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The ability to discriminate between single cells in a label-free and noninvasive fashion is important for the classification of cells, 
and for the identification of similar cells from different origins. In this paper, we present the Raman spectroscopy-based identifi-
cation of different types of single cells in aqueous media, and discrimination between the same types of cells from different do-
nors using a novel Laser Tweezers Raman Spectroscopy (LTRS) technique, which combines laser trapping and micro-Raman 
spectroscopy. First, we measured the spectra of individual living human erythrocytes, i.e. red blood cells, and leucocytes (U937 
cancer cells). High-quality Raman spectra with low fluorescence were obtained using a home-LTRS apparatus and 20 cells were 
measured for each cell type. The smoothing, baseline subtraction, and normalization of the data were followed by a principal 
components analysis (PCA). The PCA loading plots showed that the two different types of cells could be completely separated 
based only on the first component (PC1) (i.e. the peaks at 1300 cm−1); the discrimination accuracy could therefore reach 100%. 
More than 50 spectra were taken for each erythrocyte obtained from the four healthy volunteers. The average discrimination ac-
curacy was 84.5% for two random individuals taken from the four volunteers, according to the first and second PCs. This work 
demonstrates that LTRS is a powerful tool for the accurate identification and discrimination of single cells, and it has the potential 
to be applied for the highly sensitive identification of cells in clinical diagnosis and medical jurisprudence. 

Raman spectroscopy, optical tweezers, human erythrocyte, single cell identification, principle components analysis 

 

Citation:  Ma H F, Zhang Y, Ye A P. Single-cell discrimination based on optical tweezers Raman spectroscopy. Chin Sci Bull, 2013, 58: 25942600, doi: 10.1007/ 
s11434-013-5721-6 

 
 

 
 

Raman spectroscopy is a powerful analytical technique that 
can be used to directly i.e. without exogenous labeling and 
non-invasively detect molecular composition and distribu-
tion in a studied sample, based on the measurement of the 
specific vibration modes of molecules. Raman spectroscopy 
is widely used in physics, chemistry, biology, and related 
interdisciplinary branches of science. Many biochemical 
processes such as cell division, cell differentiation, cell sig-
naling, and phagocytosis are accompanied by a large-scale 
spatial reorganization of the molecular components that 
constitute the cell. Micro-Raman spectroscopy has been 

used for single living cell chemical analysis [1–4], and Ra-
man imaging [5–7]. Single cell vibration Raman spectros-
copy has been proven to be sufficiently sensitive to allow 
the measurement of the typical spectra of the cell nucleus  

[8] and cell cytoplasm, achievements that confirm the feasi-
bility of single-cell identification. However, there is a large 
class of living cells including red blood cells that must be 
suspended in an aqueous environment for their normal 
functionality to be retained. Brownian motion, motility, and 
fluxes in the surrounding media may cause the living cells 
to move away from the region of excitation during the rela-
tively long Raman acquisition times, meaning that the sin-
gle cell may not be fully excited while the spectra are col-
lected. Conventional methods for resolving this problem 
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involve the use of a micropipette, or fixing the cell on a 
cover slip via chemical or physical methods. In many cases, 
however, this may induce undesirable perturbations, such as 
reflections from the cover slip. Moreover, chemical immo-
bilization may change the microenvironment of the living 
cells and may yield unknown effects, especially in studies 
on the surface of living cells. 

An elegant approach for the immobilization of microme-
ter-sized particles uses the radiation gradient force produced 
by a strongly focused laser beam i.e. optical tweezers to 
stably confine the floating cell in its natural environment. 
An additional advantage of this approach is that it permits 
one to directly probe the individual cell, and obtain im-
portant information that might be lost in an ensemble-  
averaged measurement. Since both micro-Raman spectrom-
etry and optical tweezers require a laser beam to be tightly 
focused using a high numerical aperture objective lens, they 
can be combined easily in a single system; a so-called Laser 
Tweezers Raman Spectrometer (LTRS). Recently, LTRS 
technology has been applied to study microorganisms [9,10], 

blood cells [11–14], and, to a lesser extent, malignant cells 
[15–17].  

Different types of cells exhibit differences in chemical 
composition and molecular structure, and even the same 
type of cells derived from different donors show small di-
vergences, due to genetic variations; this difference is ac-
companied by changes in a variety of biomolecules, which 
can be probed using Raman spectroscopy. Recently, some 
single-cell identification studies have reported the discrimi-
nation of different types of cells. For example, in combina-
tion with statistical methods, Raman microscopy has been  

successfully applied to distinguish between benign and ma-
lignant cells [18–20], and healthy cells and dying or stressed 
cells [21]; it has also been used to discriminate between cell 
types [22–25], even for highly similar cancer cell lines. 
However, most previous studies focused on distinguishing 
between different types of cells such as cancer cells and 
healthy cells, or different states of the same cells. The ques-
tion of how to discriminate between the same types of cells 
from different donors for example, red blood cells from 
different, healthy persons in a label-free, non-invasive fash-
ion remains a challenge. Because the changes in the bio-
chemical composition and structure are small, the changes 
in the Raman spectra are very weak for the same type of 
cells derived from different donors. In this paper, making 
use of the LTRS technique and PCA statistical methods, we 
first measured the spectra of single U937 cells, and human 
red blood cells. After verifying the feasibility of distin-
guishing these two different cell types using our homemade 
LTRS setup and PCA statistical methods, we demonstrated 
the reliable discrimination of red blood cells donated from 
different healthy persons, using the LTRS and PCA ap-
proach. 

1  Methods and materials 

1.1  LTRS setup configuration 

Figure 1 illustrates the optical configuration for our home-
made backscattering LTRS system. This setup was based on 
an inverted microscope (Zeiss, Axiovert 200). An Ar+-ion 
laser (Shanghai AiAo, ILT5500ASL) delivered Raman  

 

 

Figure 1  Diagram of the configuration of the LTRS setup. The near-infrared laser (λ = 1064 nm) and visible laser (λ = 514.5 nm) beams were expand by 
lenses L1–L4, combined and coupled with the microscope by lenses C1 and C2, and dichroic mirrors D1 and D2, respectively. Raman scattering light was 
delivered by D3 and mirror R3 into the spectrometer, and the spectra were collected by a cooled spectroscopic CCD.
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excitation at a wavelength of 514.5 nm, with a power of 10 
mW (at the entrance of the objective). The trapping laser 
used was a 1064 nm Nd:YAG laser (Coherent, Compass 
1064-2000N), with a power of approximately 40 mW at the 
objective back aperture. Both lasers passed through two 
telescope arrangements of lenses (L1–L4), to expand the 
laser beams. Both the exciting light and the trapping light 
were directed to the microscope via dichroic mirrors (D1 
and D2), and were coupled into the same objective (Zeiss, 
100×, NA = 1.3, oil immersion). The back scattering Raman 
light was collected by the same objective, and then deliv-
ered into the spectrometer (Acton, SpectaPro 2300i) via 
dichroic mirror D3. A notch filter (514 nm) was placed be-
fore the entrance of spectrometer to filter the Rayleigh- 
scattered light from the sample, and other optical noise 
along the optical path. Raman spectra ranging from 400 to 
2200 cm−1 were recorded with a spectral resolution of     
4 cm−1, using liquid nitrogen (LN)-cooled spectroscopic 
charge-coupled device (CCD) (PI, Spec-10). The integration 
time of the CCD was set to 40s for each spectral collection.  

1.2  Cell preparation 

The human monocytic U937 cell line was provided by the 
Third Hospital of Peking University. The cells were cul-
tured at 1×106 cells/mL in RPMI 1640 medium supple-
mented with 100 μg/mL of penicillin/streptomycin and 10% 
fetal calf serum, at 37°C, in a humidified atmosphere (5% 
CO2 in air). The cells were centrifuged (1 min, 4000 r/min) 
and harvested, and then washed twice in RPMI 1640 me-
dium without phenol red. The red blood cells were provided 
by Hospital of Peking University. These peripheral blood 
samples were collected from 4 people (marked as sample 1 
to sample 4), and EDTA was immediately added, to act as a 
thrombin inhibitor. Before experiments, the blood samples 
were diluted to 100 times in a phosphate buffer (isotonic, 
pH 7.4) to avoid cell adhesion during the spectral measure-
ment processes.  

1.3  Data processing 

Following spectral acquisition, each spectrum was pro-
cessed using a self-developed spectral processing software 
based on Matlab (Mathworks, Inc.); this software performed 
Savisky-Golay 9 points smoothing [26], fluorescence sub-
traction based on a widely used algorithm [27] and normal-
ization on the spectral data. Principal components analysis 
(PCA) was then applied. Finally, the deviation from the 
total sample group was computed for each cell. The results 

are listed in Table 1. 
Generally, in spectroscopic analysis there are so many 

peaks that it makes it difficult to concisely describe data 
features using only one or two peaks. Moreover, these less 
important peaks sometimes disturb the analysis. Briefly, 
PCA is a statistical method of data processing that reduces 
the number of variables. It extracts the important peaks and 
abandons less important peaks through a linear transfor-
mation, and offers a set of fewer variables that contains in-
formation equivalent to that in the original data [28,29]. For 
instance, we could consider a spectrum with p characteristic 
peaks as a p-dimensional random vector X = 1 2( , , ), px x x  

where xi is the ith peak’s intensity. To execute PCA, we first 
transform the random vector X to another random vector Z, 
as follows:  
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If these coefficients aij are chosen such that the variance 
2 i  of zi is as large as possible—that is, the quantity of in-

formation included in these zi is at a maximum—we can 
pick n (n﹤p) such that zi represents original p-characteris- 
tic-peaks-spectra with n new “peaks”. It has been shown 
that these coefficients aij can be obtained by solving the 
covariance matrix Σ of the random vector X [28]. 
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where, Cov( , )  [( ( ))( ( )) ]  i j i i j jx x E x E x x E x is the 

covariance, and E represents the expectation value. By re-
solving the eigen equation, the eigenvalues λ and eigenvec-
tors I can be acquired. The λi correspond to 2 i , while the Ii 

correspond to a group of coefficients 1 2( , , )i i ipa a a . If we 

sequence these λi as 1 2     p , the first z1 (corre- 

sponding to the biggest λ1 ) is called Principal Component 1 
(PC1), which offers the greatest amount of information. In 
addition, it is possible to check how much information is 
included in these PCs. The quantity of information for the 
ith PC can be measured using the variance explained, i  

which is defined as [28] 

Table 1  Identification accuracy rates 

Sample 1 vs. sample 2 Sample 1 vs. sample 3 Sample 1 vs. sample 4 Sample 2 vs. sample 3 Sample 2 vs. sample 4 Sample 3 vs. sample 4 

76.6% 87.3% 98.2% 84.5% 86.4% 74.1% 
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The total variance explained is defined as 
1
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 which 

tells us the total quantity of information corresponding to 
the totality of the selected PCs. A detailed discussion on this 
subject can be found in ref. [28]. 

2  Results and discussion 

2.1  Comparison between U937 and erythrocyte groups 

Figure 2(a) shows typical Raman spectra profiles for U937 
and erythrocyte cells (red blood cells). The difference be-
tween the U937 and red blood cells was observable, even 
without the assistance of mathematic processing, and this 
difference was considerably larger than that observed for 
interclass cells. To verify the reliability of this statistical 
method, we randomly selected spectra for 20 U937 cells, 
and 20 erythrocyte cells. Some of the main peaks used in  

 

 

Figure 2  Normalized spectra for single cells. (a) Spectra for U937 and 
erythrocytes. (b) Erythrocyte spectra from different donors. 

the comparison are listed in Table 1. They were assigned by 
referring to previous reliable studies [30,31]. For U937, the 
large peaks at 1445 and 1654 cm−1 were selected, while for 
the erythrocytes, the main characteristic peaks for hemoglo-
bin at 1342 and 1526 cm−1 were chosen.  

As shown in Figure 2(a), the two spectra were distin-
guishable by their peaks at 1342, 1445, 1526 cm−1 and so on, 
but it was impractical to analyze so many peaks manually. 
Here, we adopted PCA to extract the primary differences. 
The results are illustrated in Figure 3. Five peaks were used 
to perform PCA; these were at 1300, 1342, 1445, 1600, and 
1654 cm−1. Each point in the PCA plot represents one spec-
trum or one cell; 40 cells were compared. PCA transformed 
the five peaks into two-dimensional coordinates when the 
1st and 2nd principal components (PC) were taken into ac-
count. In most cases, it could be assumed that the first two 
PC components would concentrate almost all of the infor-
mation contained by the five peaks. For this five-peak PCA, 
the total variance explained of the 1st and 2nd PCs was 
94.8%. This meant that the 1st and 2nd PCs included 94.8% 
of the information contained in the original five peaks. The 
PCA plot showed that the two types of cell were completely 
separated by the 1st PC. In investigating the spectral data, 
we found that the 1st PC was mainly composed of the peaks 
at 1342 and 1300 cm−1. That is to say, the two cell types 
could be separated using these peaks. This result is reasona-
ble, because the peak at 1342 cm−1 was ascribed to porphy-
rin vibrations, and this vibration mode is unique to red 
blood cells. Although a nucleic acid band was also located 
at this wavelength, the U937 nucleic acid peak was weaker 
than the red blood cell porphyrin peak, due to its resonance 
Raman scattering [31,32]. The 2nd PC mainly consisted of 
the 1445 cm−1 peak, which could be assigned as represent-
ing the amount of lipids. The peak dispersion of U937 along 
the 2nd PC was larger than that of the red blood cells. This 
suggested that the lipid content in the red blood cells was 
higher than that in U937, perhaps because the U937 cells  

 

 

Figure 3  PCA plot for U937 and red blood cells. Each point in the PCA 
plot represents one spectrum or cell. 



2598 Ma H F, et al.   Chin Sci Bull   July (2013) Vol.58 No.21 

might have been in a different cell cycle, while a mature red 
blood cell would never divide. 

2.2  Interclass identification of erythrocytes 

Figure 2(b) shows two normalized spectra for red blood 
cells originating from samples 1 and 2. Although they were 
the same kind of cell, their spectral profiles were different; 
the peaks at 1000, 1442, and 1550 cm−1 were remarkably 
diverse. To set up the criteria for the identification of a 
cell’s origin, it was necessary to compare all of the useful 
peaks from two arbitrary sample populations, and reveal the 
differences. Figure 4 shows scatter plots for the 1st PC 
score versus the 2nd PC score, with each plot containing 
data for 110 cells (half and half for each group of samples). 
In consideration of future practical applications, we used the 
data for these 110 cells to create a database. New cells can 
now be compared with the database, and added to it. The 
following analysis focused on the database itself. The total 
variance of the two groups of samples exceeded 90%, ac-
cording to the 1st and 2nd PCs. As previous mentioned, 
samples 1 to 4 represented people 1 to 4. By simply drawing 
a discrimination line in the PC space coordinates, as in Fig-
ure 4(b), the cell type could be assigned. If the point was 
located above the line, it was classified into sample 1, and if 
the point was located below the line, the cell was assigned 
to sample 4. Comparing Figure 4 (a) and (b), it is noticeable 
that the more peaks were included in PCA plot, the more 

obvious the separation effect was. In Figure 4 (a), four 
peaks (at 1000, 1342, 1445, and 1550 cm−1) were included 
in the PCA plot, and 95.4% of the cells could be accurately 
identified. As shown in Figure 4(b), three additional peaks 
(at 1300, 1600, and 1654 cm−1) were included in the PCA, 
so that only two cells from sample 1 were improperly clas-
sified as sample 4, and the identification accuracy reached 
98.2%. This phenomenon is not a special case for two- 
sample identification. However, the mathematical principles 
of PCA do not assure this conclusion. The precondition is 
that the peaks we choose should represent actual vibration 
bands, so that they are actually different from each other. In 
case of seven-peak PCA, the 1st PC was mainly composed 
of 1445 and 1654 cm−1 peaks, and the peaks at 1342 and 
1550 cm−1 were most important for the 2nd PC. From Table 
2, we know that the peak at 1445 cm−1 indicated the amount 
of lipids, while the peak at 1342 cm−1 was characteristic of 
hemoglobin. Figure 4(b) indicated that samples 1 and 4 
were distinguished mainly by their 2nd PCs, while their 1st 
PCs were similar. Since the spectra were normalized, it was 
not appropriate to compare the absolute contents of cells 
from the two sample groups, but we could deduce that the 
relative protein content (hemoglobin versus lipid) of sample 
4 was higher than that of sample 1. A similar trend was also 
observed in other cases (Figure 4(b) and (c)), for example. 
In summary, we believe that these differences in the Raman 
signature derived mainly from differences in the pro-
tein-lipid ratio. It is interesting to question what caused  

 
 

 

Figure 4  (Color online) PCA plots for different red blood cell samples. (a) Four-peak PCA plot for samples 1 and 4. (b) Seven-peak PCA plot for samples 
1 and 4, with a discrimination line. (c) Seven-peak PCA plot for samples 1 and 3. (d) Seven-peak plot for samples 2 and 4. 
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Table 2   Raman shift observed in the spectra of U937 and red blood 
cells, with tentative assignment 

Peaks (cm−1) 
Assignment 

U937 Red blood cell 

1000 Phenylalanine Phenylalanine 

1300 Amide III Amide III 

1342 Nucleic acids(A, G) ν(Porphyrin half-ring)sym 

1445 δCH2/CH3 δCH2/CH3 

1526 – νporphyrin breathing 

1550 – νCβCβ 

1600 νCa=Cb νCa=Cb 

1654 Amide I νC=O Amide I νC=O 

 
the differences in the Raman spectra of red blood cells from 
different people. We propose two possible reasons for this 
phenomenon: The first is that the protein-lipid ratios of red 
blood cells are inherently different for individuals, due to 
genetic variations. The second is that individual physiolog-
ical differences such as age, gender, and health condition 
may affect the protein-lipid ratio. Here, these differences 
could be used to identify the blood cells. Using seven-peak 
PCA, we accurately identified all of the samples. The re-
sults are listed in Table 1. The average accuracy rate was 
84.5%, which demonstrates that red blood cells from dif-
ferent donors do have inherent differences in their bio-
chemical components.  

It is worth noting that in the seven-peak case, the cells 
derived from different samples were separated by the 2nd 
PC. This indicated that the differences between red blood 
cells were smaller than the differences between different 
types of cells. To identify the differences between samples, 
we must correctly select the meaningful peaks that give rise 
to inter-sample differences; otherwise, the differences will 
be covered by the full-spectra deviation.  

3  Conclusions 

As a non-destructive, information-rich spectroscopic tech-
nique, LTRS has the potential to supplement existing cell 
identification techniques. It holds advantages in its ability to 
accurately detect single, floating, living cells in a 
non-invasive and label-free fashion. Using LTRS, we can 
not only non-destructively detect and identify the type of 
single cells, but also separate specific cells from a mixed 
sample in an aqueous medium, and perform subsequent 
studies on these cells; stem cell identification and separation 
is an example of a potential application for this. Based on a 
home-built LTRS apparatus combined with PCA statistical 
methods, we studied the spectra of two different types of 
single cells, imonocytic U937 cells, and human erythrocytes. 
Preliminary studies verified that the identification accuracy 
for U937 and erythrocyte cells could reach 100%, while for 
same type of cells—such as red blood cells derived from 

different people—the average identification accuracy reac- 
hed approximately 85%, using the first two PCA compo-
nents. Although the identification accuracy was not perfect, 
this method based on biochemical components suggests 
itself as an alternative to traditional DNA analysis. Com-
pared with DNA sequencing, the main advantages of LTRS 
identification are its label-free, nondestructive, quick and 
inexpensive nature. It offers high sensitivity, and has great 
potential as an approach for single-cell identification. 
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