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The use of a general EM (expectation-maximization) algorithm in multi-spectral image classification is known to cause two prob-
lems: singularity of the variance–covariance matrix and sensitivity of randomly selected initial values. The former causes compu-
tation failure; the latter produces unstable classification results. This paper proposes a modified approach to resolve these defects. 
First, a modification is proposed to determine reliable parameters for the EM algorithm based on a k-means algorithm with initial 
centers obtained from the density function of the first principal component, which avoids the selection of initial centers at random. 
A second modification uses the principal component transformation of the image to obtain a set of uncorrelated data. The number 
of principal components as the input of the EM algorithm is determined by the principal contribution rate. In this way, the modi-
fication can not only remove singularity but also weaken noise. Experimental results obtained from two sets of remote sensing 
images acquired by two different sensors confirm the validity of the proposed approach. 

Gaussian mixture model, EM algorithm, Kernel density estimation, principal component transformation 

 

Citation:  Yang H L, Peng J H, Xia B R, et al. An improved EM algorithm for remote sensing classification. Chin Sci Bull, 2013, 58: 10601071, doi: 10.1007/ 
s11434-012-5485-4 

 

 
 
The EM algorithm, first proposed by Dempster et al. [1], is 
an approach to the iterative computation of maximum like-
lihood (ML) estimates or maximum a posterior (MAP) es-
timates and has been broadly used for tasks in remote sens-
ing image analysis, such as remote sensing classification 
[2–8], segmentation [9], image fusion [10], change detec-
tion [11–13] and quantitative remote sensing [14].  

The Gaussian mixture model is a weighted sum of 
Gaussian probability density functions (referred to as 
Gaussian components) of the mixture model describing a 
class, and it has been widely used in pattern recognition and 
classification [15–18]. In remote sensing classification, a 
unimodal assumption for class conditional distribution is 
unsuitable for remote sensing images, particularly for high 
spatial resolution images. It is appropriate to describe the 
class conditional distribution as a Gaussian mixture model. 
Without a model or a classification label, it would be diffi-
cult to determine the parameters of a Gaussian mixture 

model in classification applications. Newton-Raphson and 
scoring algorithms in parameter solutions are very complex 
and difficult [19,20]. The EM algorithm-constructed maxi-
mum likelihood has good properties because of effective 
model labels [1,21]. However, the EM algorithm is very 
sensitive to initializations and easily gets trapped in local 
minima. In practice, the algorithm runs many times with 
different initial parameters, and various local search heuris-
tics are used to find better parameters near convergences. 
Moreover, significant difficulty is encountered in estimating 
parameters of the Gaussian mixture models with creasing 
dimensions. Multi-spectral and hyper-spectral images with 
high correlations can lead to a singular variance-covariance 
matrix that terminates in an iteration of the EM algorithm 
without a reliable result [8,22,23]. Furthermore, in the case 
of a large component overlap, the EM algorithm suffers 
from slow convergence [24]. Finally, the EM algorithm fails 
when the covariance matrix corresponding to one or more 
components becomes ill-conditioned (singular or nearly 
singular).    
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Recently, many researchers have proposed several modi-
fied techniques for the EM algorithm in remote sensing ap-
plications. Fwu and Djuric [25] described an initialization 
procedure based on a tree-structured scheme that provided 
excellent initial estimation. Fraley and Raftery [26] pro-
posed the use of the Bayesian information criterion (BIC) as 
the criterion statistic in EM clustering. The k-means algo-
rithm [27] can also provide initial values for the EM algo-
rithm. The class number is not available, and the random 
initial values are unknown, leading to larger differences in 
classification results. Figueiredo and Jain [3] proposed a 
finite mixture model based on an unsupervised algorithm by 
combining estimation and selection into a single algorithm. 
Luo et al. [4] stated that the improved EM algorithm manu-
ally determined the initial values for the EM algorithm. An 
adaptive EM algorithm, taken from Chakravarty et al. [5], 
can adapt to capture local statistics and fit in the non-   
stationary case. Bazi et al. [28] proposed an image threshold 
method in EM algorithms that can use a robust initialization 
based on genetic algorithms. Tyagi et al. [29] presented a 
multistage clustering technique for unsupervised classifica-
tion based on based on the graph-cut initialization of the 
EM algorithm. Wen et al. [30] described a novel method to 
improve the global optimality and classification perfor-
mance consistency of synthetic aperture radar (SAR) im-
agery by integrating a genetic algorithm (GA) with an EM 
algorithm. Ari and Aksoy [31] presented a novel clustering 
algorithm based on particle swarm optimization (PSO) for 
the maximum likelihood estimation of Gaussian mixture 
models to prevent the effective use of population-based al-
gorithms in clustering problems. As shown by Korting and 
Dutra [7], a modified version of the standard EM clustering 
algorithm can prevent clustering when centers are too close 
and can improve EM initialization by providing results of 
the well-known k-means algorithm as seed points. However, 
as for the sensitivity of the k-means algorithm to initializa-
tions, the classification results are always unreliable. Alt-
hough these methods use different strategies to initialize 
EM algorithms to avoid being trapped in local minima, they 
are not suitable for multi-spectral and hyper-spectral images 
with high spectral correlations. Moreover, they do not ad-
dress the singular covariance matrix in iterations. 

In an effort to solve these problems with the EM algo-
rithm, a new approach that takes the logarithm of multi- 
spectral or hyper-spectral images to highlight or reinforce 
the differences between classes was developed. The princi-
pal component transformation is applied to the log-trans- 
formed data to obtain a set of uncorrelated data. Then, ker-
nel density estimation can be used to determine the proba-
bility density function of the first principal component. Ac-
cording to the peak of the probability density function, the 
class number and initial centers are determined for the 
k-means algorithm. The classification results are obtained 
using the k-means algorithm based on the first principal 
component. Initializations of the multi-dimensional EM 

algorithm can be efficiently determined using the classifica-
tion results. The EM algorithm is used to perform an itera-
tive procedure to determine the parameters of the Gaussian 
mixture model. Finally, the classification map is obtained 
by a Bayesian classifier. In addition, an ill-condition covar-
iance matrix, which affects the EM algorithm in iteration, 
can be detected and changed into a valid covariance matrix. 

1  The improved EM algorithm 

1.1  Gaussian mixture model and the EM algorithm 

Suppose that we have p-dimensional vector data x (xRp) 
from a mixture of g component Gaussian distributions. 
Then, the density function is defined as [19]: 
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The parameters { , } i i iV  in such a model are the 

means, i , and the covariance matrices, Vi. The entire set 

of parameters for the Gaussian mixture model is 

1 1( , , ; , , )      g g . 

By estimating the parameters of the Gaussian mixture 
model to achieve the purpose of classification, it is proven 
that this method is very effective. For an observational data 
set  1 2, , , , nx x x  the maximum likelihood estimation 

(MLE) of   can be determined by 
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Eq. (3) is an incomplete-data problem lacking observa-
tional information [32]. Due to a lack of knowledge about the 
data, it is very complicated to solve for xi directly (eq. (3)). 

The EM algorithm is a widely used approach to the itera-
tive computation of MLEs applied to a variety of incom-
plete data problems. The principles are as follows [33–35]:  

Let ( )i ijz z , 1, 2, , j g , be the label vector of the 

observational data set: 
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The observational data set and the label vector together 
provide a so-called complete data set, ( ; )y X z 1( , x  
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2 1 2, , ; , , , ) n nx x z z z , and the following likelihood func-

tion, 
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corresponds to the following log likelihood function, 
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The EM algorithm consists of two steps: the E step, or 
the expectation step, and the M step, or the maximization 
step. In the E step, let (0)  be the initial value for  , and 
then begin the first iteration, which will compute the condi-
tional expectation of the complete data, which is 
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Repeat the E step and the M step until the criterion 
( 1) ( )    k k  is met, where is an arbitrary, small pos-

itive threshold. 

1.2  Kernel density estimation 

In statistics, kernel density is a non-parametric method for 

estimating the probability density function of a random var-
iable. If 1, , nx x  ~f is an independent and identically dis-

tributed sample of a random variable, then the kernel densi-
ty approximation of its probability density function is [36]:  
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where K is a kernel and h is a smoothing parameter. Typi-
cally, K is taken to be a standard Gaussian function with a 
mean of zero and a variance of 1. Thus, the variance is con-
trolled indirectly through the parameter h. Many of the re-
sults discussed in the literature concern bandwidth determi-
nation for kernel estimation. The bandwidth, h, applied in 
this paper is close to the optimal value for a Gaussian den-
sity, which follows that of Bowman and Azzalin [36],  
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where n is the sample number and  is the sample standard 
deviation. 

1.3  Principal component transformation 

Multi-spectral data or hyper-spectral images in which the 
spectra are highly correlated will lead to a singular vari-
ance-covariance matrix and EM algorithm termination. 
Large amounts of data will reduce the efficiency of the 
classification algorithm. The application of the principal 
component transformation [37,38] to correlated remote 
sensor data will result in an uncorrelated data set and will 
effectively separate redundancy from the data. Accordingly, 
this procedure can guarantee the stability of the classifica-
tion algorithm and can improve the classification efficiency. 
The procedure is  

(1) For the data set 1 2, , （ ）nX x x x , compute the 

mean 1

1
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(2) Calculate the covariance matrix: cov( ) x  
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(3) Use singular value decomposition on the covariance 
matrix, cov( ) , Tx USU  where U is the orthogonal matrix 

and S is the diagonal matrix whose diagonal elements are 
eigenvalues. 

(4) Compute the principal component analysis: 
 T

i iZ U x . 

The input for the EM classification algorithm is the first 
k principal component, not the raw multi-spectral image, 
which can compress the raw data and eliminate the singu-
larity of the variance-covariance matrix. In addition, loga-
rithmizing the original image prior to the principal compo-
nent transformation can enhance the class differences, 
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which can improve classification accuracy.  

1.4  The improved EM classification algorithm 

The proposed method is structured in three phases intended 
to: (1) Initialize the parameters of the Gaussian mixture 
model for the EM algorithm using the k-means clustering 
algorithm based on the first principal component; (2) use 
the EM algorithm to perform the iterative procedure to de-
termine parameters of the Gaussian mixture model; and (3) 
classify each pixel in the image with a Bayesian classifier. 
In the following section, each phase is described in detail. A 
block scheme describing the proposed algorithm is shown in 
Figure 1. 

Phase 1: To provide reliable initial parameters character-
izing the Gaussian mixture model, a logarithm is applied to 
multi-spectral or hyper-spectral images. The principal 
component transformation described in section 1.3 is ap-
plied to the log-transformed data, and the kernel density 
estimation is employed for the principal component. The 
class number and initial centers are identified according to 
the peak of the probability density function. Finally, the 
k-means clustering algorithm is used to partition pixels of 
the image based on the principal component. The initial 
centers  and variance-covariance matrix V, as well as the 

set of weights  for the EM algorithm are determined on the 
basis of the number of samples contained in the corre-
sponding cluster. 

Phase 2: This module consists of the iterative procedure 
for probability estimation. The EM algorithm is employed 
over all of the image pixels. The EM algorithm allows the 
maximum likelihood (ML) estimator of the parameters to 
characterize a certain distribution in the presence of incom-
plete observations. 

First, the initial parameters for EM obtained from the 
k-means algorithm are applied to the EM approach. Thus, 
the number of iterations and the computational time are 
reduced. Then, in accordance with eqs. (8)–(11), the updat-
ed estimates for the unknown parameters are obtained. With 
each iteration, the set of estimated parameters provides an 
increased log-likelihood until a local maximum is reached. 
Convergence is reached when the relative increase in the 
log-likelihood is lower than a prefixed threshold , i.e.  

 ( 1) ( ) .    k k  (14) 

The EM algorithm tends to converge towards a singular 
solution, especially when the data are (nearly) insufficient 
or correlative. With every iteration, the singular of the co-
variance matrix V is tested and forced to be a valid matrix. 

 

 

Figure 1  Block scheme describing the proposed technique.
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If the input matrix is already valid, it is returned unchanged. 
When the covariance matrix is ill-conditioned, it is forced 
into a complex conjugate symmetric as follows: 

 
2

*
 

V V
V V , (15) 

where V 
* is the complex conjugate matrix. Possible imagi-

nary components are removed from the diagonal, which 
results in a Hermitian matrix. This matrix is tested for posi-
tive definiteness. If the matrix fails the test, and there is a 
negative element in the diagonal, then one percent of the 
maximum element in the diagonal is added to all of the di-
agonal elements. If the matrix fails the test and there is not a 
negative element in the diagonal, then all of the diagonal 
elements are increased by one percent. 

By growing the covariance matrix diagonal, the singular 
matrix can be avoided. 

Phase 3: The estimates obtained at convergence can be 
used to obtain the final classification map based on the 
Bayes classifier [39]. Once the final classification map is 
obtained, the classification accuracy can be evaluated based 
on the Kappa coefficient [40–42]. 

2  Results and analysis 

Several experimental trials were conducted to assess the 
performance of the proposed approach. For these trials, two 
data sets corresponding to a QuickBird image of Maricopa 
County, Arizona, USA, and an ASTER image of Beijing, 
China, were considered. 

There were two main objectives of our experimental 
analysis: (1) To test the robustness of the proposed ap-
proach for choosing class number and initial centers; and  
(2) to demonstrate that the accuracies obtained by the pro-
posed method are comparable to the k-means algorithm and 
the modified EM algorithm. In the following section, the 
promising results for each of the two study objectives are 
discussed in detail.   

2.1  Maricopa study area 

The first data set used in the experiment was acquired by 
the QuickBird satellite. The image (250 pixel ×250 pixel) 
covers Maricopa County, Arizona, USA, on March 17, 2004 
and includes a multi-spectral image in 4 bands with a spatial 
resolution of 2.4 m and a panchromatic image with a resolu-
tion of 0.6 m. The area mainly consists of a green belt, wa-
ter, roads, residential buildings and bare land, as shown in 

Figure 2.  
In this experiment, the panchromatic image was 

resampled to a spatial resolution of 2.4 m so that it could be 
combined with the multi-spectral image. The skewness of 
the raw data and the log-transformed data were calculated 
and are listed in Table 1. As observed in Table 1, the nor-
mality of the raw data was corrected by logarithmizing. 
Figure 3 describes the behavior of the k-means algorithm 
with different initial centers. The k-means algorithm is sen-
sitive to the initial centers. When addressing random initial 
centers close to the final solution, the k-means algorithm has 
high likelihood of finding the cluster centers. Otherwise, it 
will lead to incorrect clustering results. As a result, initial-
izing the EM algorithm using k-means solutions is unrelia-
ble. In this paper, the class number was fixed at 6, and the 
corresponding initial centers were set to ((−0.77, −0.27); 
(0.08, 1.09); (0.14, 0.81); (1.12, −0.24); (2.16, −0.55);  
(2.52, −0.6)) based on the density function of the first two 
principal components (Figure 4). No prior knowledge was 
assumed to be available for the initialization of the proposed 
technique, so the performance of the proposed method was 
assessed under rather critical conditions. The result obtained 
by the EM algorithm is shown in Figure 5. The obtained 
estimates of the density functions for the classes accurately 
describe the behavior of the histogram of the first principal 
component. Therefore, choosing k=6 is reasonable based on 
Figure 6. The Bayesian information criterion (BIC) was also 
used to choose the number of components. k=6 is obtained 
from Figure 7, which shows the BIC plot for the first   

 

 

Figure 2  Pseudo color composite of bands 4, 3, and 2. 

Table 1  Skewness of raw data and logarithmizd data 

 Panchromatic image Band 1 Band 2 Band 3 Band 4 

Skewness of raw data −0.97 1.97 1.54 0.88 −1.83 

Skewness of logarithmizd data 0.59 0.67 0.32 −0.08 −0.43 
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Figure 3  k-means results using different centers. 

 

Figure 4  Density function of the first two principal components.  

 

Figure 5  Comparison of the histogram to the probability distribution of 
the first principal component. The probability distribution was obtained by 
the technique proposed in this manuscript. The histogram was normalized 
to permit a direct comparison. 

 

 

 

Figure 6  Histogram of the probability distribution of the first principal component. The probability distribution as a function of the class number k = 1, 
 10. The histogram was normalized to permit a direct comparison. The x-axis is the principal component, and the y-axis is the probability density function. 

principal component and that it is consistent with the pro-
posed technique.  

The classification map (six classes: road, water, building, 
bare land 1, bare land 2 and green belt) provided by the 
proposed technique was compared with the classification 
map obtained by applying the k-means and modified EM 

algorithms. The first and second principal components, 
which include 97% of the raw data (shown in Figure 4) as 
input data, were used in the trial. The same initial values 
were set for the k-means algorithm and the proposed algo-
rithm. The classification results from the k-means algorithm 
and the proposed algorithm used the same initial values and  
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Figure 7  A plot of BIC scores as a function of the class number for the 
first principal component. 

are shown in Figure 8(a) and (b). The best classification 
result is shown in Figure 8(c); this result was obtained from 
60 tests of the modified EM algorithm. The proposed and 
modified EM algorithms yield better results for road and 
bare land 1 (cement pavement) by observing these figures. 
The results of the proposed and the modified algorithm 
were similar. Five hundred ground truth points were ran-
domly sampled on the reference image (Figure 2) without 
any consideration of informational class distribution to 
avoid statistical bias. These points were classified by visual 

interpretation. The overall accuracy and Kappa coefficient 
were calculated and are listed in Tables 2–4. As observed in 
Tables 2–4, the proposed algorithm and the modified EM 
algorithm both produced a higher classification accuracy 
than the k-means algorithm. The result of the proposed al-
gorithm and the modified EM algorithm were basically 
consistent. In this experiment, the classification map ob-
tained by using the raw data is shown in Figure 8(d). By 
comparing Figure 8(b) and (c), road and water cannot be 
classified due to the similarity between the spectra. Before a 
principal component transformation was applied, a loga-
rithmic transformation was used on the raw data to enhance 
the low-intensity pixel values and to compress the high- 
intensity values into a relatively small pixel range, which 
improved the normality (Table 1) and made the transformed 
data satisfy the maximum likelihood classification based on 
a Gaussian distribution. As a result, we were able to suc-
cessfully classify road and water using our methodology.  

The density function of the third and fourth principal 
components were unimodal noises. Thus, the density func-
tion of these components can result in classification errors. 

 

 

Figure 8  (a) The k-means result; (b) the proposed algorithm result; (c) the modified EM result; (d) the proposed algorithm result.  
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Table 2  Classification accuracy of the proposed algorithma) 

 Water Road Building Bare land 1 Bare land 2 Green belt Sum 

Water 82 0 0 0 0 0 82 

Road 0 42 0 2 4 1 49 

Building 0 0 68 2 3 1 74 

Bare land 1 0 3 5 85 12 1 106 

Bare land 2 0 3 4 14 73 3 97 

Green belt  0 2 3 7 11 69 92 

Sum 82 50 80 110 103 75 500 

a) Overall classification accuracy: 83.8%; Kappa coefficient: 80.37%. 

Table 3  Classification accuracy of the modified EM algorithma) 

 Water Road Building Bare land 1 Bare land 2 Green belt Sum 

Water 82 0 0 0 0 0 82 

Road 0 41 1 4 2 1 49 

Building 0 2 62 4 5 1 74 

Bare land 1 0 2 7 86 10 1 106 

Bare land 2 0 7 4 15 69 2 97 

Green belt 0 0 7 6 13 66 92 

Sum 82 52 81 115 99 71 500 

a) Overall classification accuracy: 81.2%; Kappa coefficient: 77.23%. 

Table 4  Classification accuracy of the k-means algorithma) 

 Water Road Building Bare land 1 Bare land 2 Green belt Sum 

Water 82 0 0 0 0 0 82 

Road 0 40 2 4 2 1 49 

Building 0 2 60 6 5 1 74 

Bare land 1 0 4 8 78 15 1 106 

Bare land 2 0 8 7 20 59 3 97 

Green belt 0 0 7 8 17 60 92 

Sum 82 54 84 116 98 66 500 

a) Overall classification accuracy: 75.8%; Kappa coefficient: 70.71%. 
 

 
However, the first and second principal component as input 
data can remove noise and increase the reparability. 

2.2  Beijing study area 

The second data set used in the experiment was collected by 
ASTER (Advanced Spaceborne Thermal Emission and Re-
flection Radiometer Instrument Aboard Terra) on April 9, 
2004 with 15 bands from three telescopes. Of the 15 bands, 
4 were in the visible and near infrared (VNIR) spectrum 
with a 15 m spatial resolution, 6 were in the short wave in-
frared (SWIR) spectrum with a 30 m spatial resolution, and 
5 bands were in the thermal infrared (TIR) spectrum with a 
90 m spatial resolution. Moreover, ASTER is a Level-1B 
product from the Land Processes DAAC company, which 
implies that the radiometric calibration and geometric cor-
rection coefficients were applied. In this experiment, only 
the VNIR and SWIR image bands were used, as the TIR 
data have a much lower spatial resolution and cannot pro-
vide useful information for classification. The SWIR images 

were resampled to a spatial resolution of 15 m to match the 
VNIR image special resolution. 

In this experiment, the first three principal components 
included 98% of the raw data (Figure 9). The peak of the 
first principal component was not significant, as shown by 
Figure 9(a). The class number (5) and initial centers (−0.8, 
−0.5, 0, 0.5, 1.5) were estimated based on the density func-
tion of the first principal component, as shown in Figure 
9(a). Figures 10–12 further illustrate that the presented ap-
proach is reasonable compared to the class number and ini-
tial centers. Compared to Figure 5, the consistency of the 
histogram and the probability distribution of the first prin-
cipal component are not very distinct.  

As in the previous example, a comparison was made with 
the results (residence, farm1, farm 2, water, bare land) given 
by the k-means and modified algorithms. Figure 13(b)–(d) 
shows the classified images of the k-means algorithm, the 
modified EM method and the proposed method, respective-
ly. The EM algorithm was superior to the k-means method, 
especially in the area mixed with multiple classes, such as  
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Figure 9  Density function of the Log-Principal Component Transformation. Part (a) is the 1st Principal Component (The red dotted line corresponds to the 
center of each class). Parts (b) to (d), respectively, are the second to fourth principal components. The principal component is plotted along the x-axis, and 
the probability distribution is plotted along the y-axis. 

 

Figure 10  Histogram comparing the probability distribution of the first principal component. The probability distribution was obtained by the proposed 
technique. The histogram was normalized to permit a direct comparison. 

 

Figure 11  Histogram and probability distribution of the first principal component. The probability distribution as a function of the class number k = 1, , 
10. The histogram was normalized to permit a direct comparison. The principal component is plotted along the x-axis, and the probability density function is 
plotted along the y-axis. 

residential areas. The result of the modified EM algorithm 
was the best from 60 trials, similar to the proposed method. 
The modified EM method used the results of the k-means 
algorithm as initial centers. It is important to note that the 
k-means algorithm defines its initial parameters randomly, 

so it is difficult to obtain optimal results from the modified 
EM method. Six hundred ground truth points randomly 
sampled on the reference image (Figure 13(a)) were verified 
by investigation. It was found that the overall accuracy and 
Kappa coefficient (Tables 5–7) obtained from the proposed  



 Yang H L, et al.   Chin Sci Bull   March (2013) Vol.58 No.9 1069 

 

Figure 12  The plot of BIC scores as a function of the class number for 
the first principal component. 

approach are higher than those obtained from the other 
methods.  

Compared with the previous examples, the quality and 
quantity of the classification results are lower. Some of the 
bands of the ASTER image are highly correlated. However, 
the spatial resolution of ASTER image is low. The first 
principal component from 9 bands of the ASTER image 
cannot fully reflect the characteristics of the classes. The 
resulting initializations are not very accurate, which affects 

the final classification results. In conclusion, the proposed 
method is suitable for data sets with significant class fea-
tures. 

The modified EM algorithm uses the k-means results as 
an input. As is already known, the k-means algorithm is 
sensitive to the initial centers. Selecting the initial centers 
randomly can produce an unstable classification. Therefore, 
the best result must be chosen from several trials, which is a 
time-consuming process. Moreover, the modified EM algo-
rithm cannot determine the class number. The proposed 
method not only gives reasonable class number and initial 
centers but also addresses the singularity problem by ap-
plying the principal component transformation. Therefore, 
we conclude that the stability of the proposed method is 
superior to that of the modified EM algorithm. 

3  Conclusion 

In this paper, we proposed a novel approach to improve the 
EM clustering algorithm. The presented approach is based  

 

 

 

Figure 13  (a) Pseudo color composite of band 2, 3N, and 1; (b) the k-means result; (c) the modified EM result; (d) the proposed algorithm result. 
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Table 5  Classification accuracy of the proposed algorithma) 

 Water Residence Bare land Farm 1 Farm 2 Sum 

Water 43 0 0 0 0 43 

Residence 0 74 14 8 21 117 

Bare land  1 11 104 22 15 153 

Farm 1 0 13 21 92 11 137 

Farm 2 2 13 17 15 103 150 

Sum 46 111 156 137 150 600 

a) Overall classification accuracy: 69.33%; Kappa coefficient: 60.56%. 

Table 6  Classification accuracy of the modified EM algorithma) 

 Water Residence Bare land Farm 1 Farm 2 Sum 

Water 43 0 0 0 0 43 

Residence 0 74 13 9 21 117 

Bare land 1 11 101 24 16 153 

Farm 1 0 9 24 88 16 137 

Farm 2 2 14 19 18 97 150 

Sum 46 108 157 139 150 600 

a) Overall classification accuracy: 67.17%; Kappa coefficient: 57.76%. 

Table 7  Classification accuracy of the k-means algorithma) 

 Water Residence Bare land Farm 1 Farm 2 Sum 

Water 43 0 0 0 0 43 

Residence 0 74 11 7 25 117 

Bare land  1 11 99 24 18 153 

Farm 1 0 9 27 87 14 137 

Farm 2 2 15 23 19 91 150 

Sum 46 109 160 137 148 600 

a) Overall classification accuracy: 65.67%; Kappa coefficient: 55.83%. 

 
 

on five theoretically well-founded methods for data and 
image analysis: the logarithmic transformation, the principal 
component transformation, the k-means algorithm, the EM 
algorithm and the Bayes classifier. A logarithmic transfor-
mation is used to obtain a set of symmetry data. Applying 
the principal component transformation to such data can 
result in a set of uncorrelated data. The initial parameters of 
the EM algorithm are determined by the k-means algorithm, 
whose centers are obtained from the density function of the 
first principal component. Such parameters are iteratively 
improved by applying the EM algorithm to obtain a more 
accurate set of parameters of the Gaussian mixture model. 
Finally, the resulting parameters are applied to a Bayes 
classifier to generate a classification map.  

The proposed approach presents some important ad-
vantages over the general EM algorithm used in remote 
sensing applications: (1) The initial centers of the k-means 
algorithm are determined by analyzing the density function 
of the first principal component. In this way, the proposed 
approach avoids selecting random initial values. (2) The 
proposed approach not only solves the singularity but also 

reduces the noise by using multiple principal components 
based on the criterion of the principal component. (3) In 
addition, log-transforming the multi-dimensional data en-
hances the type.  

The experimental results reported in this paper highlight 
the effectiveness of the proposed approach. In particular, in 
all of the experiments that were conducted, the presented 
technique provided more accurate results than the k-means 
algorithm and the modified EM method. In addition, the 
experiments highlight the stability of the presented ap-
proach versus of the class number and initial centers. One of 
the main results drawn from the experiments is that the 
proposed method is suitable for data sets with significant 
category features. 

In terms of computation time, the proposed method using 
multiple principal components is faster than the EM algo-
rithm using a raw image because the EM algorithm takes a 
long time to process a large number of dimensions.  

Finally, it is important to note that, although the proposed 
method was used for a remote sensing classification, it also 
exhibits properties that can be generalized to other applica-
tions. Hence, it can be used in any classification application 
requiring a technique based on the EM algorithm. 
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