that contributed from
~481 Ma magmatic events. The mantle domains are of typ-
ical oscillatory overgrowth zoning (Figure 4(c), (d)), char-
acteristics of magmatic origin, and yield ***Pb/**U ages
clustered at 19.8+0.5 Ma. This age represents the time to
crystallize the two-mica granite. However, sponge-like tex-
tures and thin grey homogenous rims suggest that these
rocks have been affected by later hydrothermal activities.

In summary, data presented above indicate that the tour-
maline leucogranite formed at 28.2+0.5 Ma and its source
regime experienced high metamorphism and simultaneous
partial melting at 33.6+0.6 Ma, whereas the two-mica gran-
ite formed at 19.8+0.5 Ma. Therefore, the Paiku leucogra-
nitic pluton is a composite pluton built by episodic intru-
sions over a time span of ~8 myr.

4.2 Source rock of the Paiku composite leucogranite

Date presented above indicate that: (1) the Paiku leucogranite
is a composite pluton and consists of tourmaline leucogranite,
two-mica granite and garnet-bearing leucogranite; (2) the
tourmaline leucogranite formed earlier at ~28.2 Ma and its
source rock experienced high metamorphism and simulta-
neous anatexis at ~33.6 Ma, in contrast to much later for the
two-mica granite at ~19.8 Ma; (3) though the amount of
analyses on the zircon cores are too limited to fully cover
the age spectrum of inherited zircon, two types of leu-
cogranite both contain a large number of ~480 Ma inherited
zircons. This implies that their source rocks might have
major contributions from the Ordovician magmatic event,
possibly in a continental arc environment [45]; (4) the bulk-
rock initial Sr isotope compositions and zircon Hf isotope
compositions in the tourmaline leucogranites are higher
than those in the two-mica granites; (5) all three types of
leucogranite are of K-rich peraluminous with A/CNK>1.1
and show slight differences in major element compositions
(e.g. Si0,, Al,O3, and Ca0); (6) the tourmaline leucogran-
ites have extraordinary high B concentrations and positive P
anomalies; and (7) both the tourmaline leucogranites and
the two-mica granites are enriched in LREE, but depleted in
HREE and show negative Eu anomalies, in contrast, gar-
net-bearing leucogranites are not only enriched in LREE but
also slightly enriched in HREE and show strongest negative
Eu anomalies among all these rocks.

Previous studies on the timing of crustal anatexis in the
Himalayan orogenic belt indicated that leucogranites
formed at 27-10 Ma in the NHGD and the HHCS are typi-
cal S-type granites, derived from muscovite dehydration
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melting of metapelites and characterized by high initial
¥7S/*°Sr ratios of 0.7300-0.7800 and low &y from —10 to
—-15 [1-7,16,46,47]. Experimental results [6,7], theoretic
calculations [22,23] and field investigations [4,16,18] all
suggest that fertile metapelites could undergo progressive
partial melting with variations in temperature, pressure, and
water content, which leads to the formation of granites with
different geochemical characteristics in major and trace
element as well as in isotope (e.g. Sr, Nd) geochemistry.
Metapelites rich in mica, plagioclase, and quartz are fertile
crustal material and could produce granitic melts through
muscovite- or biotite-melting reactions at fluid-present as
well as fluid-absent conditions. The degree of melting at
optimum P-T-X conditions can amount to 40 %, but it de-
creases significantly at low temperature of ~700°C. Through
continuous or discontinuous melting reactions, melts from
the same metapelite could potentially show complex Rb-Sr
system relationship [22,48]. Recent petrologic and geo-
chemical studies on the mid-Miocene Malashan TMG
demonstrate that they were derived from fluxed melting of
muscovite [17]. These granites are characterized by higher
contents of CaO (>1.5%, Figure 6) and Ba (Figure 7), but
lower and nearly constant Rb/Sr ratios (<1.4) relative to
large variations in Ba concentrations (Figure 8(a)). Leu-
cogranites in the Paiku composite pluton show different
geochemical nature from those in the Malashan TMG, but
similar to typical Himalayan Cenozoic leucogranites (Fig-
ures 6 and 7). Negative correlationship between Rb/Sr and
Ba (Figure 8(a)) in the Paiku leucogranites suggests that
they were derived from muscovite dehydration melting of
metapelites. The initial Sr and Nd isotope compositions in
these Paiku leucogranites are different. Sr isotope composi-
tions in the tourmaline leucogranites are slightly higher than
those in the two-mica granites, but they both have similarly
low enq Values. Factors that could contribute to the observed
geochemical and isotopic features in the Paiku leucogranites
include: (1) distinct source rocks, (2) difference in propor-
tion of muscovite involved in the partial melting reactions,
or (3) both effects.

Experimental results and theoretic calculations demon-
strate that as compared with muscovite dehydration melting,
proportion of muscovite involved in the fluxed melting of
muscovite reactions decrease substantially accompanied by
increase in feldspar components, which results in melts with
enhanced contents of Sr, but lower Rb, Rb/Sr ratios and Sr
isotope compositions [7,22,44]. As compared with the Paiku
two-mica granites, the tourmaline leucogranites have higher
Rb/Sr ratios and Sr isotope compositions, implying that
much more muscovite involved in the dehydration melting
of metapelites to generate the tourmaline leucogranites.
However, only differences in partial melting reactions can
not explain the large variations in Sr isotope compositions of
the two-mica granites ranging from 0.728477 to 0.745432
and relatively lower Hf isotope compositions. Therefore,
except for distinct crystallization ages of the two types of
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leucogranites, their source rocks maybe different.

If the tourmaline leucogranites and the two-mica granites
have same source rock, they should have show the follow-
ing features including (1) similar age spectrum in inherited
zircon cores; (2) higher initial St but lower initial Nd isotope
compositions in the two-mica granites than those in the
tourmaline leucogranite; and (3) Hf isotope compositions in
magmatic zircon rims should increase with the decrease of
crystallization ages. The zircon textures (Figures 3 and 4)
and U/Pb ages (Figure 9, Table 1) indicate that both leu-
cogranites contain ~480 Ma inherited zircons, but the tour-
maline leucogranites contain much older (up to 1922.4 Ma)
inherited zircon grains than the two-mica granites. In addi-
tion, Hf isotope compositions in inherited zircons from both
leucogranites are substantially different (Figure 5). Inherited
zircons from the tourmaline leucogranites have higher &y(?)
ranging from —24.5 to —10.5 and younger crustal modal
ages of 1169-1662 Ma in contrast with much lower &y(?)
and older crustal modal age of inherited zircons in the two-
mica granite. Differences in Sr and Hf isotope compositions
between the tourmaline leucogranites and the two-mica
granites (Figures 5 and 8) indicate that they could not share
the same source rocks, consistent with inference drawn
from Rb/Sr-Ba systematics. However, similar Nd isotope
compositions in both leucogranites imply that Sm-Nd iso-
tope system is more robust than Rb-Sr system which is
more susceptible to be perturbed by metamorphism or hy-
drothermal reactions. Within the Himalayan orogenic belt,
data from literature [13] and to be published of metamor-
phic rocks demonstrate that the mineral assemble and bulk-
rock major and trace element compositions of metapelites
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are highly heterogeneous. Such metapelites could potentially
undergo partial melting at various temperature and pressure
conditions during the tectonic evolution of the Himalayan
orogen and produced distinct leucogranitic melts. Data pre-
sented above demonstrate that metasedimentary rocks, pre-
sumably at the middle to lower crustal levels, had experi-
enced episodic melting at ~33.6, ~28.2, and ~19.8 Ma, re-
spectively, among which the later two correspondently
produced the tourmaline leucogranite and two-mica granite
in the Paiku pluton. Despite difference in the formation ages,
different source regimes and different partial melting reac-
tions together lead to the pronounced geochemical hetero-
geneity in these leucogranites.

4.3 The implication of melting in Paiku composition
leucogranite

Both detailed structural investigations and geochronologic
studies indicate that the Malashan, Kangmar, and Mabja
gneiss domes had experienced similar types of metamor-
phism and deformation [19,24-26,32,49,50], which strongly
suggest that they were formed in the same tectonic setting
[21]. Lee et al. [19] documented that the migmatites in the
Mabja gneiss dome had experienced partial melting at
35.0+0.8 Ma. Within the Yardoi gneiss dome, recent studies
found a suite of ~43 Ma high Sr/Y two-mica granites and
~35 Ma high Na/K leucogranites [12,13]. These granites
represent the melting products from amphibolite at thick-
ened crustal conditions and during the tectonic transition
from compressive shorting to extension in the Himalayan
orogen, respectively. In addition, syn-collision leucogranites
within the STDS in the Gyirong area also record partial
melting at ~36 Ma [20]. These studies suggest that there is
strong genetic relationship between middle to lower crustal
anatexis represented by formation of granites and large
scale of extensional deformation. Initiation of the STDS
could be triggered by these ~35 Ma melting processes and
traced back to ~35 Ma [12,19-21]. In this contribution, ge-
ochronological and geochemical characteristics of the Paiku
leucogranites in the Malashan area indicate that crustal ana-
texis in the western NHGD could be as early as 33.6+0.6
Ma or older, similar to the central and eastern NHGD. Par-
tial melting of distinct metapelites in response to the evolv-
ing P-T-X conditions during the tectonic evolution of large
collisional orogenic belts indeed could generate a spectrum
of granitic melts with distinct geochemical as well as iso-
topic characteristics. The earliest anatexis both at the hang-
ing wall and footwall of the STDS in the Himalaya colli-
sional belt occurred at 35 Ma, indicating that ~35 Ma partial
melting may be the major factor to initiate the STDS and in
turn leads to tectonic transition from compressive shorten-
ing to extension. Within the Tibetan plateau and adjacent
areas, initial movement of the Karakorum Fault [51], large
displacement along the Altyn Tagh fault [52,53], strike-slip
movements in the Red River belt [54], and aridification of
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the Tibetan plateau linked to global cooling [55] all oc-
curred at ~35 Ma. All these studies indicate that ~35 Ma
tectonic events in the Tibetan plateau are widespread. Under
intensive compression, the southern Tibet experienced tec-
tonic transition at ~ 35 Ma from compressive shortening to
extension. In the Malashan area, the tourmaline leucogranite
and two-mica granite formed at ~28.2 and ~19.8 Ma, re-
spectively, corresponding to two main phases of partial
melting at 26 Ma and at 21-20 Ma recorded in the syn-col-
lision granites within the STDS [20] and coinciding with the
active time of STDS from 25 to 12 Ma [56—60]. Therefore,
formation of the Oligocene and mid-Miocene leucogranites
in the Paiku area suggests that movement along the STDS
not only triggered rapid exhumation of high grade meta-
morphic rocks but also induced large-scale crustal anatexis.

Combined with literature data, we suggest that prior to
35 Ma, the Himalayan orogenic belt underwent intensive
shortening accompanied by partial melting of middle-lower
crustal material. These melting processes effectively changed
physical properties of deep crustal rocks and triggered the
tectonic transition of the Himalayan orogen from compres-
sion to extension and initiated the movement of the STDS.
With further extension along the STDS, rapid exhumation
of deep crustal materials resulted in the large-scale decom-
pression melting of metapelites and the formation of typical
Himalayan S-type granites with ages <30 Ma [13,19-21].
The Oligocene (~28 Ma) and mid-Miocene (~20 Ma) leu-
cogranites in the Paiku area represent the melting products
from metapelites associated with the active movement along
the STDS.
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