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During the last few years, various flow-based separation/preconcentration methodologies have gained pertinent novel advances 
and exhibited powerful capability in the field of sample pretreatment and their hyphenation with detection by atomic spectrometry. 
The present mini-review presents and discusses the progress of flow-based sample processing approaches commonly used for the 
assay of trace elemental species with detection by atomic spectrometry, including preliminary sample pretreatment, solid phase 
extraction (including solid phase microextraction), liquid-liquid extraction, vapor generation and dialysis techniques. Special em-
phasis has been paid on the novel applications and analytical procedures hyphenated with atomic spectrometry. The future per-
spectives of flow-based sample pretreatment protocols in the determination of trace elements and their speciation are also dis-
cussed. 
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The determination of trace elements in different types of 
samples plays an important role in the field of analytical 
chemistry, especially to those of the highly toxic metal/ 
metalloid species, e.g. Cu2+, Cd2+, Hg2+, Ni2+, Pb2+, Cr(VI), 
As(III), Se(IV). The existence of these elemental species 
has significant impact on the ecological system, biological 
organisms as well as human health [1]. Various atomic 
spectrometric procedures have inherently presented them-
selves as the most attractive option, due to their excellent 
sensitivity and precision for the determination of trace lev-
els of elemental species, these include flame atomic absorp-
tion spectrometry (FAAS), electrothermal/graphite furnace 
atomic absorption spectrometry (ETAAS/GFAAS), atomic 
fluorescence spectrometry (AFS), inductively coupled 
plasma-atomic/optical emission spectrometry (ICP-AES/ 
OES), microwave induced plasma-optical emission spec-
trometry (MIP-OES), inductively coupled plasma-mass 
spectrometry (ICP-MS). However, the direct application of 

these analytical techniques to real sample analysis is fre-
quently restricted because they are generally very sensitive 
to the complex sample matrix compositions and the varia-
tions of sample matrixes tend to cause significant effect on 
the analysis results. Particularly, the accurate determination 
of ultra-trace amount of metal species in highly complex 
sample matrixes is always a real challenge in practical ap-
plications. In these cases, the direct determination of the 
analytes is generally not possible or not reliable by atomic 
spectrometry. Thus it is imperative to apply appropriate 
sample pretreatment processes for the removal of interfering 
sample matrix components and in the mean time increasing 
the concentration of the analytes by appropriate preconcen-
tration [2]. As automatic operation platforms for fluidic 
delivering and on-line sample processing, the three genera-
tions of flow injection techniques, e.g. flow injection (FI), 
sequential injection (SI) and lab-on-a-valve (LOV), provide 
ideal alternatives to perform sample pretreatment succes-
sively in a cyclic mode and accurately introduce the ana-
lytes into the detector in a liquid or gas flow [3]. During the 
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last few years, various novel flow-based sample pretreat-
ment methodologies have exhibited powerful capability and 
gained extensive attentions in the field of sample separa-
tion/preconcentration and their hyphenation with different 
detection techniques including atomic spectrometry [4]. 

The aim of this mini-review is to present and discuss the 
state-of-the-art progress of flow-based sample pretreatment 
protocols in the period of 2010–2012 commonly applied for 
the quantification of trace level of elemental (heavy metal) 
species hyphenating with atomic spectrometry. In the mean-
time, the future perspectives of this field are also depicted. 
These are discussed separately in the following sections. 

1  Preliminary sample pretreatment 

Generally, the metal species can only be determined by 
atomic spectrometric techniques when the analytes are ex-
isting in an aqueous medium. Therefore, the analytes/metal 
species in real samples should be first transferred into 
aqueous solution. In this respect, microwave-assisted diges-
tion is normally used to release the analytes/metal species 
from solid or organic matrix into aqueous solution. A pro-
cedure for the determination of 12 elements in sediments 
was developed by microwave digestion in aqua regia with 
ensuing detection by ICP-AES [5]. As an alternative to 
complete wet digestion, the extraction of metal species by 
using acids or water provides a simple and rapid approach 
for leaching the analytes, as recently illustrated by the de-
termination of trace elements in mastic gum of pistacia len-
tiscus by ICP-AES [6] and the quantification of wa-
ter-soluble zinc in airborne particulate matters by FAAS [7]. 
As an effective sampling protocol, slurry sampling has the 
advantages of eliminating the need for a sample pretreat-
ment step and reducing the risk of analyte loss or sample 
cross contamination. This has been demonstrated by several 
novel methods proposed for the determination of trace ele-
ments in environmental matrixes such as boron carbide 
powders [8], estuarine sediments [9], coal samples [10], etc. 
However, the analysis of ultra-trace level of analytes gener-
ally runs into problem due to the interfering effects of com-
plex sample matrix components.  

It is worth mentioning that the low viscosity and high 
stability of microemulsion make it a suitable approach for 
the preparation of samples. Thus microemulsion has been 
increasingly exploited in the analysis of fuels. For instance, 
an automatic microemulsion preparation approach was re-
cently developed for the determination of metal species in 
fuel samples with detection by GFAAS [11]. It should be 
emphasized that after these simple or preliminary sample 
processing, the sample matrix components are generally not 
eliminated, and thus their potential interfering effects on the 
determination of analytes of interest are often problematic 
in practices. When concerning highly complex sample ma-
trixes, various separation/preconcentration procedures are 

required. The approaches based on solid phase extraction 
(solid phase microextraction), liquid-liquid extraction, va-
por generation and dialysis are the common alternatives for 
improving the sensitivity and selectivity of the available 
atomic spectrometric techniques. 

2  Solid phase extraction/microextraction 

Solid phase extraction (SPE) including solid phase micro-
extraction (SPME) is one of the most important sample pre-
treatment techniques. It can generally provide rapid phase 
separation and offer high enrichment factors. In addition, it 
is ease of operation and automation. It is known that the 
most important part of SPE/SPME is the features of the 
sorbent materials and their effectiveness in interactions with 
the analyte of interest. Therefore, in order to achieve better 
performance on the separation and ensuing determination of 
trace elements or metal species by atomic spectrometric 
detectors, it is highly desirable to develop novel and effi-
cient adsorbent materials or modify the existing materials 
for the extraction and isolation of target elemental species 
from complex sample matrixes. Table 1 summarizes the 
important recent advances in flow-based SPE for the sepa-
ration and preconcentration of trace elemental species fol-
lowed by detection with various atomic spectrometric tech-
niques. 

The most interesting SPE materials reported in the liter-
atures for the separation and preconcentration of target ele-
ments are those based on activated carbon, silica, resin, cel-
lulose fibre, mineral, insoluble inorganic salt, biomaterial, 
etc. Activated carbon is an excellent collector for a wide 
range of metal ions or species, but it provides no selectivity. 
In fact, it is generally modified by attaching or immobiliz-
ing various functional groups to create desired selectivity 
for specific metal species, e.g. sodium diethyldithiocarba-
mate for arsenite [12], 4-(8-hydroxyquinoline-azo) ben-
zamidine for Pb(II) [13], benzoyl hydrazine for Er(III) [14] 
and ethyl-3-(2-aminoethylamino)-2-chlorobut-2-enoate for 
Au(III), Pd(II) and Pt(IV) [15]. It is known that silica has 
favorable mechanical and thermal stability and lower sus-
ceptibility to swelling and shrinking, which can also be 
modified by various functional groups to improve its selec-
tivity toward metal species [16–24]. As an alternative to 
SPE column, sorbent materials based on silica can be readi-
ly made into membranes for the extraction of metal ions 
[25–27]. Some functionalized polymeric solid supports such 
as resin and cellulose are also good alternatives to facilitate 
SPE process. These are readily available by the functionali-
zation or modification of polymers [28–40] or commercial 
products, e.g. HyperSep SCX [41], Oasis-HLB [42] and 
Amberlite XAD-7 [43]. As a cheap and useful alternative 
for the general sorbent material, mineral and insoluble in-
organic salt materials have recently been used for solid 
phase extraction of various metal species. In this respect, 
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bentonite [44], alumina [45], iron phosphate [46], MnO2 [47] 
and Fe3O4 [48,49] have been successfully used for specific 
purposes. In particular, Fe3O4 as a special supporter pro-
vides a magnetic immobilization procedure for on-line SPE 
without the need for any frits or plugs. Recently, the char-
acteristic biomaterials have attracted increasing attention in 
SPE because of their chemical reactivity originated from the 
presence of various functional groups on the surface of the 
sorbent materials. A lot of efforts have been dedicated to 
selective retention of some metal species with moringa 
oleifera seeds [50], filamentous fungal biomass [51], egg-
shell membrane [52], walnut shell [53] as well as mung-
bean-coat [54] as adsorbent. By introducing some specific 
selective functional groups on the surface of biomaterials 
via the approach of surface engineering technique provides 
an alternative to improve the metal-binding capacity and 
sorption selectivity of biomaterials toward some biological-
ly and environmentally significant metal species [55–57].  

As emerging functional materials, various nanomaterials 
and ionic imprinted polymeric materials have been paid 
extensive attention in the field of SPE process for the selec-
tive separation and preconcentration of metal species. 
Compared with micrometer-sized sorbent, nanomaterials 
have a significantly higher surface area, resulting in a fa-
vorable extraction capacity and in many cases provide sat-
isfactory extraction efficiency. In addition, ionic imprinted 
materials offer better selectivity toward the imprinted metal 
or metal species. The commonly encountered nanomaterials 
serve as SPE sorbents or supporting materials are those 
based on carbon and metal oxides or other related materials, 
such as carbon nanostructures including carbon nanotubes 
[58–63] and graphene based structures [64,65], titanium 
dioxide [66], alumina [67,68] as well as silver [69]. In prac-
tice, the ion-imprinted materials offer high selectivity to-
wards the imprinted metal ions or species. This feature 
makes it possible to selectively bind the target metal species 
in the presence of other metal cations [70–73]. However, 
when treating real biological or environmental samples, the 
presence of very complex sample matrix components fre-
quently blocks the successful separation of the target metal 
species. In this respect, extensive efforts should be made in 
the future studies.  

3  Liquid-liquid extraction 

Liquid-liquid extraction (LLE) has been traditionally and 
widely used for the separation and preconcentration of met-
als and metal species for a long time. Nowadays, the trend 
of liquid-liquid extraction has been directed to the avoid-
ance of the consumption of large amount of organic sol-
vents in order to protect the operator and the environment. 
In this respect, various extraction approaches with very lim-
ited consumption of organic solvents have been developed 
and widely employed for the pretreatment of various sample 

matrixes. These protocols include dispersive liquid-liquid 
microextraction (DLLME), cloud point extraction (CPE), 
solidified floating organic drop microextraction (SFODME), 
in situ solvent formation microextraction (ISFME) as well 
as hollow fiber supported liquid membrane extraction (HF- 
SLME), etc.  

Among these extraction approaches, DLLME has been 
widely employed during the recent years. One of the most 
important key issues for the success of DLLME is the 
choice of solvent for performing the extraction. Solvents of 
higher densities than water are preferred as they are readily 
separated from the water phase via centrifugation after ex-
traction. Very recently a novel extraction method has been 
developed for the separation of cadmium, lead and bismuth, 
followed by flow injection sample introduction and detec-
tion by ICP-MS [74], where the metal species of interest 
were effectively transferred into carbon tetrachloride by 
DLLME after complexation with sodiumdiethyldithiocar-
bamate. In order to reduce the environmental effect to the 
extent possible, the substitution of toxic solvents with green 
alternatives for performing DLLME attracted extensive at-
tentions. In this respect, fatty alcohols [75,76] as well as 
ionic liquids [77,78] have been employed for this purpose. 
When using a microcolumn packed with a sorbent material 
such as poly(etheretherketone)-turnings [75] or florisil [77], 
the extraction solvent can be on-line separated from the 
aqueous phase instead of centrifugation. 

CPE is an impressive alternative to conventional LLE 
and very recently some novel applications of CPE have 
been developed for the determination of trace level of met-
als with detection by atomic spectrometry. Some of the im-
portant procedures include the preconcentration of vanadi-
um via the isolation of its complex with 2-(2′-thiazolylazo)- 
p-cresol in Triton X-100 surfactant and the determination is 
facilitated by GFAAS [79]; the separation/preconcentration 
of bismuth in the form of its 8-hydroxyquinoline complex in 
Triton X-114 surfactant prior to its determination by 
ICP-OES [80]. In order to improve the traditional CPE pat-
tern, rapid synergistic CPE procedure was proposed by us-
ing octanol as cloud point revulsant of Triton-114 and syn-
ergic reagent for extraction. The extraction could be accom-
plished within a very short time at room temperature (with-
out heating) in a water bath [81]. 

The progress of SFODME was exhibited on the evalua-
tion of the performance for separation/preconcentration and 
determination of copper by means of flow injection sample 
introduction and FAAS detection [82,83]. In this case, a free 
microdrop of 1-undecanol was adopted and 3-amino-7-  
dimethylamino-2-methylphenazine or 1,5-diphenyl carba-
zide were used as complexing reagent. Subsequently, a 
ligandless SFODME approach was proposed by using 
1-dodecanol for the preconcentration of trace level of cad-
mium in the absence of chelating reagent [84]. 

It is known that one of the major advantages of ISFME is 
its compatibility with high content of salt. This feature was 
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recently further demonstrated by the extraction of trace lev-
el of cadmium in saline samples [85]. In addition, HF- 
SLME was successfully hyphenated with a portable W-coil 
ETAAS for the determination of trace lead in water samples 
[86]. 

4  Vapor generation 

Vapor generation (VG) provides an effective scheme for the 
isolation of hydride or vapor forming elements or metal 
species from complex sample matrixes. By using this ap-
proach, the analyte of interest could be readily isolated from 
sample matrix components, and in the mean time appropri-
ate preconcentration of the analyte could be achieved. The 
hyphenation of VG with various atomic spectrometric tech-
niques remains an alternative approach for selective and 
sensitive determination of trace metal species, and a con-
siderable number of papers appear each year devoted to this 
subject [87].  

Nowadays, chemical VG is quite commonly used for the 
determination of some biologically and environmentally 
significant metal species. Among these metals, Se, Te, As, 
Sb, Bi, Ge, Sn, Pb were separated via hydride generation 
(HG) while Hg and Cd were isolated via cold vapor genera-
tion (CVG). A lot of attentions have been directed to the 
automation of the sample processing system aiming at ob-
taining optimal analytical performance. A multicommutated 
flow system was designed and evaluated for the determina-
tion of total arsenic and selenium in natural and drinking 
water samples by HG-AAS [88]. Factorial design has been 
demonstrated to be helpful to characterize the effects of 
reagent conditions. This was characterized by the determi-
nation of lead with detection by a high-resolution continu-
um source HG-AAS [89].  

During the last few years, efforts have been made to en-
hance the analytical throughput of the traditional approach 
generally used for the determination of single element. 
Simultaneous multi-element determination has been em-
ployed for the measurement with atomic spectrometry by 
introducing the gaseous species (hydride/vapor) of the ana-
lyte into an atomizer or an excitation source. These ap-
proaches include fast sequential AAS [90], multi-channel 
AFS [91,92], ICP-OES [93] and MIP-OES [94]. In compar-
ison with single-element quantification, the feature of mul-
ti-element determination is also characterized by an obvious 
advantage, i.e. the reduction of reagents and sample con-
sumption as well as the minimization of waste generation.  

Traditionally, HG or CVG is used for a limited number 
of elements. Nowadays, the scope of hydride/vapor genera-
tion through the reaction with NaBH4 as the reducing rea-
gent has been expanded to transition and noble metals, i.e. 
Fe, Co, Ni, Cu, Ag, Au and other elements. Significant ef-
forts have thus been invested to overcome the shortcoming 
of low HG efficiency in rapid gas-liquid phase separation of 

the generated hydride/vapor. The use of enhancement re-
gents or modifiers was also demonstrated to be effective. A 
simple and cost-effective thin film hydride generator has 
been successfully used for HG and the determination of 
trace copper by flow injection in situ hydride trapping 
GFAAS [95]. This approach possessed the advantages of 
rapid generation and fast separation of the unstable gaseous 
copper species from the liquid phase. It was demonstrated 
that room temperature ionic liquid combined with ammo-
nium pyrroldinedithiocarbamate (APDC) could synergeti-
cally enhance the HG efficiencies of iron, cobalt and nickel 
to 2.5-, 3.2- and 3-fold respectively [96]. It has been veri-
fied that the optimization of reagents and operation condi-
tions was also important to improve the HG efficiency, as 
demonstrated in the vapor generation process of nickel [97].  

Based on the different reaction conditions or the intro-
duction of chromatographic separation, chemical VG can be 
further applied in the field of speciation analysis. A simple 
non-chromatographic method for the determination of mer-
cury, methylmercury, dimethylmercury and phenylmercury 
was developed by means of AFS [98]. The determination is 
performed on the basis of the singular behavior of mercury 
species versus the different reagents/approaches involved in 
the CVG such as sodium borohydride, stannous chloride, 
potassium persulfate, and UV radiation. An automated 
chromatographic method for the speciation of inorganic and 
methylated arsenic species was achieved by HG-cryotrap- 
ping-gas chromatography-AAS [99], where the arsines were 
preconcentrated and separated in a chromosorb filled 
U-tube. Arsenic speciation was also performed based on 
liquid chromatographic separation followed by gradient 
hydride generation with detection by quartz tube AAS 
[100]. 

Besides the conventional chemical VG, other VG proce-
dures have gained some novel advances. Photochemical VG 
is based on the exposure of sample to UV radiation in the 
presence of low molecular weight organic acids [101], 
which provides a powerful alternative with detection by 
AFS. This has been demonstrated in the direct determina-
tion of mercury in ethanol biofuel or white vinegar 
[102,103]. A novel VG technique for iodine determination 
by ICP-OES was developed based on solution cathode glow 
discharge induced advanced redox processes of iodide and 
iodate [104]. The in-situ produced highly reactive chemical 
species in the discharge eliminated the need for externally 
supplied sources of any redox reagents. Electrolytic CVG as 
a sample introduction technique in atomic spectrometry was 
further studied by the determination of mercury [105]. It 
was found that phosphate buffer solution increased the sig-
nal intensity of Hg vapor from electrolytic generation on Pt 
cathode and reduced the impact of cathode erosion on the 
stability of signal intensity. By using the electrothermal 
vaporization technique, it has been successfully used for the 
quantification of a series of trace elements, e.g. As, Co, Cu, 
Fe, Mn, Ni, Se and V, in biological samples with formic 
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acid as the vapor forming reagent and with detection by 
ICP-MS [106]. In comparison with acid digestion, electro-
thermal vaporization for sample treatment is a simple and 
cost effective process, and it also minimized the environ-
mental effect.  

5  Dialysis 

Dialysis technique permits continuous monitoring of the 
variation of low molecular weight species with respect to 
time or sampling site. Thus, this technique helps to reveal 
the behavior of species migration. A hyphenated approach 
was developed for studying the bioaccessibility of arsenic in 
shrimp based on continuous-flow dialysis and on-line detec-
tion with ICP-MS [107]. It was found that half of the arse-
nic in shrimp was bioaccessible and most was contributed 
from organic arsenic species. Furthermore, the arsenic bio-
accessibility in shrimp was not increased with the addition 
of ascorbic acid or fruit juices. An ultrasonic dialysis and 
capillary electrophoresis system with detection by ICP-OES 
was developed for the identification and determination of 
calcium species in human red blood cells [108]. Ultrasound 
dialysis enhances the movement of liquids and facilitates 
mass transfer which results in rapid equilibrium. Eight pri-
mary different calcium-containing species were found in 
human red blood cells. It was demonstrated that the calcium 
species with the greatest mobility was not free Ca2+ action, 
but a calcium-erythrocyte membrane species of 50–100 kD. 

6  Conclusions and perspectives 

For the analysis of trace metal species, ICP-AES, AAS, 
AFS and ICP-MS are currently the major detection tech-
niques. Various sample pretreatment procedures play an 
important role in the elimination of matrix interferences and 
in the meantime to improve the analytical performance via 
the preconcentration of ultra-trace level of metal species. It 
should be emphasized that from the view point of biological 
and environmental sciences, the quantification of total 
amount is no longer sufficient for many of the metals, espe-
cially arsenic, selenium, mercury, etc. In this respect, it is 
highly desirable to develop selective sample pretreatment 
procedures for the isolation of some specific metal species. 
The functionalization of adsorbents or solvents with selec-
tive functional groups provides a promising approach    
for maintaining selectivity of solid phase extraction and 
solvent extraction. On the other hand, the improvement on 
the vapor generation efficiency of copper, iron and some 
other elements is the major issue in order to enhance the 
sensitivity for these metal species. The development of 
green adsorbents or solvents with desired selectivity is also 
a key issue for future studies in the field of sample pre-
treatment.  
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