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Research in biology and medicine is a rapidly expanding field incorporating some of the most fundamental questions concerning 
structure, function, and purpose. The forefront of new research demands access to advanced techniques and instrumentation capa-
ble of probing these unanswered questions. Over the past several decades, nano-scale materials and devices ranging from quasi- 
one dimensional quantum dots to two dimensional graphene sheets have been engineered and have found applications in nano-bio 
imaging and spectroscopy. In this review, the incorporation of nanomaterials into three influential spectroscopic and microscopic 
techniques including fluorescence microscopy, surface plasmon resonance, and sum frequency generation will be introduced. 
Fluorescence imaging has visualized nanomaterials as compliments or replacements to comparable organic fluorphores, act as a 
quencher for FRET-based sensing, and serve as a nanoscaffold for molecular beacons. Their versatility in coating materials makes 
nanomaterials an excellent targeting molecule for any cellular macromolecule or structure. In addition to the targeting capabilities 
of nanomaterials in fluorescence imaging, surface plasmon resonance has incorporated nanomaterials for applications in signal 
enhancement, selectivity of target molecules, and the development of more refined and accurate detection. Functionalized nano-
particles enhance the capabilities of sum frequency generation vibrational spectroscopy by providing unique surface chemistry 
which alters target molecule interactions and orientations. In summary, the incorporation of nanomaterials has greatly enhanced 
the field of biology and medicine and has allowed for the continual advancement of not only research but instrument develop-
ment. 
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Nanomaterials, which size ranges (1–100 nm) coincide with 
fundamentally important length scales in physics, are con-
sidered to be promising building blocks for future electrical, 
optical and optoelectronic applications [1–8]. For example, 
in metals, the mean free path of an electron at room temper-
ature is ~10–100 nm [9]; the Bohr radius of photo-excited 
electron-hole pairs in semiconductors is ~1–10 nm [10]; and 
the 1–100 nm dimension is the range over which molecules 
assemble into nucleic acids and proteins [11]. Nanostruc-
tures on this size scale provide a unique technology to de-
termine many critical structure/function relationships of 
biological molecules at the cellular level without introduc-

ing substantial interference.  
Advances in nanotechnology have developed at several 

stages: materials, devices, and systems. A decade ago, exten-
sive research has focused on the development of various 
methods to precisely control the synthesis of nanomaterials. 
Therefore, many different kinds of nanostructures were de-
signed and synthesized, including quasi-zero dimensional 
(0D) nanodots (NDs) [12–14], quasi-one dimensional (1D) 
nanowires (NWs) [15–17], quasi-two dimensional (2D) 
nanosheets [18–21], and other complicated nanostructures 
[22–25]. Typically, metal and semiconductor NDs in the 
2–6 nm size are of greatest interest, not only for their unique 
size-dependent physical and chemical properties but also 
their size similarities to biological molecules [12,13,26–28]. 
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1D NWs are becoming a popular alternative in biological 
labeling to quantum dots due to their capability of providing 
polarized emission, reduced blinking, and faster radioactive 
rates [29–32]. Recently, commonly-used NDs and NWs, 2D 
nanosheets, especially graphene and graphene oxide (GO) 
[33–36], are utilized as nano-bio probes due to their large 
surface areas, atomic level thicknesses, and easy chemical 
modification. Here, especially in Section 1 (Fluorescence), 
we will focus on the fluorescent studies of optical sensing 
based on above-mentioned nanostructures (e.g. NPs, NWs 
and nanosheets-like graphene and GO). Since various nanos-   
tructures can be successfully synthesized and precisely con-
trolled, we believe that the development of nanotechnology 
can transition towards the construction of new nanodevices, 
and eventually, functional nanosystems [37].  

Over the past decade, many research groups all over the 
world have developed unique and versatile applications 
based on nanomaterials. Among them, the integration of 
these materials with biology and medicine has shown sub-
stantial progress and excellent results have been generated 
from such nano-bio studies. The literature on the bio-nano 
interaction and its applications is growing rapidly; mainly 
including studies on (1) fundamental mechanisms governing 
bio-nano interactions and (2) bio-detection applications. 
Some recent reviews have systematically summarized sig-
nificant developments in understanding the interactions at 
the nano-bio interface as well as some applications on nano- 
bio probe-based electric and magnetic field detection 
[38,39]. These methods that have been reviewed by other 
groups will not be covered in detail here. In this review, we 
will present recent research progress in nanomaterial-based 
biological detection using advanced optical spectroscopic 
techniques. Three important optical methods, including flu-
orescent microscopy, surface plasma resonance (SPR) and 
sum frequency generation (SFG) vibrational spectroscopy 
are discussed here.  

During the past 30 years, there has been remarkable 
growth in the use of fluorescence in the biological sciences 
and medical community. Fluorescence microscopy, known 
for its versatility and specificity, has relied on organic 
fluorphores, fluorescent proteins (such as GFP and its de-
rivatives), and various autofluorescent biomolecules. For 
examples, 4′,6-diamidino-2-phenylindole (DAPI) [40,41] 
and Hoechst dyes [42,43] are utilized extensively in the 
imaging of nuclei since they bind to the minor groove of 
DNA. Organic and biological probes, although very useful, 
only allow for the observation of specific structures which 
have been fluorescently labeled. This, however, may lead to 
the missing information within unlabeled portions of the 
sample. To address this issue, label-free optical sensing is 
found to be an attractive alternative, not only because of its 
capability of detecting biomolecules without using any ra-
dioactive or fluorescent labels, but also its same selectivity 
and sensitivity as its biological counterparts. Such labels 
usually introduce complexity and potential contaminations 

into the biological systems in vivo. 
Surface plasmon resonance (SPR) is one of the most im-

portant label-free methods for highly sensitive probing of 
biomolecules [44–46]. SPR can be described as the resonant 
oscillation of surface electrons (usually in a metal) stimu-
lated by incident light under a resonance condition. During 
this process, surface electromagnetic waves, i.e. surface 
plasmon polaritons, propagate in the direction parallel to the 
metal/dielectric interface. These oscillations are very sensi-
tive to any change in the surface refractive index and can 
detect adsorption and binding events of molecules on a 
metal surface [45]. Particularly, nanosized novel metal par-
ticles or nanowires, which can exhibit strong absorption 
bands in the ultraviolet to visible region [47], are exten-
sively used to probe biomolecules such as DNA and pro-
teins [48–51]. 

Sum frequency generation (SFG) vibrational spectros-
copy, a second order nonlinear optical spectroscopic tech-
nique, is a powerful tool to provide chemical and structural 
information of molecules on surfaces and at buried inter-
faces [52–54]. Recently, SFG has been widely applied to 
study important subjects in biology and the life sciences, 
such as lipids, peptides, proteins, and DNA [55–80]. In this 
review (Section 3), we will briefly review SFG studies on 
model cell membranes, then overview the recent progress of 
nanoparticle-related system research, and finally provide 
insight into its potential applications on nano-bio systems.  

As details of nanomaterials and analytical methods have 
been reviewed elsewhere, this review highlights the inves-
tigations on nano-bio interfaces using the previously dis-
cussed three techniques, and then provides an overview of 
their integration into an emerging nano-bio and nanomedi-
cine field. New developments on the nanomaterial applica-
tions in optical biosensing, existing problems, and future 
directions will also be discussed. 

1  Fluorescence 

To begin with, we will review the applications of the fluo-
rescence technique in nanomaterials. We will introduce how 
to attach biomolecules to the surfaces of nanomaterials, and 
how fluorescence can be applied to detect nano-bio systems. 

1.1  Attachment of biomolecules to nanomaterials 

In order to probe biological molecules optically with nano-
materials, the first prerequisite is to understand the bio-
physical or biochemical interactions at nano-bio interfaces 
and then to demonstrate how to attach biological molecules 
to nanomaterials. The elucidation on the interactions at 
nano-bio interfaces can lead to the design of improved 
nano-bio probes. In 2009, Nel et al. [81] comprehensively 
reviewed the studies on interactions at the interfaces of na-
noparticles and proteins, membranes, cells, DNA, and orga-
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nelles over the past decades. Herein, we will not cover 
above information but only briefly introduce the methodol-
ogies that have been commonly utilized to attach biological 
molecules to nanomaterials.  

It is well known that certain biomolecules are capable of 
molecular recognition; typical associations are described 
under the “lock and key” principle common to most enzyme/ 
ligand recognition. Receptor molecules (just like locks) can 
recognize certain ligand molecules (just like keys) with very 
high specificity. Only a specific ligand can bind to its re-
ceptor, such as antibodies binding to antigens, oligonucleo-
tides binding to their complementary counterparts, and the 
biotin-avidin system [82]. The underlying mechanism of 
molecular recognition is essential to facilitate biomolecule 
and nanomaterial interactions. 

Generally, there are two ways to assemble biomolecules 
with nanomaterials: one is direct attachment of the biomol-
ecule to the nanomaterial surface using a ligand exchange. 
For instance, phosphine molecules which are used as a sta-
bilizing shell around gold NPs, can be fully or partially re-
placed by thoil group modified oligonucleotides, thus single 
stranded oligonucleotides of different lengths can be at-
tached to the surface of these gold NPs with different DNA- 
to-gold ratios [83,84]. The other method is to bind the bio-
molecules to the stabilizing shell around nanomaterial cores 
[26]. For example, in 1998, Chan et al. [26] attached bio-
molecules to mercaptoacetic acid modified semiconductor 
quantum dots via forming a covalent coupling between re-
active amine groups and free carboxyl groups.  

Various interactions can be employed to connect bio-
molecules and nanomaterials. In certain circumstances, the 
molecules are directly adsorbed to either the nanomaterial 
surface or the shell of stabilizing molecules around the na-
nomaterial [85]. For example, direct binding of fullerene- 
specific monoclonal antibodies to single walled carbon 

nanotubes [86] and entropic effects driving adsorption of 
calf thymus DNA to CdS NPs [87] have been demonstrated 
as possible attachment methods. However, for both of these 
cases, stability is poor. Therefore, electrostatic interactions 
[88,89], hydrophobic attraction [90,91] and formation of 
stronger chemical bonds [26,91], have been commonly uti-
lized in connecting biomolecules and nanomaterials for 
their increased stability. In latter cases, biomolecules are 
usually oppositely charged to the nanomaterials, e.g. a chi-
meric fusion protein was designed to electrostatically bind 
to the oppositely charged surface of CdSe/ZnS core/shell 
NPs [88]. The formation of chemical bonds is one of the 
most important methods for forming nano-bioconjugates. 
The above-mentioned thiol groups have been extensively 
used to assemble biomolecules to the surface of gold NPs 
via Au–S bonding. Other bonds like – interaction, cova-
lent amide linkage, silanization, etc. also play important 
roles to prepare an essential bio-nano interface. Up to now, 
various flexible bioconjugation techniques with high repro-
ducibility have been exploited and applied to nanomaterials 
(shown in Figure 1), which lead to substantial progress in 
the development of nano-biosensors and other potential 
biological applications.  

1.2  Nano-biofluorescence detection 

It is of great importance to realize the complex interplay of 
different biomolecules from the cellular to the integrative 
level. Hence, fluorescent labeling has been extensively used 
for both in vivo cellular imaging and in vitro assay detection 
[93]. The intrinsic optical properties of organic fluorphores 
and genetically expressed fluorescent proteins, however, 
usually have limited efficiency in long-term imaging and 
“multiplexing” due to their broad absorption/emission profiles 
and low photobleaching thresholds at room temperatures  

 

Figure 1  (Color online) Schematic illustrating various methods to attach biomolecules to nanomaterials. Reprinted from Ref. [92] under the permission of 
Elsevier.  
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[94]. For this purpose, nanomaterials, especially quantum 
dots with tunable emission, high quantum yield, high molar 
extinction coefficients, broad absorption with narrow pho-
toluminescence (PL) spectra from ultraviolet to near-infrared, 
high multiplexing capability, large effective Stokes shifts, 
high brightness as well as high resistance to photobleaching, 
have proven to be widely applicable and very appealing to 
the biological imaging field [12,95].  

Many biosensors constructed based on 1D NWs or 2D 
nanosheets, rely on the detection of electrical and electro-
chemical signals. 1D nanowires/carbon nanotubes and 2D 
graphene/GO exhibit remarkable electronic properties and 
own the flexibility and the facility of morphologies that can 
be easily microfabricated into electrical devices [38,96,97]. 
Reports of using nano devices for optical bio-detection, in 
particular, fluorescent labeling, imaging, and sensing demon-
strate one of the many niches that these materials and de-
vices are able to fulfill. Using NPs and NWs allows for re-
al-time monitoring and tracking of intracellular processes 
on relevant biological time scales. Size-dependent PL emis-
sion shift in a wide range enables simultaneous imaging of 
multiple targets inside living cells or on the cell surface by 
multicolor QDs at the same time. As for in vivo cell imaging 
and the tracking of biomolecules, water-solubility, size sim-
ilarity to fluorescent proteins, and excellent optical proper-
ties are three key points for researchers’ consideration in 
choosing nanomaterials. Therefore, QDs have been inte-
grated heavily in imaging research along with, more recent-
ly, quantum wires (QWs) as well as small-diameter carbon 
nanotubes. In recent years, researchers have also placed 
much emphasis into uses for graphene and GO, a large pla-
nar structure and single carbon atomic layer of which make 
them ideal substrates for the absorption of different kinds of 
biomolecules and cells simultaneously, thus enabling com-
plicated biological process observed in situ. In this section, 
we selectively summary the recent research developments 
of fluorescent-based biosensors, and the relevant researches 
based on various nanomaterials from 0D NPs, 1D NWs as 
well as 2D graphene and GO.  

(i) 0D Nanoparticles.  Due to a tunable fluorescence 
emission profile over a broad range and ease of synthesis, 
semiconductors are commonly used for fluorescent detec-
tion. Past years of engineering work have focused on pre-
cisely controlling their size and shape, using CdSe and CdS 
as their material of choice. These particles have absorption 
profiles that can be tuned throughout the visible region 
(bandgaps are 1.7 eV for CdSe and 2.4 eV for CdS), with 
direct proportionality to size versus adsorption (the smaller 
the particle, the shorter the absorption wavelength). For the 
reasons stated above, semiconductor nanoparticles are an 
ideal choice for fluorescence imaging applications; however 
these particles sometimes have practical limitations to their 
use. Surface defects caused by surface vacancy, lattice 
mismatch, dangling bonds, or absorbates at the surface, trap 
the excited electrons, or holes thus depressing the recombi-

nation efficiency of luminescence, consequently weakening 
and even quenching the PL emission. 

To minimize the effect of surface imperfections on the 
emission profile of these particles, surface passivation has 
been commonly used to protect the surface of NPs by coat-
ing another material with a larger bandgap in order to de-
crease the possibility of charge carriers trapped in surface 
defects and confine the excited electron and holes inside the 
NPs. For example, ZnS and amorphous SiO2 are commonly 
used as core-shell nanocomposite materials for CdSe and Si 
NPs. Notice that except for the reason listed above, the 
choice of the protection layer also depends on changing 
hydrophilicity and biocompatibility of NPs, thus enabling 
the formation of nano-bioconjugates of interest. For in-
stance, an outer shell made of silica will make the NPs wa-
ter soluble [98]. After effective surface passivation, the NPs 
can have quantum yields comparable to organic dyes, and 
more importantly, these particles become more biocompati-
ble. This results in an excellent inorganic analogue to com-
monly used fluorescent dyes/proteins with much narrower 
emission, size-dependent tunability, and a strong resistance 
to photobleaching. 

In 1998, both Alivisatos group [98] and Nie group [26] 
reported their success on QD-based specific fluorescent 
biological stains in cells for the first time. In both experi-
ments, CdSe QDs of various sizes, which emitted at differ-
ent wavelength maxima, were coated by a CdS [98] and 
ZnS [26] shell thus allowing for covalent attachment of 
protein molecules to the surface of NPs via chemical inter-
action. Specifically, Nie group [26] used mercaptoacetic 
acid for solubilization and covalent coupling to various bi-
omolecules via cross-linking to reactive amine groups. 
While in the case of Alivisatos group, the avidin-biotin in-
teraction, a model system for ligand-receptor binding, was 
utilized. Hence, incubating the protein-decorated QDs with 
different cells led to the specific fluorescent labeling of the 
cells; where the protein shell provided specificity while the 
semiconductor QDs core gave size-dependent luminescence 
profiles. Figure 2(a) gives clear evidence that decorated 
QDs penetrated into the nucleus (green color) [98], and 
Figure 2(b) and (c) indicate that fluorescence images could 
be obtained from cultured HeLa cells incubated with mer-
capto-QDs (Figure 2(b)). With transferrin-QD bioconju-
gates (Figure 2(c)), this comparison shows that no QDs 
were transported into the cells without first incubating with 
transferrin [26]. Moreover, Nie group [26] also studied the 
possibility of using QDs probes for immunoassay. Incubat-
ed with bovine setum albumin (BSA) and with a specific 
polyclonal antibody, fluorescence images of corresponding 
QD-immunoglobulin G (IgG) composites indicated that QD 
aggregated dramatically in the presence of IgG (Figure 2(e)), 
while BSA still remained well dispersed throughout the cell 
(Figure 2(d)).  

With the incorporation of nanomaterials into biological 
imaging, many groups have developed various in vitro and  
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Figure 2   Fluorescence images of mouse 3T3 fibroblasts incubated with 
decorated QDs (a) (reprinted by permission of Science [98]), cultured HeLa 
cells incubated with mercapto-QDs (b) and QD-transferrin conjugates (c) 
(reprinted by permission of Science [26]). Luminescence images of QD 
conjugates with BSA (d) as well as aggregation of QD in the presence of a 
specific polyclonal antibody (e) (reprinted under permission of Science [26]).  

in vivo applications through broad utility of QDs, such as 
cell labeling, tracking cell migration, fluorescence in situ 
hybridization, whole animal contrast agents, and Förster 
resonance energy transfer (FRET) sensors. Among them, 
the visualization and mapping of biomolecular networks 
that elucidate the function and viability of cells or even en-
tire organs is an important application of QDs as molecular 
probes. Therefore, except for substitution of fluorescent dye 
molecules, NPs have also been employed as powerful opti-
cal probes for local biological environment due to their 
large surface/volume ratio. For example, Derfus et al. [99] 
reported that endocytosis of QDs into HeLa cells is a unique 
system which combines both biochemical (e.g. translocation 
peptides, cationic liposomes, and dendrimers) and physical 
processes (electroporation and microinjection). Significant 
localization and accumulation of QDs were clearly dis-
played after injection of peptide-decorated QDs (Figure 
3(a)). Moreover, Gao et al. [100] also utilized ZnS capped 
CdSe QDs with three different surface modifications to tar-
get cancer cell in vivo. Figure 3(b) provides one example 
that elucidate the transportation of tumor cells inside a 
mouse body probed by prostate-specific membrane antigen 
(PSMA)-modified QDs. 

Just as discussed above, the photoluminescent properties 
of semiconductors are very sensitive to local environment as 
well as the amount of adsorbates on the surface. Hence, 
QDs can and have been used to detect uncommon confor-
mations in DNA. From 1995, the Murphy group [87,101,102] 
started to demonstrate a series of research results on DNA 
fluorescent detection via coupling DNA with CdS QDs. In 
these experiments, surfaces of QDs were decorated with  

 

Figure 3   (a) Fluorescence micrographs of a HeLa cell 24 h after injection 
of mitochondrial localization sequence peptide-QDs. Reproduced under 
permission from Wiley [99]. (b) In vivo fluorescence images of a tu-
mor-injected mouse using PSMA-QDs as probes. Reproduced under per-
mission from Nature publishing group [100]. 

cationic or hydrogen-bonding groups in order to attract the 
anionic DNA. Subsequently, luminescence titrations were 
carried out with oligonucleotides by QDs to discriminate 
between different local structures and conformation, e.g. 
“straight”, “bent”, and “kinked” in dilute solution [101]. It 
is worthy nothing that the emission profile of these QDs 
only changed in intensity, and not the overall lineshape. 

Additionally, Benoit and co-workers [90] demonstrated 
in vivo and in vitro studies of ZnS-coated CdSe QDs en-
capsulated in phospholipid block-copolymer micelles. They 
found that these nanocrystal-micelle conjugates remained 
stable and were slow to photobleach once they were inject-
ed into Xenopus embryos. Most importantly, various DNA, 
even some that are related to human disease, can bind to this 
protein-sized surface without labeling the DNA with organ-
ic dyes or using radioactivity. 

While semiconductor materials comprise the majority of 
NPs used for biosensing, some other materials such as me-
tallic and polymer QDs have also been used as fluorescent 
probes. The most common uses for metal NPs still are ap-
plicable to areas such as surface plasmon resonance spec-
troscopy (SPR) and surface-enhanced Raman spectroscopy 
(SERS) (This part will be discussed in next section). Some 
groups reported their success on fluorescent sensing via 
nano-bio interaction. For instance, Taton et al. [103] modi-
fied the surface of the gold NPs with DNA sequences; by 
adding in complimentary DNA strands to solution, a visible 
color change was observed with femtomolar detection limits. 
Additional reports about “fluorescent” NPs are actually based 
on organic fluorescent dyes fluorescence but not NPs, so 
these results will not be discussed in detail here. 

Except for individual NPs, well-patterned NPs that were 
capable of parallel integration for detection of multiple sig-
nals, emerged with the ability to sense the biomolecules at 
the single molecule level in living cells. Especially in the 
1980s, Yablonovitch [104] first proposed “photonic crys-
tals”, an analogous concept to control the density of photon 
states in much the same way a semiconductor affects the 
properties of an electron. By enclosing a molecule in a well- 
designed photonic crystal, it is possible to detect the mole-
cules via controlling the rate and direction in which mole-
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cules emit light [105,106]. Asher and co-workers [106–108] 
reported a method of biological screening based on photonic 
crystals. In these measurements, polymerized crystalline 
colloidal arrays were applied to detect lead and carbohy-
drates in bodily fluids.  

Although many researchers in recent years have devel-
oped various methods for QD-based biological detection via 
fluorescence, QDs have limitations including accurate con-
trol of particle size after coating. Toxicity of heavy metal 
elements such as Cd, Zn, Hg, and Pb from commonly used 
QDs to animals and human medical applications in vivo is 
still a main concern. Therefore, many researchers believe 
that QDs are more likely to be a complement to existing 
organic fluorophores rather than a replacement. 

(ii) 1D nanowires and 2D graphene/graphene oxide.   
Compared to quasi-zero dimensional NPs, NWs are also 
utilized to label biological molecules. Because of their 
unique electrical characteristic and the flexibility in their 
morphology for microfabrication, 1D semiconductor NWs 
as well carbon nanotubes (CNTs), have been used as bio-
sensors based on electrical measurements. 1D and 2D 
nanostructures used for fluorescent detection are another 
important research in this field and this section will review 
the developments using 1D and 2D nanostructures as fluo-
rescent bio-detection. Some examples of NW or CNT as 
well as graphene/GO based fluorescent bio-applications will 
be introduced herein. 

Semiconductor NWs or nanorods, as a 1D structure, can 
provide polarized emission, and therefore, were thought to 
be promising building blocks for biological labeling [30,109]. 
Considering the size similarity to common fluorescent pro-
teins such as GFP and its derivatives, QDs or rods (QRs) 
with diameter ranging from 2–10 nm and with length from 
5–100 nm were primarily chosen for cell labeling and bio- 
sensing. In addition to the great optical properties inherent 
in QDs such as tunable emission, high resistance to photo-
bleaching, and a narrow symmetric emission profile, QRs 
own some other unique properties that may lead to highly 
sensitive biological labels including reduced blinking and 
faster radiative rates. In 2001, the Alivisatos group [30] 
demonstrated the size- and shape-dependent bandgap varia-
tion of CdSe quantum rods, as well as analyzed their poten-
tial usage for bio-labeling. Subsequently, Alivisatos and 
co-workers [109] were able to modify the surface of CdSe 
QRs with CdS and ZnS, allowing for their used in biologi-
cal labeling. In this work, surface silanization was imple-
mented to prepare water-soluble bio-QRs conjugates (shown 
in Figure 4). Then under the usage of streptolysin-O (SLO), 
a bacterial protein that commonly binds to cholesterol and 
forms holes in the plasma membrane of animal cells, a 
small amount of silanized QRs were transferred to human 
breast cancer cell line MDA-MB-231. QRs were found to 
retain their brightness inside living cells (Figure 4(b)). In 
comparison to fluorescence signals from QRs and QDs, 
much brighter signals were obtained by using QRs as single  

 

Figure 4  (a) A schematic illustrating surface silanization of quantum 
rods (QR). (b) The merged images of transmission and fluorescent mi-
crograms of bio-QRs conjugates in human breast cancer cells MDA-MB- 
231. The red fluorescence in the images is from QRs in cells after 1 h 
transfected with Chariot. Scale bar is 20 µm. Reprinted with permission 
from [109]. Copyright 2007 American Chemical Society. 

molecule probes. 
Except for semiconductor QDs, carbon nanotubes (CNTs) 

have also been utilized as medical imaging tools. CNTs 
have distinguished factors such as high quantum efficiency, 
light emission in a very narrow range of wavelengths, the 
ability to produce light in the near infrared region where 
skin and other tissue is transparent, extreme resistance to 
degradation, and low damage to living cells. These charac-
teristics make CNTs particularly well suited for use in liv-
ing systems. In the past ten years, research has been devoted 
to CNT-based bio-detection, such as targeted delivery of 
chemotherapeutics, diagnostic contrast agents and photo-
ablative therapy agents, and good cargo modules for DNA, 
siRNA, proteins and peptides [110–115]. Nevertheless, due 
to their excellent fluorescence properties, some attempts 
were still carried out by the scientists in this field to visual-
ize and track biomolecules with CNTs.  

In 2006, Lin et al. [116] developed a sensitive approach 
to detect the translocation of the lipid-single wall CNT 
(SWNT) assembly in cells via energy transfer. Earlier re-
search showed that as the fluorophores directly attached to 
the surface of CNTs, both energy-transfer and electron- 
transfer processes would induce nonradiative relaxation for 
excited fluorophores on CNT surfaces [117]. In order to 
prevent this quenching process, some molecules such as 
polyethylene glycol (PEG), porphyrin and its derivatives 
have often been applied to connect fluorophores and CNTs 
[118,119]. For instance, Jia et al. [119] reported in vivo and 
in vitro fluorescent imaging studies on porphyrin-CNTs 
conjugates in 2009. During their experiments, they found 
that the unique fluorescent properties of this conjugate ena-
ble a detailed tracking of transportation process of these 
conjugates as they were injected into mice. 

There are some other CNT-related fluorescent applica-
tions, such as CNT-quenched fluorescent oligonucleotides 
and noncovalent assembly of CNT and single-stranded DNA 
[120,121]. The relevant literature base for CNTs has fewer 
publications than that of QDs; nevertheless, these demon-
strations already show promise in biological fluorescence 
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detection. However, there are some obstacles that limit the 
applications of CNTs into living cells and are also some 
basic issues which hinder the usage of CNTs for other ap-
plications. For example, it is still difficult to precisely con-
trol the chirality of CNTs experimentally. Consequently, it 
is quite challenging to separate large quantities of strongly 
fluorescent SWNTs. Therefore, impurities inside the sam-
ples such as metallic nanotubes actually inhibit the bright-
ness of their fluorescent semiconductor nanotube neighbors. 
Fluorescence properties of semiconductor nanotubes them-
selves also have varying degrees of fluorescence efficiency 
since approaches to choose CNTs with the same properties 
have not been refined. In addition, strong intermolecular 
interactions between CNTs usually create CNT bundles and 
although alternatives have been proposed to decrease CNT 
aggregation, including the use of extreme ultrasound to 
break apart bundles of nanotubes and force them to dissolve, 
these techniques can cause defects thus decrease CNT ef-
fectiveness. Research on CNTs has shifted in the more re-
cent years towards graphene, where its first published report 
in 2004 provided an alternative to struggles with creating 
usable CNT systems [21]. 

Recently, graphene, a free-standing 2D carbon film with 
single-atom thickness, has become a highly studied material 
in the field of science. The large planar structure of gra-
phene makes it an ideal substrate for adsorption of different 
kinds of biomolecules. Up to now, various graphene-based 
nanostructures have been utilized to fabricate functionalized 
bio-systems integrated with various biomolecules, such as 
nucleic acids, peptides, proteins and even entire cells. Con-
versely, graphene-based fluorescence bio-detection has been 
demonstrated to be a successful technique due to graphene’s 
superior quenching efficiency towards biomolecules. The 
ability of graphene to quench electron donors from biomol-
ecules absorbed on the graphene such as single-stranded 
DNA (ssDNA), has allowed for graphene to be developed 
into a rapid, rigid, highly sensitive and highly selective 
FRET biosensor. 

The first graphene-based FRET biosensor was developed 
by Lu et al. [122] in 2009 where they demonstrated the abil-
ity of graphene oxide to provide a platform for the detection 
of DNA and proteins. In order to absorb DNA and proteins, 
water soluble GO was used. Usually, for FRET biosensors, 
an energy transfer process from a donor fluorophore to an 
acceptor fluorophore is involved for this kind of sensor. Lu 
et al. [122] found that the fluorescence signal rapidly 
quenched as the dye-labeled ssDNA adsorbed onto GO. The 
addition of the complementary DNA strand altered the con-
formation of the dye-labeled DNA and caused its release 
from GO and the eventual restoration of fluorescence signal. 
The results of the above experiment show the versatility of 
GO-based FRET sensors and can be extended, by different 
ssDNA sequences, to include multicolor DNA analysis 
[123]. Similarly, a graphene-based FRET has been devel-
oped as an assay for DNA helicase unwinding that depends 

on the preferential binding of GO to ssDNA over dsDNA, 
thereby inducing quenching of fluorescent dyes conjugated 
to ssDNA [124]. Specifically, a GO-dsDNA substrate con-
taining a fluorescent dye at the end of one strand was pre-
pared first, and then DNA helicase was injected into the 
system which initiated the helicase reaction that led to  
intense fluorescence of dsDNA. As the helicase-induced 
unwinding of dsDNA proceeded, the fluorescence de-
creased rapidly due to strong interactions of GO with un-
wound ssDNA, thus enabling the monitoring of the helicase 
activity in real time by following the change in fluorescence 
[124].  

Besides, in order to improve the sequence-specific detec-
tion of target-DNA, molecular beacons (MBs), which are 
dually labeled single-stranded oligonucleotide hybridization 
and form stem-and-loop structures to bring a fluorophore 
and a quencher together and result in fluorescence quench-
ing of the fluorophore, have been used to fabricate graphene- 
based FRET bio-analytical sensing where MBs with an 
“on/off” switching design would be highly desirable [125]. 
Since the onset of MB development [126], they have been 
used for widespread applications ranging from molecular 
and cellular biology, to pathogen detection and biomedical 
diagnostics [127,128].  

In spite of their extensive capabilities, they are in most 
ways limited due to insufficient sensitivity, difficulty in 
their synthesis, and selection of suitable FRET pairs in some 
certain cases [120,129]. Nevertheless, when graphene is 
combined with MBs in FRET bio-detection, graphene can 
act as a nanoquencher for fluorophores and can also serve as 
a nanoscaffold for MBs. That is, a much easier synthesis of 
biosensors as well as higher sensitivity would be obtained at 
the same time on MB-graphene-based FRET biosensors. 
Recently, many groups reported their success in fabricating 
such FRET biosensors to probe various biomolecules, such 
as DNA, thrombin, some metal ions, small molecules, and 
proteins [123,130,131]. Figure 5 gives a brief illustration of 
various biomolecules attached to graphene-MB-based FRET 
biosensors. 

2  Surface plasmon resonance 

With the help of labeling and probing, the above-reviewed 
fluorescence technique is a powerful imaging method to 
study the nano-bio systems. Another versatile technique for 
nanomaterial-based biosensing and optical sensing is sur-
face plasma resonance (SPR), whose advantages include 
real-time detection, high sensitivity, label-free detection, 
and quantitative sensing capacity [133]. In the following 
section, we will introduce the applications of nanomaterials 
to SPR- based bio-detection, the sensitivity improvement by 
localized surface plasmon resonance (LSPR), and the fabri-
cation of metallic nanoparticle arrays to accelerate the de-
velopment of nanomaterial-based LSPR biosensors.  
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Figure 5  Schematic illustration of the ssDNA-GO architecture platform 
for multiplex targets detection. (a) DNA, (b) thrombin, (c) Ag+ , Hg+, and 
cysteine. Reproduced from Ref. [132] with permission from Elsevier.  

2.1  Application of nanomaterials to SPR-based  
bio-detection 

SPR was first developed by Liedberg et al. [44] in 1983 and 
is the most widely applicable tool for measuring adsorption 
of material onto planar or nanoparticle metal surfaces. It can 
generally be described as the resonant, collective oscillation 
of valence electrons in a solid stimulated by incident light. 
For planar SPR, p-polarized light is coupled into a thin met-
al film by total internal reflection through a prism, also 
known as the Kretschmann conformation [134]. A reso-
nance condition is established when the frequency of these 
photons matches the resonant oscillation frequency of the 
surface plasmon polaritons (SPPs). This resonance condi-
tion is sensitive to macroscopic properties of these surfaces 
including index of refraction, therefore small changes in the 
index of refraction of the metal cause detectible SPR signal. 
This technology has found substantial use in biomolecule 
adsorption measurements.  

By taking advantage of developments in nano-fabrication 
and nanoparticle synthesis technologies, designs of an opti-
cal biosensor using nanostructured metals to produce local-
ized surface plasmon resonance (LSPR) has experienced 
great development through the past decade. Compared to 
SPR, LSPR can be excited in nanostructured metal by light 
incident at any angle and it is thought that this incident light 
induces the conduction electrons in the metal to oscillate 
collectively [135]. The peak position and intensity of LSPR 
highly depends on nanoparticle composition, size, shape, 
spacing, and surrounding environment [47,136–139]. Gen-
erally, white light is used as the excitation source for LSPR 
and when the wavelength of light matches the frequency of 
localized SPPs, the phenomenon shows that the light has 
been absorbed and scattered by the sample. LSPR spectra 
measure the light extinction and scattering of the nanoparticles.  

2.2  Sensitivity improvement of LSPR 

As stated in the previous section, the LSPR extinction 
wavelength maximum max is related to refractive index. 
Changes in refractive index in local environment, such as a 
protein binding event, shift the observed max in frequency. 
We can relate the spectral shift max and local refractive 
index change n by [135,139,140]:  
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where m is the bulk refractive-index response of the nano-
particles (in nanometers per refractive index unit (RIU)), n 
is the change in refractive index induced by adsorbate, d is 
the effective thickness of adsorbate layer (in nm), and ld is 
the electromagnetic field decay length (in nm). Figure 6  

 

Figure 6  Schematics of LSPR sensor. (a) Metal nanoparticles are coated on a glass substrate; (b) silver nanoparticles coated with SAMs; (c) metal nano-
particles are modified as a sensor moiety with an analyte recognition function; (d) analyte adsorbed onto the nanoparticles through the specific binding of 
targed molecules; (e) LSPR shift in response to the analyte adsorption.  
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demonstrates how an LSPR sensor works. Typically in LSPR 
sensors, nanoparticle arrays are deposited or chemically 
bound on the solid support and act as a sensor transducer 
(Figure 6(a)). Usually, these metallic nanoparticles have 
been coated with a self-assembled-monolayer (SAM) which 
stabilizes and functionalizes the NPs (Figure 6(b)), provid-
ing a reactive end group to enable the sensor moiety (Figure 
6(c)). Some special SAMs containing ethylene glycol (EG) 
are often chosen because they also can prevent non-specific 
adsorption. Through measuring an LSPR shift shown in 
figure 6e in response to analyte adsorption (figure 6(d)), it is 
possible to quantify the amount of adsorbed analytes onto 
these functionalized NPs. LSPR biosensing is focused in the 
pursuit of high sensitivity which is very important for plas-
monic sensors to detect low concentrations of analyte or 
small molecules in solution.  

Sensitivity can be increased in two aspects in LSPR; ei-
ther by increasing LSPR signal while narrowing its band-
width or enhance LSPR shift. Higher intensity and narrower 
LSPR band can improve both the signal-to-noise ratio and 
spectral resolution allowing for calculating max in real time. 
This increase in signal makes LSPR a powerful tool in 
measuring real-time binding kinetics [136]. From eq. (1), 
we know that the refractive index change is directly propor-
tional to the shift in max. Anker and co-workers [141–143] 
discussed several ways to increase LSPR shift [136]: (1) 
larger molecules produce a greater change in the local index 
of refraction, (2) chromophores that absorb visible light cou-
ple strongly with the LSPR nanoparticles which lead to a 
substantial shift in resonance frequency [141–143], (3) na-
noparticles who are spaced less than about 2.5 radii show 
strong plasmonic coupling which can lead to increased signal.  

The concentrations of small biomolecules such as hor-
mones, neurotransmitters, and pheromones in the blood 
stream or saliva can often be indicative of the bio-function 
of an organism. Sensing of these small molecules in com-
plex matrices poses a challenge because of high mass mol-

ecules such as proteins interfering with target molecules in 
small quantities [144]. Using labeled nanoparticles increas-
es the local dielectric constant and also can introduce plas-
monic coupling (as stated above) resulting in higher sensi-
tivity to smaller target biomolecules [144–151]. As shown 
in Figure 7, the silver nanoparticle-based LSPR biotin bio-
sensor responds with a very large change upon attachment 
of biotin-labeled gold nanoparticles. The increased mass 
due to the attached nanoparticle, plus the resonance en-
hancement between gold nanoparticles lead to a 4-fold in-
crease in LSPR signal. The addition of the gold nanoparti-
cles leads to three orders of magnitude improvement over 
traditional SPR measurements. Figure 8 shows the coupling 
between metal NPs leading to the LSPR shifts. With de-
creasing distance between nanoparticles, the LSPR spectra 
red shift exponentially due to an increase in scattering in-
tensity [152].  

Small biomolecules are a difficult challenge for SPR de-
tection since they do not lead to significant changes in the 
local index of refraction. In order to detect such analytes, 
larger protein receptors such as antibodies have been uti-
lized. Lee et al. [153] measured amplified LSPR signal by 
employing enzyme-based attachment. In their work, the 
intermolecular binding between an enzyme and antibody 
target fixed on a gold nano-island (NI) resulted in a two 
order of magnitude increase in their detection limit. 

Unlike SPR, LSPR decay length is much shorter and on 
the same size scale as proteins. Hence, the conformation 
changes of proteins at the surface may cause large spectral 
change in the LSPR signal collected [154]. Hall et al. [155] 
were the first to demonstrate conformational changes of the 
unlabeled protein calmodulin (CaM) with the modulation of 
Ca2+ using LSPR. In the presence or absence of calcium 
ions, CaM adopts two different conformational states and 
switches from “open” to “close” state upon calcium binding. 
This causes the center-of-mass of CaM to localize out or 
into the LSPR sensing region. The response of 2 mmol/L  

 

Figure 7  Illustration of increasing of LSPR sensitivity by using labeled nanoparitcles. (a) Biotin is covalently linked to a nanoparticle surface using EDC 
coupling agent, and antibiotin labeled gold nanoparticles are subsequently binding to the surface. (b) LSPR spectra before (solid black) and after (dashed 
blue) binding of native antibiotin, showing a shift of 11 nm. (c) LSPR spectra before (solid black) and after (dashed red) binding of antibiotin labeled nano-
particles, showing a shift of 42.7 nm. Reprinted with permission from [151]. Copyright 2011 American Chemical Society.  
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Figure 8  (a) LSPR spectra of a pair of gold spheroids as a function of the interparticle separation. The spectrum of a single gold spheroid (short axis=   
10 nm, long axis=20 nm) is shown in black. (b) Plasmon resonance wavelength red shifts exponentially (R2=0.98063) with decreasing interparticle separation 
in the spheroid pair. The fitting curve offset, 595 nm, compensates for the single-particle resonance wavelength. Reprinted with permission from [152]. Cop-
yright 2008 American Chemical Society.  

Ca2+ results in a resonance frequency shift of 2.2 nm, which 
is far greater than the noise level. 

Recently, several groups have been trying to design na-
noparticle array structures using nano-patterned substrates. 
Fujieda et al. [156] attempted to use CNTs as a support to 
organize metal particles in three dimensions, improving 
overall sensitivity. Substantial work has been done to demon-
strate that this proposed substrate has similar functionality 
as an LSPR sensor. Zou et al. [157] reported a synthesis of 
novel nanostructures, in which silver clusters were embed-
ded in porous silica, for the detection of nitro explosives. 
Porous silica adsorbing polar nitro explosives leads to an 
enrichment of nitro explosives molecules around the em-
bedded silver clusters and hence strongly increasing the 
detection of these target materials, with a detection limit of 
less than 1 mol/L.  

2.3  Fabrication of metallic nanoparticle arrays 

The peak center of LSPR spectra highly depends on nano-
particle composition, size, shape, and spacing. Gold and 
silver are the mostly used materials for LSPR nanoparticles. 
Compared to gold, silver nanoparticles have a smaller reso-
nance bandwidth and a higher sensitivity [157]; however it 
is more likely to oxidize and has a higher biological toxicity 
[154]. In the previous section, we introduced that the dis-
tance between metallic nanoparticles has a profound effect 
on LSPR spectra in both intensity and spectral shifts. Size 
also plays an important role in shape and position of LSPR 
spectra. The diameter of spherical gold nanoparticles has a 
resonance bandwidth from 9–99 nm, which generates a max 
from 520 to 580 nm. Larger sphere nanoparticles have big-
ger value, but suffer from a lower resolution. For shape ef-
fect: Experimental and theoretical research has been done 
on determining relationships of nanoparticle shape. Results 
have shown that sharper nanoparticles give rise to higher 
sensitivity to local refractive index [136]. The spectra of 

silver triangular and cube nanoparticles are more sensitive 
to external refractive index than spherical silver nanoparti-
cles. In general, increasing the ratio of width/height of na-
noparticles can cause the redshifts in LSPR spectra, higher 
m value and a longer evanescent field length [136], which 
can directly relate to an enhancement in LSPR sensors. Fig-
ure 9 shows that SPR sensitivity increases with decreasing  

 

Figure 9  Time dependent curves of mannose-functionalized silver na-
nosensors in response to 19-mol concanavalin A for different out-of- 
plane heights. Reprinted with permission from [158]. Copyright 2004 
American Chemical Society. 
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distance away from the metal surface. This was demon-
strated for triangular prism-shaped silver nanoparticles with 
identical base dimensions and decreasing heights [158]. 

Uniform metallic nanostructure array fabrication has 
greatly impacted LSPR sensor development. The uniformity 
of nanoparticle size, shape or spacing determines LSPR 
resolution, and sample reproducibility. Currently, the most 
common method for nanoparticle array fabrication is nano-
sphere lithography (NSL); known for being cost-effective, 
rapid, and easy to control. Figure 10 illustrates the NSL 
process: (1) A mask of polymer nanospheres are first depos-
ited on the surface of a substrate, (2) the nanospheres, acting 
as mask, shape the design for the deposited metal (typically 
15–100 nm), (3) and after deposition, the polymer nano-
spheres can be washed away. This process generates a tri-
angular nanoparticles array as shown in Figure 10 [15]. If a 
thicker metal layer is deposited over the nanospheres, a thin 
metal film over nanosphere (FON) can be fabricated. Vary-
ing the diameter of nanospheres and thickness of deposited 
metal allows for tunability in the resonance wavelength of 
these LSPR sensors. In addition to NSL, nanoparticle array 
fabrication techniques such as electron beam lithography, 
focused ion beam lithography, and nano-imprint lithography 
have made great progress. These techniques have provided 
greater controls on size, shape, and spacing of nanoparticles 
arrays, which can further accelerate the development of 
nanomaterial-based LSPR biosensors.  

3  SFG vibrational spectroscopy 

With the density and availability of surface area in many 
biological systems, most nanoscale interactions can be 
thought of as interactions with a surface. Likewise, it is of 
much importance to understand and characterize these sur-
face interactions. There are several surface detection meth-
ods such as surface plasmon resonance (SPR), fluorescence 
and electron microscopic techniques, atomic force micros-
copy (AFM), X-ray photoelectron spectroscopy (XPS), at-
tenuated total reflectance Fourier transform infrared (ATR- 
FTIR), Fourier transform infrared reflection absorption  

 

Figure 10  (Color online) Illustration of the process of nanosphere li-
thography (NSL). (a) Deposition of a mask of polystyrene nanospheres on 
a substrate; (b) depositon of metal (Au) on nanosheres by thermol evapora-
tion; (c) removal of the nanosphere mask. Reprinted with permission from 
[15]. Copyright 2005 American Chemical Society.  

spectroscopy (FT-IRRAS), and surface-enhanced Raman 
spectroscopy (SERS). However, these techniques cannot 
simultaneously fulfill the need to selectively monitor the 
molecular details of the surface and interface and avoid the 
interference of the information from species in the bulk. 
Specifically, although FT-IRRAS and SERS have the capa-
bility to probe surface chemistry with molecular resolution, 
FT-IRRAS generally requires a reference spectrum in order 
to sort out the interfacial signal and SERS needs specially 
prepared metal surfaces or the use of nanoparticles of the 
order of several nanometers to 100 nm for electromagnetic 
and/or chemical enhancement [159]. One surface-specific 
technique that has been proven to yield molecular level 
structure information (e.g. on both the orientation and degree 
of ordering of adsorbed chemical groups) is sumfrequency 
generation vibrational spectroscopy (SFG). 

We will first introduce the principle of SFG and its ap-
plications in biological surface and interface systems. After 
that, recent advancements that explore the utility of SFG to 
the nanoparticle-based systems are summarized. 

3.1  SFG: A tool for the biological surface and interface 

SFG is a second order non-linear optical technique where 
two pulsed laser beams, a fixed frequency visible beam and 
a frequency tunable infrared beam, are overlapped onto the 
sample surface. This gives rise to a nonlinear optical re-
sponse which generates a third beam at a frequency that is 
the sum of the frequencies of the two incident beams (Fig-
ure 11) [52,160–165]. The intensity of the output light (SFG 
signal) is proportional to the second-order non-linear sus-
ceptibility which equals zero when a material has inversion 
symmetry under the electric dipole approximation. The ma-
jority of bulk materials possesses inversion symmetry and 
therefore do not generate sum frequency signal, making 
SFG a truly surface and interface sensitive technique. For 
chemical groups at a surface or interface, SFG signal is 
generated when coincides with the energy gap of their vi-
brational modes. This resonance frequency enhancement is 
unique to each chemical group and can therefore provide the 
information of surface chemical composition. Alignment,   

 

Figure 11  SFG experimental geometry. Reproduced from Ref. [52] with 
permission from Annual Review. 
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orientation, and orientation distribution (or ordering) of sur-
face functional groups can be deduced by examining SFG 
spectra collected using different polarization combinations 
of input and output beams [52,160–165]. 

Since the first SFG paper published in 1987 [166,167], 
SFG has been widely used to investigate many different 
surfaces and interfaces in situ in real time. It has been 
demonstrated that SFG vibrational spectroscopy is capable 
of probing interfacial structures of a variety of polymer and 
biological surfaces and interfaces [53–55,168].  

SFG has been applied to study proteins and peptides and 
their interactions and orientations at various interfaces 
[58,169–185]. In the recent years, methods have been de-
veloped to determine conformation and orientation of vari-
ous protein secondary structures at interfaces using polar-
ized SFG, supplemented by ATR-FTIR spectroscopy [57, 
61,66,68,70,80,186,187]. Molecular level understanding on 
peptide and protein structures at interfaces using SFG pro-
vides a foundation to understand molecular mechanisms of 
biocompatibility, marine biofouling, membrane protein 
functions, biosensing, and antimicrobial peptide activity and 
selectivity. It has been demonstrated that SFG is a unique 
technique to determine membrane orientation of various 
α-helical peptides such as magainin-2 [69], MSI-78 [74], 
and melittin [68]. A cell penetrating peptide, Pep-1, which 
can form both α-helical and -sheet was also studied [56]. 
SFG has also been applied to study orientations of larger 
membrane proteins with -helical structures such as cyto-
chrome b5 [71], G [67], and G-GRK2 complex [75]. 
The protein complex formation at model cell membrane 
surface has been observed in situ in real time using SFG. In 
addition to the -helical peptides, methods to deduce mem-
brane orientations of a 310 helical structure and -sheet 
structure using SFG have also been developed and applied 
to examine membrane orientation of alamethicin [64,188] 
and tachyplesin I [76,80,186]. SFG is also used to study the 
formation of -sheet aggregates from human islet amyloid 
polypeptide (hIAPP) on membrane surfaces [175]. Besides 
membrane peptides and proteins, SFG has also been used to 
investigate physically adsorbed and chemically immobilized 
peptides and proteins at liquid/air [181] or solid/liquid in-
terfaces [57,62,63,65,189–192].  

The interactions of large proteins, DNA, and biofunc-
tional synthetic polymers with cellular membranes have 
great importance not only for their size similarities to com-
mon nanomaterials discussed above, but also their unique 
structure/function relations with their interfacial environ-
ment. Shown in Figure 12 is a recent advancement in the 
application of SFG towards the investigation of the interac-
tion between cell membrane and the complex formed by G 
protein-coupled receptor kinase 2 (GRK2) and G subunit 
[75]. It was found that the likely membrane orientation of 
the GRK2-G complex differs from that predicted from 
the known protein crystal structure. Instead, a more likely 
picture holds the predicted receptor docking site of GRK2  

 

Figure 12  (a) Possible orientation of the G-GRK2 complex determined 
by polarized SFG measurements and the use of the computer software; (b) 
complex at the (0, 0) orientation [75]. 

in an orientation that would more optimally interact with 
GPCRs. It was also found that G appears to change its 
orientation after binding to GRK2. This research demon-
strates that SFG can be used to observe the protein complex 
formation in situ in real time, and can be used to deduce 
membrane orientation of large protein complexes.  

3.2  SFG studies at the nano-bio interface  

Up to now, despite its applicability to various systems, SFG 
spectroscopy has been mainly applied to planar geometries. 
Recent studies have demonstrated that SFG is a powerful and 
information-rich probe of nanostructured surfaces [193–195], 
and surface behaviors with nanoparticles [159,196–200]. In 
the following sections, recent advancements that explore the 
utility of SFG as a powerful and unique technique to study 
surfaces/interfaces containing nanoparticles will be covered. 
Structures comprising metallic or semiconductor nanoparti-
cles have potential applications in a diverse range of tech-
nologically significant fields. Nanoparticles can exhibit vari-
ous electrical, optical, magnetic, chemical, and biological 
properties by tuning parameters such as their composition, 
size, and shape, having versatility as a functional material in 
the fields of magnetic storage media, biosensor, and medi-
cation. Many of the optical, transport, catalytic, and ther-
modynamic properties of these nanoparticles are surface 
related, and the properties of these nanoparticles after modi-
fication by adsorbing surfactants and organic molecules are 
therefore of great interest. Conformation of adsorbed mole-
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cules often determines the physical, chemical, and biologi-
cal properties. 

SFG can be used to characterize the structure of nanopar-
ticle surfaces. The most widely used nanoparticles are gold 
nanoparticles (AuNPs) which have the following unique 
properties: (1) they are relatively inert, (2) they can be easily 
functionalized through thiolate groups, (3) the synthesis of 
size controlled AuNPs is quite easy, and (4) their plasmon 
characteristics make them ideal candidates for biolabeling. 
Small AuNPs are usually covered by a layer of stabilizing 
agent (charged small molecules or surfactants). Studying the 
physicochemical properties of these adsorbed molecules at 
the surface of nanoparticles is very important to understand 
the fundamental problems toward their applications. A re-
cent example was studied by Benderskii and co-workers 
who used SFG to study the conformation of dodecanethiol 
covalently linked on AuNPs with four different sizes: 1.8, 
2.9, 7.4, and 23 nm [193]. The SFG spectra (SSP polariza-
tion; where each element is the polarization of the signal, IR, 
and visible beams, respectively) recorded in the CH stretch 
region are shown in Figure 13. The observed vibration 
modes can be assigned as CH2 symmetric stretch (d+) at 
2855 cm1, CH2 antisymmetric stretch (d) at 2918 cm1, 
CH3 symmetric stretch (r+) at 2881 cm1, and CH3 asym-
metric out-of-plane stretch at 2950 cm1. A weaker band at 
2935 cm1 may be assigned to the Fermi resonance between 
CH3 symmetric stretch and bend overtone modes. The  

 

Figure 13  (Color online) (a) Schematic representation of the dodecan-
ethiol ligand on spherical nanoparticle surfaces showing conical volume 
available for the formation of gauche defects. (b) Size-dependent SFG 
spectra (SSP) of the dodecanethiol on gold nanoparticles in the CH stretch 
region. (c) The ratio of the methylene (d+, d) to methyl (r+, r) mode inten-
sities in the SFG spectra showing conformational change (increase of 
gauche defects) as a function of particle size. Reprinted with permission 
from [193]. Copyright 2006 American Chemical Society. 

authors noted that the relative intensity increase of the CH2 
versus CH3 transitions was inversely proportional to the 
particle size. This is particularly obvious for the symmetric 
stretches, d+ versus r+, which are well separated from other 
modes (Figure 13(b)). If the alkyl chains are predominantly 
in all-trans conformation, the SFG signal intensity of meth-
ylene modes is very weak due to the local symmetry of the 
CH2 groups. The intensity of the methylene modes will in-
crease as the content of gauche conformation increases. 
Thus, the relative intensity of the d+ and d CH2 modes with 
respect to the CH3 modes (Figure 13(c)) can be viewed as a 
semi-quantitative measure of the extent of gauche defects in 
the ligand alkyl chains. The nanoparticle size-dependent 
results clearly show that the content of gauche defects is 
higher in smaller-sized nanoparticles (Figure 13(a)). This is 
a typical example showing the dependence of molecular 
conformation on the geometry of the nanoscale substrate.  

Another successful attempt of SFG characterization was 
achieved by Davies and co-workers on a cationic surfactant 
deposited on anionic stabilized AuNPs forming a monolayer 
on a silicon substrate [195]. By recording SFG spectra (CH 
stretch region) of both a dioctadecyldimethylammonium 
chloride (DODAC) monolayer deposited on a silicon sub-
strate, and a composite gold nanoparticle/DODAC film de-
posited on a silicon substrate, they showed that the latter 
spectrum is significantly different from the former. To ex-
plain this, they proposed two possibilities: (1) the difference 
may be due to differences in the visible and infrared elec-
tromagnetic fields generated at the surfaces when using na-
noparticle rather than silicon substrates. The electromagnet-
ic field strengths affect not only the magnitude of the back-
ground sum frequency signal but also the relative im-
portance of the individual tensor components of the reso-
nant second-order nonlinear susceptibilities and hence the 
strengths of each resonance. Different consequences of 
changes in these fields between silicon, gold nanoparticles, 
and evaporated gold substrates can be expected. Silicon is a 
poor reflector in the infrared and consequently the surface 
electric field established perpendicular to the surface (z-axis) 
is small. In contrast, the infrared reflectivity of gold is high 
and increases to nearly 100% at thicknesses of the order of 
hundreds of nanometers. If the nanoparticle film is consid-
ered to be a very thin gold layer on the silicon substrate it 
follows that the surface infrared electric field produced will 
have a larger z component than would be present on bare 
silicon, but smaller than that which would exist on thick 
gold. The absolute and relative intensity of individual reso-
nances would therefore be expected to depend on the degree 
of interaction with the infrared field in the z axis. (2) Re-
garding the interaction between laser and nanoparticle, it is 
also important to discuss the surface plasmon resonance 
effect. Silicon has negligible surface plasmon resonance and 
no enhancement of the surface E-fields is expected by this 
mechanism. In contrast, bulk gold exhibits strong wave-
length independent surface plasmon resonance which results 
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in enhancement of the z-axis surface E-field. Differently, 
the surface plasmon resonance of gold nanoparticles is 
wavelength specific having a maximum at ≈530 nm for a 
15 nm diameter nanoparticle, which coincides with the 
wavelength of visible light. Consequently, the visible sur-
face E-field will have an enhanced intensity in comparison 
to silicon and like all surface plasmon fields, will contain 
only a z component. Preferential enhancement of resonances 
with significant z components would therefore be expected.  

Besides SFG studies on the surface of nanoparticles, an-
other related aspect is focused on the surface behaviors 
containing nanoparticles. The first attempt to explore the 
utility of SFG to the field of surface catalysis was achieved 
by Somorjai [201] in 1997. Ordered arrays of Pt nanoparti-
cles in the 2.5–50 nm size range were deposited on oxide 
substrates (silica, alumina, and titania), which were used in 
catalyzed surface reactions at high pressures. SFG was used 
to monitor pressure-dependent changes in the chemisorption 
of CO and NO over Pt(111). The bonding process and the 
formation of reaction intermediates were detected by SFG. 
Later, Rupprechter used SFG to study the CO molecules 
adsorbed on Pd or Pt nanoparticles at controlled pressure 
and temperature [202,203]. Yeganeh et al. [197] demon-
strated that the total internal reflection (TIR) configuration 
reduces destructive interference associated with non-linear 
optical spectroscopy of small particles making SFG studies 
of small objects possible. In a similar way, SFG spectros-
copy in total internal reflection geometry was successfully 
applied to study the adsorption and oxidation of CO on 
monolayer films of platinum cubic nanoparticles [198]. 
These examples demonstrate the versatility and strength of 
SFG to obtain the molecular level detection of reaction in-
termediates and the dynamic restructuring of surfaces dur-
ing catalytic reactions. 

Davies and co-workers [199] used SFG to study the na-
noparticle-induced structural changes within fatty acid mul-
tilayer films. They prepared films from a total of nine layers 
of per-deuterated cadmium arachidate and one layer of per- 
protonated cadmium arachidate on hydrophobic per-deu-     
terated octadecanethiol (d-ODT) covered gold substrates. 
Four samples were prepared containing a single per-proto-     
nated cadmium arachidate layer, namely layers 1, 2, 5, and 
10, respectively, counting from the lowermost layer to the 
surface layer. They collect SFG spectra in the CH stretching 
region before and after reaction with H2S (the addition of 
the H2S gas can induce the formation of CdS nanoparticles 
in the interlayer regions of these multi-layers in situ). The 
SFG spectra of the unreacted films are shown in the left 
panel of Figure 14. The most striking feature is that the 
resonances of layers 2 and 10 occur as dips, while those of 
layers 1 and 5 occur as peaks. This is due to interference 
between the SFG signals from the gold substrate and the 
SFG active (per-protonated) arachidate layer and indicates 
that the methyl groups of layers 2 and 10 point away from 
the surface while the methyl groups of layers 1 and 5 point  

 

Figure 14  SFG spectra of a single per-protonated cadmium arachidate 
layer in an otherwise fully per-deuterated 10-layer film deposited onto 
d-ODT gold before (left) and after (right) reaction with H2S. The spectra 
correspond from top to bottom to layers 1, 5, 2, and 10, respectively. The 
symbols refer to the symmetric methylene stretching mode (d+), the sym-
metric methyl stretching mode (r+), its Fermi resonance (r+FR), and the 
asymmetric stretching mode (r). Post-reaction spectra have been rescaled 
as indicated by the multiplication factors. The nonresonant background 
remained the same post-reaction. Reprinted with permission from [199]. 
Copyright 2004 American Chemical Society. 

toward the surface. The three strong resonances arise from 
methyl groups, while a weak methylene resonance around 
2860 cm1 can be observed for layer 1. This implies that the 
hydrocarbon chains are in an all-trans configuration, but 
some gauche defects do occur for layer 1. Figure 14 (right- 
hand panel) shows the SFG spectra of layers 1, 5, 2, and 10, 
respectively, after reaction. It can be seen that the intensity 
of the SFG signal from the lowermost layer has been re-
duced significantly less for layers 2 and 5 and not at all for 
layer 10. Furthermore, relatively strong methylene reso-
nances can now be observed for the buried layers (1, 2, and 
5). For layer 10, no distinct CH2 resonance can be observed. 

Tourillon et al. [200] combined SFG and a close-packed 
array of gold nanoparticles to probe, with a high sensitivity, 
the changes in conformation and orientation induced by the 
recognition process of avidin by biocytin. They first pre-
pared a close-packed AuNP film on the aminophenyltri-
methoxysilane monolayer on quartz. Then biocytinylated 
thiol (BioSH) was covalently linked to the surface of the 
AuNPs. This surface can then be used to probe the recogni-
tion process between biocytin and avidin by recording SFG 
spectra before and after the reaction. This approach repre-
sents a new platform with potential use in biosensors, diag-
nostics and bioactive layers. Moreover, the combination of 
SFG and a similarly prepared AuNP film can be used to 
probe adsorbed molecules [159,204]. Tourillon et al. [159] 
showed that when SFG is performed in a total internal re-
flection configuration combined with a dense AuNP mono-
layer, the conformation of adsorbed molecules can be stud-
ied with an excellent signal to noise ratio and high signal to 
background ratio. Dodecanethiol (DDT) was used as a 
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probe molecule in order to assess the potentialities of the 
approach. Figure 15 shows the SFG spectra collected from a 
DDT SAM adsorbed on a dense AuNPs monolayer recorded 
in a total internal reflection configuration. The results show 
that a well-ordered SAM is formed on a dense AuNP mon-
olayer in a similar manner to that obtained on plain gold 
where the methylene modes are typically less than 10% of 
the CH3 modes. 

4  Conclusion and outlook 

We have shown that three advanced optical spectroscopic 
techniques and their applications on various nanomaterial- 
based optical sensors modified with specific biomolecules 
represent a powerful detection platform for a broad range of 
biological molecules. Several key features set these biosen-
sors apart from other sensor technologies available today: 
ultrahigh sensitivity, selectivity, and the potential for inte-
gration with other optical measurements. The examples de-
scribed in this review show clearly the potential of these 
biosensors to significantly impact disease diagnosis, genetic 
screening, and drug delivery as well as serve as powerful 
new tools for research in many areas of biology. 

Although some limitations of each technique exist, a 
combination of strengths and weakness from each technique 
will result in powerful analytical measurements. For exam-
ple, optical parameters such as intensity, wavelength, polar-
ization and fluorescence lifetime can be combined together 
to provide an overall and valuable information about the 
specimen. Hence, if fluorescence microscopy is integrated 
with other techniques with higher spatial resolution and 
lower optical diffraction limits, such as AFM and SEM, it 
will provide comprehensive information of samples with 
high morphology resolution while maintaining selectivity 
and sensitivity. 

As for SFG, it is capable of providing a multitude of ap-
plications in surface systems concerning nanostructured  

 

Figure 15  SFG spectra of a DDT SAM adsorbed on a dense AuNPs 
monolayer recorded in the TIR reflection configurations. The experimental 
data and the fitted curves are represented by open circles and lines, respec-
tively. For comparison, the spectrum of the AuNPs monolayer is also 
shown (green line). Modified under permission of IOP from Ref. [159].  

substances. Nano-sized biomacromolecules (peptides, pro-
teins, DNA, and biofunctional synthetic polymers) and na-
noparticles are promising research targets allowing us to 
explore the applicability of SFG to biomedicine, biosensors, 
and nano-optics/electronics. In systems containing nanopar-
ticles, it is important to consider the SFG enhancement ef-
fect by the non-resonant surface plasmon signal generated 
from the nanoparticles. However, a fundamental under-
standing is still lacking regarding the effects of nanoparticle 
size, surface density, and surfactant coverage on the strength 
and resonant enhancement of the sum frequency signal. 
Even the enhancement mechanism itself still remains elu-
sive. The exploration of the surface plasmon and the inter-
ference between the metal surface and the ordered sub-
stances can provide some interesting and important infor-
mation on the surface chemistry. Studies on the noble metal 
nanoparticle/surfactant interface and semiconductor/surfactant 
interface not only have fundamental implications, but also 
have widespread industrial applications such as photo-voltaic 
cells, optical switching and nano-electronics. For funda-
mental research, it is important to explore the connection 
between the surface order and electron mobility in nano- 
electronics. Finally, we believe that one of the future re-
search directions is to probe some stimuli-induced (such as 
light, voltage, heat, and pH) reorganization of the nano- 
structured surfaces by SFG. 
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