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We report here the additive Runge-Kutta methods for computing reactive Euler equations with a stiff source term, and in particu-
lar, their applications in gaseous detonation simulations. The source term in gaseous detonation is stiff due to the presence of wide 
range of time scales during thermal-chemical non-equilibrium reactive processes and some of these time scales are much smaller 
than that of hydrodynamic flow. The high order, L-stable, additive Runge-Kutta methods proposed in this paper resolved the stiff 
source term into the stiff part and non-stiff part, in which the stiff part was solved implicitly while the non-stiff part was handled 
explicitly. The proposed method was successfully applied to simulating the gaseous detonation in a stoichiometric H2/O2/Ar mix-
ture based on a detailed elementary chemical reaction model comprised of 9 species and 19 elementary reactions. The results 
showed that the stiffly accurate additive Runge-Kutta methods can capture the discontinuity well, and describe the detonation 
complex wave configurations accurately such as the triple wave structure and cellular pattern.  
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Reacting flows, specifically in gaseous combustion, have 
been a significant topic of active research for more than one 
hundred years. The strong coupling between hydrodynamic 
flow and chemical kinetics is complex and even today many 
phenomena are not very well understood yet. Gaseous det-
onation is a process of supersonic combustion in which a 
shock wave is propagated and supported by the energy re-
lease in a reaction zone behind it. It is the more powerful 
and destructive of the two general classes of combustion, 
the other one being deflagration. 

The primary difficulty in computing reacting flows is the 
source term stiffness inherent in the reactive Euler equations 
in temporal integrations. Besides, the viscous stress and heat 
flux terms in the boundary layers can cause the stiffness too. 
The source terms are stiff because the thermal-chemical 
non-equilibrium reactive processes possess a wide range of 
time scales and some of them are much smaller than that of 

hydrodynamic flow [1]. The simulation will be inefficient 
when the explicit methods rather than the implicit methods 
are used, because the time-step sizes dictated by the stability 
restraint in explicit methods are much smaller than those 
required by the CFL condition. Due to these limitations in 
explicit methods, the implicit methods are normally re-
quired to simulate gaseous detonation. The practical implicit 
methods for gaseous detonation simulation can be catego-
rized into two classes, i.e. the time-splitting method and the 
additive semi-implicit method [2,3]. 

The time-splitting methods [4–8], resolve the source term 
of reactive Euler equations into 

 ( ) ( ), tU L U S U  (1) 

where L(U), S(U) are the convective term and reactive 
source term, respectively. The contribution from the con-
vective term is first calculated to get an intermediate value 

1nU , the source term contributions are evaluated to give 
Un+1 in the next step [9]. The additive semi-implicit meth-
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ods resolve ODEs into the stiff part and non-stiff part, in 
which the stiff part is computed implicitly while the non- 
stiff part explicitly. Zhong [1] conducted a detailed study on 
additive semi-implicit methods and proposed a stiff accurate 
semi-implicit Runge-Kutta method up to the third order. 
The proposed methods had been applied in reactive flow 
computation. Meanwhile, Kennedy and Carpenter [10] con-
structed an L-stable, stiffly accurate ARK2 method for solving 
spatially discretized one-dimensional convection-diffusion- 
reaction (CDR) equations. Their method has been combined 
with local discontinuous Galerkin methods by Xia and 
Wang [11,12] in studying PDEs. 

The main objective of this paper is to conduct a numeri-
cal study of the gaseous detonation in one-dimensional and 
two-dimensional tubes using high resolution WENO scheme 
and additive Runge-Kutta methods with the numerical ac-
curacies ranging from the third to fifth order. A detailed 
chemical kinetics model comprised of 9 species and 19 el-
ementary reactions was employed for a stoichiometric oxy-
gen-hydrogen mixture diluted with argon. The results were 
compared with those obtained by the explicit methods.  

1  Governing equation and numerical methods 

1.1  Governing equation 

The governing equations for gaseous detonation are the re-
active Euler equations of multi-species in which the viscos-
ity, the heat transfer, the diffusion and body forces are ne-
glected: 
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where i is the mass production rate of the i-th species,  is 
the density, u and v are velocities, E is the energy per unit 
volume, e, p and h are the internal energy, the pressure, and 
the enthalpy per unit mass, respectively. N is the number of 
different species being considered, and Yi is the mass frac-

tion of the i-th species (note that 
1

1
1

N
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  ), and S 

represents the stiff reactive source term.  
The internal energy, the enthalpy, and the specific heat 

capacities for a perfect gas are functions of the temperature 
only. Under such circumstances, we can write 
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in which cpi and cvi are the specific heat capacities of the i-th 
species at constant pressure and volume, respectively. The 
enthalpy and internal energy of a perfect gas are related to 
its heat capacities by 

 d ( ) ( )d , d ( ) ( )d ,i pi i vih T c T T e T c T T   (7) 

 
0
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The perfect gases can be further divided into two catego-
ries, i.e. the thermally perfect gas in which the specific heat 
capacities are the functions of temperature, and the calori-
cally perfect gas whose specific heat capacities are constant 
[13]. Accordingly, eq. (8) can be simplified for a calorically 
perfect gas:  

 , ,f
i i pi ph h c T h c T    (9) 

where f
ih  is the enthalpy per unit mass at 0 K for the i-th 

species. The state equation of the calorically perfect gas can 
be obtained by substituting eq. (9) and ( 1)pc R    

into eq. (4): 
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Particularly, if all the species are thermally perfect, we 
have 
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in which Ri is the gas constant of the i-th species and 

1
.

N
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   The values of a1i, a2i,…a6i are taken from 

JANAF tables [14]. 

1.2  Detailed chemical kinetics model  

A detailed chemical model comprised of 9 species and 19 
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elementary reactions was employed here for describing hy-
drogen-oxygen-argon detonation [15], which was choose 
because of its computation efficiency and accuracy com-
paring to other models, as shown in Table 1. The chemical 
reactions can be expressed as  

 
,

,

9 9

=1 =1

, =1, 2, 3, 19,
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in which ikv  and ikv  are the chemical stoichiometric co-

efficients of the i-th species in the k-th reaction, xi is the 
mole fraction of the i-th species, and Kf,k(Kb,k) are the for-
ward (backward) reaction rate constants of the k-th reaction, 
respectively. Kf,k and Kb,k follow the Arrhenius law and sat-
isfy the chemical equilibrium conditions:  
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where Ri=Ru/Wi, Ru is the universal gas constant, patm is the 
atmospheric pressure, o

is  is the entropy at the standard 

state, Ak is the pre-exponential constant, nk is the tempera-

ture power, and Eak is the activation energy. The finite pro-
duction rate i for the i-th specie is calculated under the 
assumption that all involved reactions are elementary reac-
tions: 
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where Wi and Cxi are the molecular weight and the molar 
concentration of i-th species (Cxi=i/Wi), respectively, and 
ik represents the third body coefficients for the i-th species 
and k-th equations. For hydrogen and oxygen, 1k=2.5(H2) 
and 8k=16(H2O), respectively, while ik=0 for all other 
species.  

1.3  Numerical methods 

Considering the stiffness of the reactive source terms, the 
additive Runge-Kutta (ARKN) method is adopted in this 
work to couple the Euler equations to the chemical reactions. 
Following the work [16,17], ARKN methods can be used to 
solve the equations of the form:  

 [ ]

1

d d ( ) ( ),
N

U t F U F U

 

    (15) 

Table 1  Reaction mechanism and some related parameters (cm3 mol s cal) 

  Ak nk Eak 

1 H+O2↔O+OH 6.00×1014 0.0 16790 

2 O+H2↔H+OH 1.07×104 2.80 5921 

3 OH+H2↔H+H2O 7.00×1012 0.0 4400 

4 O+H2O↔OH+OH 1.50×1010 1.14 17190 

5 H2+M↔H+H+M 2.90×1018 1.0 104330 

6 O+O+M↔O2+M 6.17×1015 0.5 0.0 

7 O+H+M↔OH+M 1.00×1015 0.0 497 

8 H+OH+M↔H2O+M 8.80×1021 2.0 0.0 

9 H+O2+M↔HO2+M 6.76×1019 1.42 0.0 

10 HO2+H↔H2+O2 2.50×1013 0.0 693 

11 HO2+H↔OH+OH 2.51×1013 0.0 1910 

12 HO2+O↔OH+O2 2.00×1013 0.0 0.0 

13 HO2+OH↔H2O+O2 1.20×1013 0.0 0.0 

14 HO2+HO2↔H2O2+O2 1.82×1012 0.0 0.0 

15 H2O2+M↔OH+OH +M 3.19×1017 0.0 47100 

16 H2O2+H↔H2O+OH 3.20×1014 0.0 9000 

17 H2O2+H↔H2+HO2 4.79×1013 0.0 7950 

18 H2O2+O↔OH+HO2 9.54×106 2.0 3970 

19 H2O2+OH↔H2O+HO2 1.00×1013 0.0 1800 
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where F(U) can be resolved into N terms. For reactive Euler 
equation, N=2, i.e. the convective term and reactive source 
term. Each time step in ARKN is calculated by 

 ( ) ( ) [ ] [ ] ( )
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where each of the N terms is integrated by its own s-stage 
Runge-Kutta method. The Butcher coefficients [ ]

ija   and 
[ ]
ib  , v=1,2,···N, are constrained, at a minimum, by some 

accuracy and stability considerations. For a detailed de-
scription of the methods as well as their implementation and 
applications, we refer the readers to [10]. Eq. (16) is implic-
it, so Newton-raphson method was used to solve it. 

The reactive equation in ARK2 methods can be written as 

 ,t ns sU F F   (18) 

where Fns and Fs represent the non-stiff and stiff terms, re-
spectively. The implicit-explicit ARK2 methods are particu-
larly attractive, in which the explicit Runge-Kutta (ERK) 
schemes are combined with stiffly accurate, explicit, singly 
diagonally implicit Runge-Kutta (ESDIRK) schemes. ERK 
methods are utilized to integrate the non-stiff terms, while 
the stiff terms are handled using ESDIRK methods [18,19]. 
The coefficients for the ERK and ESDIRK methods are 
denoted by [ ]E

ija  and [ ]I
ija  in the remaining parts of this 

paper, respectively. ESDIRKs offer the advantages of al-
lowing L-stability, stiff accuracy, and a second order accu-
racy. They differ from the traditional SDIRK [20,21] meth-
ods by having an explicit first stage. ARK3(2)4L[2]SA, 
ARK4(3)6L[2]SA and ARK5(4)8L[2]SA[5] that adopted in 
this work are third-order, fourth-order, and fifth-order 
ARK2 methods, respectively. Meanwhile, the non-stiff 
convective term in this paper was numerically discretized in 
space using fifth-order WENO scheme [22–29].  

1.4  Initial and boundary conditions 

The numerical simulation was conducted to simulate a det-
onation wave propagating in a square chamber with a stoi-
chiometric H2/O2 mixture diluted with 70% argon. The ini-
tial pressure and temperature were 6670 Pa and 298 K, re-
spectively. The solution of one-dimensional steady ZND 
detonation wave with a strong density perturbation ahead 
was placed on a two-dimensional mesh serving as the initial 
conditions for the two-dimensional simulation (Figure 1). 
Neumann boundary conditions were imposed on the inlet 
and outlet, and reflected boundary conditions were applied 
on the upper and lower walls. For one-dimensional detona-
tion, a proportion of pre-mixed gas was enclosed at the left 
end, and then the direction initiation was employed to gen-
erate the detonation waves.  

2  Test problems 

2.1  Convective-reactive equations 

The temporal accuracies of ARK3(2)4L[2]SA, ARK4(3)6L-   
[2]SA and ARK5(4)8L[2]SA[5] were evaluated by solving 
the convective-reactive equation:  

,t xu u u   0 1,x   (0, ) sin(2 ),u x x   

 periodic boundary condition.  (19) 

Eq. (19) exhibits an increasing stiffness as →0. In the 
IMEX formulation, the u term was integrated implicitly 
while all other terms were integrated explicitly. The initial 
boundary value problem of eq. (19) had a smooth exact so-
lution:  

   ( , ) sin 2 .tu t x e x t    (20) 

The temporal accuracies of the ARK2 methods were 
evaluated through a grid refinement study in which the 
computations were conducted successively with a time step 
half of that used in the previous computation. The same spatial 

 

Figure 1  Initial condition for 2-D gaseous detonation in a channel (density). 
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grid was used for all the test computations to prevent the 
spatial discretization error changing. The order of temporal 
accuracy was determined numerically by computing the 
parameter Rp defined by (=0.1):  

 0 ,h he u u   /22 ,p
p h hR e e   (21) 

in which p is the order of temporal accuracy, eh is the nu-
merical error, u0 and uh are the exact solution and the nu-
merical solution computed using time step h, respectively. 
The results are shown in Table 2. As shown in Table 2, the 
ARK5(4)8L[2]SA[5], ARK4(3)6L[2]SA and ARK3(2)4L-    
[2]SA methods were fifth-order, fourth-order and third- 
order, respectively.  

The changes in computation errors were plotted against  
in Figure 2. For IMEX ARK3(2)4L[2]SA, third-order TVD 
Runge-Kutta (reference, Shu), three steps third-order SSPRK 
(reference, Ruuth) and eight steps third-order SSPRK (ref-
erence, Ruuth). It can be seen that the computation errors of 
all four schemes were roughly the same for <10, while 
ARK3(2)4L[2]SA exhibited the smallest errors for >10.  

2.2  Shock tube problems 

The proposed method has been tested by computing two 
classic Shock tube problems, i.e. the Sod and Lax-Harten 
shock tube problems. The computations were conducted on 
a mesh of 200 cells. The initial conditions were 

 
1.000, 0.0, 1.0, 0 0.5,

Sod
0.125, 0.0, 0.1, 0.5 1.

u p x

u p x



    

     
 (22) 

 
0.445, 0.7, 3.52773, 0 0.5,

Lax
0.500, 0.0, 0.57100, 0.5 1.

u p x

u p x



    

     
 (23) 

The partial differential equations (PDE) in Sod and Lax- 
Harten shock tube problems are derived based on the con-
servation laws. The initial value problem of these PDEs is a 
Riemann problem. The Riemann problem is one of the 
standard verification problems for testing numerical algo-
rithms. The computed density, the velocity and the pressure 
profiles are shown in Figure 4 along with those from the 
exact solution. It is clearly evident that the computation 
results are in good agreement with the exact solution.  

2.3  Constant volume explosion model 

The constant volume explosion model can be expressed ei-
ther as the differential species conservation equations sub-
ject to algebraic physical constraints or as a set of purely 
differential equations. The algebraic-differential equations 
correspond to the Lagrangian conservation equations for 
each species:  
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Table 2  Temporal accuracy test for third-order ARK3(2)4L[2]SA, fourth-order ARK4(3)6L[2]SA, ARK5(4)8L[2]SA (x=0.5, t=0.2) 

t Err1 Rp Order Err2 Rp Order Err3 Rp Order 

h=0.04 1.82×103 7.2 2.85 3.21×104 13.0 3.70 5.57×105 26.0 4.70 

h/2 2.53×104 7.7 2.94 2.47×105 15.1 3.92 2.14×106 28.8 4.85 

h/4 3.29×105 7.9 2.98 1.63×106 15.9 3.99 7.43×108 29.9 4.90 

h/8 4.16×106 8.0 3.00 1.03×107 16.1 4.01 2.49×109 32.7 5.03 

h/16 5.21×107 8.2 3.04 6.37×109 16.6 4.05 7.62×1011 33.1 5.05 

h/32 6.43×108 – – 3.85×1010 – – 2.30×1012 – – 

 

 

Figure 2  Error versus stiffness parameters ε for four third-order schemes.  

 

Figure 3  Grid convergence study for four third-order schemes with stiff-
ness parameters =0.1. 
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Figure 4  Comparison of the computed solution with the exact solution. (a) Sod shock tube problem; (b) Lax shock tube problem. 

in which Yi, ei, i are the mole fraction, the internal energy, 
and the mass production rate of i-th species. The density is a 
constant and p=RT.  

The numerical performance of the proposed methods 
were compared with other reported ARK2 methods in the 
literature, including the (2,3,3), (3,4,3), and (4,4,3) methods 
of Ascher et al. [30], LIRK3 and LIRK4 due to Calvo et al. 
[31], a five-stage, 3(2) pair of Fritzen and Wittekindt (FW53) 
[32]. Figure 5 show some numerical results of pressure, 
temperature, temperature gradient and mole fraction of ma-
jor species and minor species.  

We define work as the number of implicit solves required 
for the integration without regard to Newton iteration count. 
On error versus work plots, the five stage methods of 
Ascher (4,4,3) and Fritzen FW53 are least efficient. LIRK3 
is the least efficient of the four remaining methods on this 
particular problem, followed by Ascher (3,4,3). The most 

accuracy efficient methods are ARK3(2)4L[2]SA and Ascher 
(2,3,3), shown in Figure 6 compares Calvo LIRK4 and 
ARK4(3)6L[2]SA at stiffness extremes showing that ARK4 
(3)6L[2]SA is not only more accurate but increasingly so as 
the stiffness is increased. 

3  Results and discussion 

3.1  One-dimensional detonation 

The effects of grid size on detonation parameters were illus-
trated in one-dimensional gaseous detonation. The results 
are summarized in Table 3. The von-Neumann pressure and 
reaction zone length are shown in Figure 7 as a function of 
the grid size. It is clearly that some detonation parameters 
including the detonation velocity, the C-J pressure and the 
wall pressure were fairly insensitive to the grid size, while  
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Figure 5  Profiles of CV structure for a stoichiometric mixture of hydrogen-argon. (a) Temperature and pressure; (b) temperature gradient and temperature; 
(c) minor species; (d) major species. 

 

Figure 6  Error versus work for some IMEX Runge-Kutta methods. (a) Six third-order IMEX Runge-Kutta methods; (b) two fourth-order IMEX Runge- 
Kutta methods.  

Table 3  Calculated detonation parameters with different grid sizes 

Grid size 
(mm) 

Detonation velocity 
(m/s) 

C-J pressure 
(Pa) 

Wall pressure 
(Pa) 

V-N pressure 
(Pa) 

Reaction zone length 
(mm) 

Induction zone length 
(mm) 

2 1620 93600 35830 135000 28 – 

1 1620 93600 35830 149000 18 – 

0.5 1620 93600 35830 159000 15 – 

0.2 1620 93600 35830 166000 12 1.9 

0.1 1620 93600 35830 169000 10 1.6 

0.05 1620 93600 35830 172000 10 1.5 
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Figure 7  Peak pressure and reaction zone length versus grid size. 

other parameters such as von-Neumann pressure, the reac-
tion zone length and the induction zone length changed ob-
viously as the grid size varied.  

Both p/pCJ and Lrea can be fit well by an exponential 
growth model:  

 1.73260
CJ =0.59158e +1.25463,

x

p p


 

 32.1159
rea =282.632 e 272.603,

x

L


  (25) 

where Lrea refers to the reactive zone length, and x is grid 
size on space. When x→0, p/pCJ and Lrea converge to 1.85 
and 10 mm, respectively. 

Some computed solutions are compared with other works 
in Table 4. The minimum induction zone length was found 
to be 15 mm in the present computations, which is pretty 
close to the result (0.147 cm) by Joseph et al. [33] while a 
little small than the result (0.16 cm) by Qu [34]; neverthe-
less, much larger than the reported value (2.0×103 cm)by 
Oran et al. [35].  

3.2  Two-dimensional detonation 

The triple wave configuration in the computed detonation 
front is shown in Figure 8. A typical triple wave configura-
tion consists of the Mach stems, the incident waves and 
transverse waves, all intersect at the so-called triple points. 
As shown in Figures 8 and 9, the pressure and the density 
showed a peak around the triple points as a result of the 
collision between two neighboring transverse waves as the 
detonation wave propagated. The incident waves were wider 
while less intensive than the Mach stems, and meanwhile 
the gradients of pressure and temperature behind the inci-
dent waves were smaller than those behind the Mach stems. 
It indicates that the thermal chemistry reactions behind the 
incident waves fell behind those after the Mach stems. In 
addition, right at the Mach stems, the pressure and density 
distributions were not uniform and showed a trough in the 
middle.  

Smoke-Foil Record of Detonation is a popular method 
for recording a detonation-wave structure involves the use 
of smoke-coated walls. As the detonation wave propagates, 
the high pressure generated at the shock-shock or shock- 
wall interaction point scratches the smoke-leaving a trace of 
the path of the high-pressure point on the wall. Propagation  

Table 4  Comparison of the computed solution with other works for the 
1D detonation wave 

 
This 
paper 

Gordon 
[36] 

Shepherd 
[33] 

Oran 
[35] 

Qu 
[34] 

DCJ (m/s) 1620 1618   1625 

Lind (m) 1.5×103  1.47×103 2.0×105 1.6×103 

Lrea (m) 1.0×102   1.2×102 1.1×102 

V-N 
Pressure (/pCJ) 

1.85    1.79 

 

 
Figure 8  Detonation wave configuration. (a) Detonation front; (b) profiles of mach stem and incident along detonation front. M, Mach stem; I, Incident 
wave; T, Transverse wave. 
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Figure 9  Profiles of pressure, density, temperature, velocity and mass fraction of OH. 

of a detonation wave captured by the smoke-foil technique 
is shown here. The detonation wave was propagating in a 
channel from right to left. The fuel/air mixture was doped 
with tracer particles. As the detonation passed through, it 
scratched the smoke foil and displaced the particles. This 
technique has been used widely to study the tracks of the 
cellular structure experimentally (Figure 10(a)) and numer-
ically (Figure 10(b)). Similarly, in the present work, the 
maximum mechanical power, max, on all grids in the time 
history were recorded to simulate the smoke foil tracks: 

  2 2
max , , end

, max

= + ,  =0 .i j
i j

p u v t t    
 (26) 

Figure 11 shows the pressure profiles at six different 

times points for the 2-D detonation wave is propagating in a 
10 mm wide channel. The grid size was 0.2 mm. A fairly 
regular cellular structure with six transverse waves was ob-
served, which was believed to be caused by the simultane-
ous presence of transverse waves, Mach stems and incident 
waves. Particularly, as the detonation wave propagated, the 
neighboring transverse waves collided with each other, and 
then led to the formation of new triple wave structures.  

Figure 12 shows some characteristic parameters of the 
cellular pattern, including exit angle , the radio of cell 
width to cell length /l, entrance angle  and angle of 
transverse wave trace . Parameters comparison listed in 
Table 5 show that the computed cells solution agrees well 
with experiment ones in quantity.  

 

Figure 10  Detonation cellular pattern. (a) Experimental cellular pattern (Shepherd); (b) produced in numerical simulations.  
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Figure 11  Simulated detonation wave propagation profiles at six time points.  

 
Figure 12  Some characteristic parameters of the cellular pattern. 

Table 5  Parameters comparison of the computed cells solution with 
experiment ones 

Cell structure 
parameters 

Computation 
results 

Experiment results 
[37,38] 

/l 0.6 0.5–0.6 

 10 5–10 

 35–42 32–40 

 ~32 ~30 

3.3  Mach reflection of cellular detonations 

Reflection of cellular detonation wave on a wedge has be-

come increasingly important in the last decade due to its 
application in supersonic propulsion and relating interactions 
between cellular detonation wave and structure. In this sec-
tion, we simulated Mach reflection of cellular detonations 
and captured cellular patterns on a wedge with a 19.3° angle.  

Figure 13 shows the cellular patterns observed in exper-
iment [39] and numerical results with the detailed chemical 
model using CE/SE scheme [40], TVD Runge-Kutta 
scheme, ARK scheme, respectively. It is found that there is 
a sharp dividing line emerging near the wedge and extend-
ing downstream. The size, shape and number of cells be-
tween the triple-point trajectory and the wedge are obvi-
ously different. From Figure 14, it is appropriate to say that 
the reflection on the wedge occurs in Mach reflection mode 
and that the dividing line denotes a triple-point trajectory 
(the black dash line). The case of Mach reflection of cellular 
detonations indicates that the ARK scheme can simulate 
cellular structure and reflection of gaseous detonations ac-
curately.  

Figure 15 shows three profiles of detonation cell pattern 
in the bend with bending angle  =30°, 60° and  =90°. 
There is a clearly visible difference in detonation cell pat-
tern. In the bend, upper half is diffraction zone and lower 
half is mach reflection half. It is well known from the pre-
vious researches that mach reflection of detonation occurs 
depending on whether the wedge angle is less than critical  
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Figure 13  Cellular pattern produced in numerical simulations. (a) Experiment [39]; (b) detailed chemical reaction model and 3 order TVD Runge-Kutta 
scheme (this paper); (c) detailed chemical reaction model and CE/SE scheme [40]; (d) detailed chemical reaction model and 3 order ARK scheme (this paper).  

 

Figure 14  Cellular pattern produced in numerical simulations. 

 

Figure 15  Cellular patterns produced in numerical simulations on smooth 
tube with bending angle 30°, 60° and 90°. 

angle c. According to Qu’s work [34], in a stoichiometric 
H2/O2 mixture diluted with 70% argon at an initial pressure 
and temperature of 6.67 kPa and 298 K, c=46°. A curve 
can be seen as a combination of many short straight lines; 

with the same reason, a concave surface of bend also could 
be thought as a combination of many wedges with angle 
increasing. Therefore a conclusion can be got that mach 
reflection occurs on outer wall at the very beginning until 
the turning point located at the cross section 46° from bend 
inlet. In Figure 15, we can found that the detonation cells 
pattern near the outer wall is regular and a little smaller than 
that in the initial section when the radius angle of concave 
surface is less than 46°, then becomes more irregular and 
disappears with the radius angle of concave surface is 
greater than 46°. The triple point trajectories under the re-
flected main triple point trajectory are convergent; in other 
words, the angle of the triple point trajectories near the out-
er wall is increasing behind the reflected mach stem. This is 
evidently different from detonation reflection from a wedge, 
in which the triple point trajectories are parallel with each 
other except the reflected main triple point trajectory behind 
the reflected mach stem.  

4  Conclusions 

The reactive Euler equations with a stiff source term were 
numerically solved using ARK2 methods. The source term 
was resolved into a stiff part and a non-stiff part, in which 
the stiff part was solved explicitly while the non-stiff part 
was handled in an implicit way. A high numerical accuracy 
along with the L-stability can be achieved by using ARK2 
methods. The proposed methods and other methods reported 
in the literature were evaluated by numerically solving sev-
eral test problems including the 2-dimensional detonation. 
Particularly, the proposed methods can reproduce the cellu-
lar pattern that has been observed experimentally. The re-
sults showed: (1) The numerical errors of the implicit and 
explicit Runge-Kutta methods were comparable when solving 
a equation with an intermediate stiffness; however, the im-
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plicit method demonstrated a better numerical performance 
as the equation stiffness increases. (2) The stiffly accurate 
additive Runge-Kutta methods can capture the discontinuity 
well and describe the detonation complex wave configura-
tions exactly, specially the typical characteristics such as 
triple wave structure, cellular cell, diffraction, reflection.  
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