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Representational similarity analysis (RSA) is a rapidly developing multivariate platform to investigate the structure of neural ac-
tivities. Similarity/dissimilarity is the core concept of RSA, realized by the construction of a representational dissimilarity matrix, 
that addresses the closeness/distance for each pair of research elements (e.g., one minus the correlation between the brain re-
sponses to 2 different stimuli) and in turn, constitutes a multivariate pattern as its analytic foundation. This approach is also wel-
come for its sensitivity in detecting subtle differences of distributed experimental effects in the brain. Importantly, RSA is not 
only an experimental tool but a promising data-analytical framework that can integrate cross-modal imaging signals, explore 
brain-behavior link, and verify computational models according to measured neural activities. RSA substantiates its integrative 
power by relating similarity structure in one domain (e.g., stimulus features) to that in another domain (e.g., neural activities). 
This review summarizes dissimilarity/similarity definition of RSA, introduces how to derive the dissimilarity structure in neural 
response pattern, and carry out connectivity analysis based on RSA platform. Several recent advances are highlighted, such as the 
extraction of across-subjects regularity, cross-validation of brain reactivity in human beings and monkeys, the incorporation of 
computational models and behavioral profiles into RSA. Voxel receptor field modeling, another promising multivariate tool of 
pattern elucidation, is presented and compared. The application of RSA is expected to surge and extend in many fields of neuro-
science, computation, psychology and medicine. We also discuss the limitations of RSA and some critical questions that need to 
be addressed in future research. 
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It is believed that there is a correspondence between psy-
chological representation in percept and neural representa-
tion in brain [1−3]. Conventional functional magnetic reso-
nance imaging (fMRI) studies endeavor to localize neural 
populations that process specific categories of stimuli [4]. 
Despite these fruitful results, several issues remain unclear, 
for example, how a category-specific neural population 
handles within-category complexity; thus, neurons in the 
face area may “identify” tens of thousands of faces and 
those in animal recognition area may “recognize” a wide 
plethora of species in animal kingdom. In addition, it has 
been debated that whether there is a clear-cut boundary of 
neural segregation so that, for example, neurons in fusiform 

face area (FFA) may or may not support neural computation 
in animal recognition. To answer these questions, the tradi-
tional approach relates peak coordinates to a category-  
specific neural response. Peak coordinates can be easier to 
understand, but assigning them to a neural representation 
can be a misleading form of reductionism that ignores 
abundant information that is inherent in real world [5].  

In contrast to localizing a neural point or coordinate with 
some form of maxima statistic, there is a trend of research 
that explores the topology or the distribution of neural codes 
[6,7]. In accord, the studies decoding pattern information of 
fMRI signals have grown in popularity recently [8−10]. 
Pattern-information analysis treats brain activity across 
multiple voxels as a pattern, extracts information encoded in 
the pattern as representation [11], and reveals the relation 
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with richly structured sets of phenomena: perceptual and 
cognitive content, as well as behavior [12]. From the view-
point of technology, this representation approach is in con-
trast to conventional activation-based univariate analysis 
using the general linear model (GLM) where spatially clus-
tered voxels that may contribute to specific cognitive func-
tion are commonly averaged (e.g., smoothed) and examined 
on a voxel-by-voxel basis (i.e., massive univariate). Only 
the voxels with robust statistics are reported, resulting in a 
loss of fine-grained spatial-pattern information naturally 
embedded across voxels [13]. Pattern analysis aims to cap-
ture/characterize neural distribution by multivariate or net-
work methodology, which allows relating multi-dimen- 
sional neural responses to within-category perceptual varia-
bility and enables to delineate the distributed neural re-
sponses for the mental processing of different perceptual 
categories (could be composed of common and unique 
components). Given its emphasis on “information” rather 
than “activation” in the neuronal system, pattern representa-
tion investigation is more sensitive to the subtle differences 
of a distributed experimental effect than is GLM [14]. 

Currently, there are two main approaches to decoding 
pattern information in the brain: multivariate pattern analy-
sis (MVPA) and representational similarity analysis (RSA). 
In general, MVPA uses pattern-classification algorithms 
that can extract diagnostic information from multi-dimen- 
sional space and separate data samples into different classes 
[15], i.e., MVPA determines whether the response pattern in 
a brain region contains the stimulus information in the ex-
periment [16]. The logic behind is: if prediction of the stim-
uli from the measured/observed neural response patterns is 
significantly above chance level, the patterns provides in-
formation about the stimuli [17]. Due to its sensitivity in 
unveiling information stored in multivariate patterns of 
brain activity, MVPA has been developed extensively and 
rapidly in recent years. However, MVPA requires a priori 
definition of stimulus categories (typically 2–5 classes) [18] 
which allows to draw uni-directional conclusion from stim-
ulus space to neural space, but not vice versa. 

RSA is another promising tool that characterizes multi-
variate response patterns based on quantifying the strength 
of similarities among different neural patterns, rather than 
resorting to categorical judgment, and thus affords further 
analysis on the structure of representational spaces [11]. 
The distance in neural similarity naturally provides cluster-
ing information, enabling making inference from neural 
space to perceptual space. In addition, RSA is suitable for 
dealing with many condition-rich experiments without 
pre-assignment of stimulus categories. Further, RSA can 
serve as a general experimental and data-analytical frame-
work for integrating several research domains including 
neural activity, behavioral experimentation and computa-
tional modeling [19]. In this review, we summarize major 
approaches and significant advances of RSA with a focus 
on the above three domains. Several important facets of 

RSA are also highlighted, including the dissimilarity/   
similarity concept, investigation of dissimilarity structure in 
neural response pattern, connectivity analysis derived from 
RSA, extraction of across-subjects regularity, comparative 
cross-validation of human beings and monkeys, incorpora-
tion of computational models and behavioral profiles into 
RSA, and last, a comparison with voxel receptor field mod-
eling. The limitations of RSA and some critical questions 
that need to be addressed in future research are also dis-
cussed.  

1  Representing dissimilarity structure of  
response patterns to experimental stimuli  

Representational similarity analysis characterizes represen-
tational content of stimuli-evoked brain activities by means 
of a representational dissimilarity matrix (RDM). In brief, 
each cell of RDM reflects the dissimilarity (e.g. one minus 
correlation coefficient) between the brain activity distribu-
tions associated with the correspondent pair of stimuli in 
one experiment and hence, reveals the degree to which each 
pair of stimuli is distinguished by neural response pattern 
(more detailed description below). This relationship be-
tween the stimulus property and brain-activity pattern con-
stitutes what has been termed first-order isomorphism [20].  

Many previous studies of brain representations have fo-
cused on first-order isomorphism in pre-defined brain re-
gions or regions of interest (ROIs). An ROI is firstly de-
marcated by anatomical information or functional data from 
a separate block-localizer experiment, and then the spatially 
contiguous sets of voxels within the ROI are selected for 
pattern-information analysis. Brain activity evoked by stim-
uli are usually estimated under the GLM framework, and 
each stimulus (in opposition to each category of tens of 
stimuli commonly adopted in fMRI studies) is regarded as a 
predictor in the GLM model; then the estimated coefficient 
of GLM (beta value) for each predictor and each voxel is 
obtained and forms the basis for computation of the repre-
sentational dissimilarities. In detail, the “distance” between 
two stimuli is defined by a measure of dissimilarity between 
two elicited activity patterns, which can be assessed in a 
variety of ways, including correlation or rank-correlation 
analysis, Euclidean and Manhattan distance measure, etc. A 
widely used measure of dissimilarity is correlation distance, 
i.e., one minus the correlation between patterns [21]. 

Direct visual inspection of RDMs may yield clustered 
structures in neural response patterns [22,23]. Nevertheless, 
the dissimilarity structures can be measured and analyzed 
by automated algorithms of multi-dimensional scaling 
(MDS) [24] and hierarchical clustering analysis [25]. MDS 
attempts to find a lower dimensional display space in which 
data points (experimental stimuli or associated dissimilarity 
indices to experimental stimuli in this case) can be orga-
nized in such a way that their pairwise spatial distances are 
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retained and approximately reflect their dissimilarity struc-
ture. In the rearrangement via MDS, data points of dissimi-
larity indices placed close together, i.e. shorter distance, 
denote similar response profiles to the correspondent stimuli. 
MDS is unsupervised by nature in that it does not presup-
pose dissimilarity structure and it aims to reveal the compo-
sition that dominate the representation of stimuli in a given 
ROI by data-driven processes. Hierarchical clustering anal-
ysis assists in identifying relatively homogeneous groups of 
stimuli, using an algorithm that starts with each stimulus in 
a separate cluster and combines clusters based on their 
closeness until only one is left [26]. For the experimental 
condition with a small number of stimuli, similarity-graph is 
often used to visualize the representation where each of the 
nodes and edges respectively indicates a stimulus and how 
these different stimuli are similar together. In summary, 
RSA starts with the construction of RDM which indicates 
the distance between neural response patterns and then dis-
closes the underlying structure of RDM by various data 
re-organizing and clustering techniques, such as MDS and 
hierarchical clustering. 

Exploration of similarity structure can be traced back in 
earlier functional imaging research. In 1998, Edelman et al. 
[2] pioneered the application of similarity analysis to fMRI 
activity patterns. Initially, however, this analytic scheme has 
not attracted much attention even after continuous publica-
tion of several well designed studies [27,28]. It is not until 
recently that applications of this method have gained mo-
mentum and developed rapidly. In 2011, Kravitz et al. [23] 
applied MDS to reconstruct and visualize representational 
dissimilarity structure derived from the distributed neural 
responses to 96 diverse real-world scenes. The authors 
found, contrary to previous studies [29,30], that representa-
tions in the ventral temporal parahippocampal place area 
(PPA) were characterized primarily by the spatial factor of 
expanse (open, closed) and in early visual cortex (EVC) 
primarily by distance (near, far), not by category or context. 
Kriegeskorte et al. [22] applied hierarchical clustering anal-
ysis of response patterns in human brain evoked by 92 un-
grouped-object stimuli photos, and found that object repre-
sentation was inherently categorical in inferotemporal cor-
tex (IT): animate and inanimate objects form the two major 
clusters; faces and bodies form subclusters within the ani-
mate cluster. 

2  Representational connectivity and similarity 
searchlight analysis 

The concept of RSA can be extended to the so-called sec-
ond-order isomorphism, in contrast to its first-order coun-
terpart, which measures representational dissimilarity ma-
trices between two given ROIs [31]. This approach yields a 
novel definition of connectivity where similar RDMs of two 
ROIs indicate substantial information exchange and hence, 

neural interaction. Analogous to the concept of functional 
connectivity [32], this approach is termed “representational 
connectivity”. To quantify the match/mismatch between 
two RDMs, it commonly starts from assessing the discrep-
ancy of the correlation distances (1 - correlation) of the two 
matrices. Because RDM is a mirror-symmetric matrix about 
a diagonal of zeros, only elements in the upper (or equiva-
lently the lower) triangle of the matrix are used as a sample 
for calculation. It is noted that representational connectivity 
between two ROIs does not imply a direct structural con-
nection. Nevertheless, representational connectivity prom-
ises a higher-level functional perspective to assess to what 
extent two regions represent the same information, which is 
in contrast to the perspective of first-order isomorphism that 
addresses the similarity in perceptual and neural spaces, and 
in single ROI [19]. 

Representational connectivity is usually combined with a 
similarity searchlight procedure to identify voxel clusters of 
shared representational dissimilarity structure across the 
brain, without pre-defined ROIs. The searchlight method 
was developed by Kriegeskorte et al. [33], and the main 
steps include: a sphere with a center at one voxel and us-
er-specified radius, then move the sphere (or spotlight) 
throughout the brain with multivariate statistics (e.g., classi-
fication performance or indices of similarity) computed at 
each location, with the result stored at each voxel. In turn, 
the contiguous voxels identified by searchlight procedure 
provides analytic units for further similarity analyses, re-
gional or inter-regional. Representational connectivity may 
also be further elaborated by using a broad range of network 
analysis approaches, such as graph theory [34].  

Connolly et al. [35] have combined RSA, searchlight 
analysis, and cluster algorithm to explore distributed re-
sponse to the stimuli images of six animal species without 
external assumptions. The authors discovered that the larg-
est cluster was formed by voxels in lateral occipital com-
plex (LOC) region, with their RDMs reflecting biological 
class structure of the stimuli. Mur et al. [36] extended this 
methodology to perform a connectivity analysis of 96 object 
images from a wide range of categories, including faces and 
places, and also humans and animals. They found functional 
similarities between EVC and IT cortices, and between 
bi-hemispheric FFAs and PPAs. Good discrimination of 
preferred from non-preferred stimuli was also demonstrated 
based on single-image activation of category-selective re-
gions in FFA and PPA across a wide range of ROI sizes.  

It is noteworthy that representational connectivity is very 
different from the rationales of conventional connectivity 
analyses, such as Kalman filter [37], structural equation 
model [38], Pearson correlation [39], mutual information 
[40], or granger causality analysis [41] where the strength in 
the relation between selected time courses is the main focus. 
Frequently, the surrogate time courses can be derived either 
from the averaged temporal series of the voxels in ROIs or 
from the temporal series of the voxels with peak statistics in 
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ROIs (indicating the voxels with most confident/reliable 
neural responses). Representation connectivity, on the con-
trary, emphasizes the similarity in spatial pattern and can be 
a complementary approach to unveil neural interaction at 
the scale of distributed neural network. In summary, repre-
sentation connectivity analysis replaces neural node with a 
distributed pattern and connectivity strength with RDMs 
similarity. 

3  Performing across-subject decoding of fine- 
grained neural representations 

What makes different individuals’ representations of the 
outside world alike or different? To investigate this question 
demands across-subject decoding, where visualizing and 
comparing neural similarity space by MDS and hierarchical 
clustering analysis are commonly used [23,35]. However, 
classification by intuitive visualization or averaging alone 
might not be self-evident at a finer grained scale and not 
sufficient to judge whether an attempt to decode the stimuli 
across subjects succeeds or fails. There is a need for new 
approach to further bridging representational structures of 
different subjects so as to accommodate population-level 
variation and regularity. 

In 2012, Raizada et al. [42] have developed an analytic 
pipeline named DEMOSS (DEcoding by Matching Of Sim-
ilarity Spaces) to seek to decide whether different subjects’ 
representations are alike. The authors first employed the 
classic dataset from Haxby et al. [43] which reliably acti-
vates object recognition area in ventral temporal (VT) cor-
tex, and then calculated the neural similarities between eight 
stimulus conditions for each of the six subjects by spatial 
correlation. One subject was selected for producing neural 
similarity matrices from all possible stimulus label-permu- 
tations (8! = 40320 labels); the similarity matrix which had 
the highest correlation with the average matrix from the 
other subjects was the winner to provide multivariate neural 
decoding for the group-level commonality. The success of 
this across-subject decoding strategy demonstrates that 
neural similarity space captures a representational scheme 
that is shared across individuals, even at the finer-grained 
level of multiple subcategories.  

In contrast, it would also be worthwhile to investigate in-
dividual differences in fine-grained neural representations. 
Polk et al. [44] studied the similarity between twin pairs in 
the distribution of neural responses to faces, houses, 
pseudowords and chairs in the ventral stream. The authors 
found that face and place-related responses within face and 
place selective regions, respectively, were significantly 
more similar for monozygotic than for dizygotic twins [45]. 
Variability in the similarity structures of brain activity pat-
terns may account for inter-individual difference in per-
forming a given neuropsychological task or reflect differ-
ences in the status of the subjects. Importantly, one potential 

direct application of RSA is in the domain of diagnosis, 
which may serve as a vehicle for distinguishing patient and 
control populations. 

The theoretical implication for the extraction of across- 
subject neural representation is profound to the philosophy 
of mind. It has long been asked, for example, why different 
individuals share similar mental representations? Whether 
different species of mammalian decode the real world in a 
similar way? The study of neural similarity by Raizada et al. 
[42] and that by Kreigeskorte et al. [17] provide preliminary 
clues to these, and perhaps other more fundamental ques-
tions of human nature. The information revealed by the 
scatter or trace in the neural similarity space may offer evo-
lutionary trajectories from neuroscientific account. Further, 
the framework of RSA may help to shape theoretical ques-
tions based on something measurable and real in the brain. 

4  Identifying semantic dissimilarity structure 
in human brain matching monkey, behavior, and 
models 

The comparison between human and monkey brains is im-
portant from an evolutionary perspective and has enjoyed a 
long history. One of the key questions is: do humans and 
monkeys see the world similarly? To this end, Kriegeskorte 
et al. [22] have estimated blood-oxygen-level dependent 
responses patterns elicited in human IT and neural activities 
recorded from monkey IT neurons by the same 92 object 
images (different face, body, animal, plant and artifact 
stimuli photographs), and then used RSA to investigate their 
neural similarity structures. Despite different imaging mo-
dalities and species, the authors found a high degree of 
match between the similarity structures of human and mon-
key, which were characterized by major distinctions be-
tween animate and inanimate stimuli and, within the ani-
mate domain, between faces and bodies. These studies 
evoke the view that the monkey brain might provide an ap-
propriate model of the human brain not only for early sen-
sory processing, but also at higher level of categorical ob-
ject representations [18]. RSA thus offers an attractive way 
to decode representation content from different species and 
modalities of brain activity signals. 

The representational dissimilarity matrix can serve as a 
platform that relates different representation contents from a 
variety of sources, especially neural and behavioral ones, 
which underlines the important issue of brain-behavior link. 
This platform based on similarity measure naturally pro-
vides clustering information, along a fine continuum of dis-
tance, which enables cross-modal comparison. Connolly et 
al. [35] conducted an fMRI study with a selection of photo-
graphs from 6 species and then asked the participants to rate 
their proximity at a post-scan session. Using behavioral 
judgments as target similarity structures, the authors applied 
the searchlight technique to map the relationship between 
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neural similarity and target behavioral similarity throughout 
the brain. The brain clusters with matched neural and be-
havioral similarity matrices were mainly situated in the 
ventral visual stream, encompassing lateral occipital com-
plex (LOC) region. The close correspondence between the 
RDM of a brain region and the behavioral dissimilarity ma-
trix would suggest that the brain region play a role in de-
termining the measured behavioral hierarchy. 

Obviously, many other forms of behavioral profiles can 
be related to the similarity feature of distributed brain re-
sponse patterns, such as success and failure, or reaction time 
in performing a task. Raizada et al. [46] labeled desirable 
behavioral output as +1 and −1, voxels time course as input, 
and then applied a linear regression model to extract the 
brain voxels with significant power to discriminate the out-
put labels. In contrast to ROI analysis frequently used in the 
field of pattern decoding in neuroimaging research, the au-
thors used the entire brain at once as a single, large ROI, i.e. 
brain-wide multivariate pattern. Surprisingly, the results 
were quite robust and similar to other classifiers such as 
support vector machine and regularized logistic regression. 
Although the linear regression study by Raizada et al. [46] 
does not seem to be RSA at first glance, the neural pattern 
that is maximally discriminative according to a linear model 
actually reflects the voxels that embrace labeling infor-
mation, and hence a binary pattern matching. 

Computational models can be a rigorous alternative to 
produce target similarity structure to relate to brain activity 
data. The experiment stimuli may first be processed to ob-
tain representations using models under testable hypotheses, 
and then their internal representations are handled in the 
same way as the measured neural representations described 
above. Here, computational models simulate certain aspects 
of central information processing during an experiment [47] 
and thus account for information represented by the relevant 
brain regions’ response patterns. Rejection of hypotheses or 
selection of better models can be achieved by similarity 
assessment between simulation results and measured neural 
activities.  

5  Comparison with voxel receptive-field mod-
eling 

Voxel receptive-field modeling is another attractive method, 
similar to RSA that integrates computational models of 
brain information processing into pattern-information anal-
ysis. Generally, the analytic method can be divided into two 
steps. First, a computational model is trained to best fit the 
pre-selected stimuli features and the associated brain re-
sponse patterns (hence the name “receptive field”). The 
stimuli features here are important intermediates to define 
stimuli space where all the elements of the stimuli set can 
be projected to, which enables finer description of experi-
mental material, resembling the strategy of categorization/ 

sub-categorization adopted in RSA. Then, the power of 
generalization can be assessed by the match/mismatch be-
tween the brain response pattern predicted by the model and 
that elicited by a subset of the unused stimuli [48]. Both 
voxel receptive-field modeling and RSA are based upon 
brain response patterns estimated for each single stimulus 
and both methods sample the stimuli space more richly  
[49]; however, the former uses computational models to 
predict response patterns, whereas the latter predicts re-
sponse-pattern dissimilarities. 

Although not as prevalent as RSA, several well per-
formed studies that use receptive-field models have suc-
cessfully identified and constructed brain response patterns 
to novel stimuli [48,50]. For example, Kay et al. [29] pre-
sented each subject with a large set of natural scene photo-
graphs while fMRI data were recorded in early visual cortex, 
and the authors tuned the receptive field model that best fit 
the stimuli features of space, orientation and spatial fre-
quency of natural images to the multi-dimensional neural 
representation in V1, V2 and V3. The authors demonstrated 
that it was possible to decode subjects’ brain activity to de-
termine what specific image was seen, highlighting a possi-
bility to reconstruct visual experience from the measured 
brain activity. 

6  Future perspectives and conclusion  

Strong evidence has suggested that neuronal population 
codes of perceptual, cognitive and motoric representations 
are distributed in nature, which motivates a new research 
direction addressing “pattern” in contrast to seeking a coor-
dinate with peak statistics in the brain, with the latter having 
dominated the neuroimaging field for decades. Most previ-
ous research about RSA has been restricted to visual object 
recognition [51]. Recently, RSA has been recognized as a 
powerful tool and has been applied to a broad range of 
fields including auditory objects recognition [51], memory 
[52], language [53], emotion [54], number cognition [55], 
and olfaction [56]. For example, Xue et al. [57] found that 
the degree of consistency in neural response patterns across 
repeated presentations of a stimulus was positively associ-
ated with later memory for that stimulus. Gilbert et al. [58] 
found successful prospective memory was associated with 
greater encoding-retrieval similarity by comparing the sim-
ilarity of brain activity patterns in encoding and retrieval 
trials in prospective memory paradigm. Previous studies 
have reported that more intense neural activity was related 
to better language ability [59]. However, Raizada et al. [46] 
found the average intensity of fMRI activation was the same 
for /ra/ as it was for /la/, whereas the behavioral difference 
to /ra/ and /la/ identification is reflected in the distinctness 
in the spatial activation patterns. 

With the rapid development of RSA, further potential 
applications could include the detection of individual dif-
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ferences (in contrast to the group effect derivation), may 
apply to diverse domains beyond perception and cognition 
(e.g. multivariate biomarkers for brain diseases), and may 
integrate cross-modal neuroimaging techniques (e.g., struc-
tural MRI, diffusion MRI, EEG) from the multivariate per-
spective. Abnormal neural synchronization in neuropsychi-
atric condition could be detected by different degrees of 
representational dissimilarity. Besides, RSA can be useful 
for facilitating condition-rich experiments, i.e., designs that 
distinguish many conditions. In conventional experimental 
designs, stimuli are commonly grouped and useful infor-
mation is missed after dimensionality reduction of the stim-
uli space into very few categories. An ungrouped event de-
sign would enable us to map stimuli situated at higher di-
mension spread within a given brain region as a pattern, for 
example through the construction of feature space, and can 
be further examined by theoretical models. 

However, several limitations deserve consideration when 
applying RSA and interpreting the results. RSA is based on 
dissimilarity distance between two activity patterns evoked 
by stimuli. The dissimilarity distance can be assessed in a 
variety of ways. The choice of a pattern-dissimilarity met-
rics requires appropriate caution about their influences on 
the outcome. In addition, RSA uses a randomization test 
and random-effects inference as a statistical harness on the 
relatedness between two RDMs; more statistical methods 
remain to be developed to accommodate various analytic 
parameters, different definition of metrics, reliability and 
stability assessment, and different similarity measures from 
multivariate brain-activity data. 

This review summarizes several technical consideration, 
recent advances and potential application of RSA. As a 
promising analytic platform, RSA can contribute to inte-
grate several closely-related fields, such as neural activity, 
behavioral experimentation and computational modeling, so 
as to help us to elucidate the correspondence between the 
representations in mind and brain, to discover both the con-
tents and rules of neuronal population computation. 
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