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A new composite photocatalyst AgBr/BiOBr was prepared by loading AgBr on a BiOBr substrate via deposition-precipitation and 
characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and UV-vis 
diffuse reflectance spectroscopy. The as-prepared AgBr/BiOBr comprised face-centered cubic AgBr and tetragonal BiOBr parti-
cles. The average crystalline sizes of AgBr in the AgBr/BiOBr composites were less than 28.5 nm. The absorption edges of AgBr/ 
BiOBr in visible-light region had a red shift with increasing AgBr content. Photocatalytic degradation of methyl orange results 
show that the AgBr/BiOBr composites could degrade methyl orange efficiently under visible-light irradiation (>420 nm). The 
optimal molar percentage of AgBr was 50 mol% with corresponding maximum kapp of 0.00619 min1. Active ·O2

 played a major 
role for methyl orange degradation while h+ and ·OH had little effect on the photocatalytic process. The enhancement of photo-
catalytic activity of AgBr/BiOBr is mainly ascribed to the heterojunction effect between AgBr and BiOBr. 
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Semiconductor photocatalysis has been widely investigated 
for its potential application in environmental protection and 
solar energy transformation. At present, TiO2 is expected to 
be one of the most valuable photocatalysts due to its oxida-
tive, chemically stable, economical and non-toxic charac-
teristics [1–4]. However, the restricted visible-light absorp-
tion limits its development, which drives us to search for 
visible-light-induced photocatalysts via two ways, including 
modification of TiO2 [5–10] and exploitation of new non- 
titania-based visible-light photocatalysts [11–14]. 

BiOX (X=Cl, Br, I) as a significant layer-structured semi-     
conductor has attracted much attention for its visible-light 
response. Various synthesis methods leading to BiOX have 
been reported, such as hydrothermal [15–18], transformation 
from NaBiO3 [19], hydrolysis [20], homogenous deposition 
[21] and reverse microemulsions [22], which displayed dif-
ferent photoactivities of BiOX. Homogenous deposition is a 

simple way for the preparation of BiOX that has a plate 
structure, with high surface area, which facilities the ad-
sorption of dyes and photocatalytic processes. Nowadays, in 
order to further improve the photoactivity of BiOX, BiOX- 
based composites have been constructed and adopted, such 
as BiOI/TiO2 [23], AgI/BiOI [24], BiOI/Bi2O3 [25], 
NaBiO3/BiOCl [26], Fe3O4/BiOCl [27], BiOCl/Bi2O3 [28] 
and WO3/BiOCl [29]. The synthesis of BiOX-based com-
posites is very important for the development of highly effi-
cient visible light photocatalysts. 

AgBr is an important semiconductor widely used as a 
photosensitive material in photography and as a photocata-
lyst for the degradation of pollutants or destruction of bac-
teria [24,30–44]. Compared with BiOBr [18], AgBr [45] has 
a narrower band gap and higher visible-light absorption. 
Moreover, the two materials have matching energy band 
structures, according to the data reported in the literature 
[18,44], and which can effectively separate photogenerated 
electrons and holes to achieve enhanced photoactivity  
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relative to that of either AgBr or BiOBr. However, little 
work has been reported for AgBr/BiOBr [46] heterojunction 
composites. 

Therefore, in this paper, we attempt to prepare a AgBr/ 
BiOBr composite catalyst using a simple deposition-precipi-     
tation approach, investigate the photoactivity for the degra-
dation of methyl orange (MO) under visible-light irradiation 
(>420 nm) and ascertain the optimal content of AgBr in 
AgBr/BiOBr. In addition, the probable reaction mechanism 
for the degradation of MO with AgBr/BiOBr was studied by 
exploring the roles of active species and discussing the 
electrons and holes separation approach in detail. 

1  Materials and methods 

1.1  Chemicals and materials 

All reagents were of analytical purity and were used without 
further purification. Silver nitrate (AgNO3), sodium bro-
mide (NaBr), bismuth nitrate (Bi(NO3) 3·5H2O), ammonia 
solution, methyl orange (MO), terephthalic acid (TA), ben-
zoquinone (BQ), isopropanol (IPA), ammonium oxalate (AO), 
sodium hydroxide (NaOH) and glacial acetic acid (HAc) 
were obtained from Sinopharm Chemical Reagent Co., Ltd, 
China. Deionized water was used throughout this study. 

1.2  Preparation of AgBr/BiOBr photocatalyst 

BiOBr was prepared in advance. 1.590 g of Bi(NO3)3·5H2O 
was dissolved in 200 mL deionized water and the pH value 
adjusted to 1.96 with HAc, then 0.339 g of NaBr dissolved 
in 20 mL deionized water was added to the Bi(NO3)3 solu-
tion dropwise with stirring. After stirring for 30 min, the pH 
value of the reaction solution was adjusted to 3.0 using 
ammonia water. The resulting solution was then kept at 
85°C with stirring for 12 h. Finally, the BiOBr precipitates 
were collected, washed and dried at 80°C in air. 

AgBr/BiOBr was synthesized by deposition-precipitation. 
The 1.000 g of BiOBr was dispersed in 100 mL deionized 
water and sonicated for 20 min. 0.056 g of AgNO3 in 20 mL 
deionized water was added to the BiOBr suspension with 
magnetic stirring applied for 30 min. Subsequently 0.034 g 
of NaBr in 50 mL of deionized water was added dropwise 
to the mixed solution. The resulting suspension was vigo-     
rously stirred for 1 h. Finally the product was filtered, washed 
with deionized water several times and dried at 65°C for  
24 h. AgBr/BiOBr with 10 mol% of AgBr was obtained. 
Samples with different AgBr contents (from 10 mol% to  
60 mol%) were also prepared to investigate the effects of 
composition on photocatalytic performance. 

1.3  Characterization of the AgBr/BiOBr photocatalyst 

The powder X-ray diffraction (XRD) analysis of the as- 
prepared catalyst was carried out with a Bruker D8 Advance 

X-diffractometer using Cu K radiation (=1.5406 Å), ope-      
rated at 40 kV and 30 mA. Scanning electron microscopy 
(SEM) measurements were recorded on a Sirion200 instru-
ment at a scanning voltage of 5.00 kV. High-resolution 
transmission electron microscopy (HRTEM) was carried out 
on a JEOL JEOL-2010 with 200 kV accelerating voltage. 
The UV-vis diffuse reflectance spectra (DRS) were ob-
tained by a Pgeneral TU-1901 UV-VIS spectrophotometer 
equipped with an integrating sphere assembly. The analysis 
range was from 300 to 700 nm and BaSO4 was used as a 
reflectance standard. 

1.4  Photocatalytic activity tests 

The photocatalytic activities of AgBr/BiOBr were evaluated 
by the photodegradation of MO under irradiation of visible- 
light (>420 nm) in a photoreaction apparatus. A 500 W Xe 
lamp (Institute of Electric Light Source, Beijing, China) was 
used as the light source with a 420 nm cutoff filter (Instru-
ment Company of Nantong, China) to provide visible-light 
irradiation. In each experiment, 0.10 g of photocatalyst was 
added to 50 mL of MO solution (10 mg/L). Prior to illumi-
nation, the suspension was magnetically stirred in the dark 
for 20 min to reach adsorption-desorption equilibrium of 
MO on the catalyst surface. At irradiation time intervals of 
30 min, 5 mL of the suspension was collected, then centri-
fuged (4000 r/min, 30 min) to remove the photocatalyst 
particles. The catalyst-free MO solution was analyzed with 
a 722s spectrophotometer (Shanghai Precision and Scien-
tific Instrument Company, China), with the concentration of 
MO being determined from its maximum absorption at a 
wavelength of 464 nm using deionized water as a reference 
sample. 

Experiments to examine the reactions of active species 
(h+, ·OH and ·O2

) were similar to those used for photo-
degradation. Different scavengers were introduced into the 
MO solution prior to the addition of the catalyst. In addition, 
the terephthalic acid (TA) photoluminescence probe 
technique was also used in the detection of ·OH radicals. 
In the detection experiment, a basic TA solution was added 
to the reactor instead of MO and the concentration of TA 
was set at 5×104 mol/L in 2×103 mol/L NaOH solution. 
The sample collected every 60 min was measured on a 
JASCO FP-6500 type fluorescence spectrophotometer after 
centrifugation, using an excitation wavelength of 315 nm. 

2  Results and discussion 

2.1  Characterization of AgBr/BiOBr 

(i) XRD analysis.  Figure 1 shows the XRD patterns of the 
as-prepared samples. It is observed that all the peaks of the 
pure AgBr were indexed to (111), (200), (220), (222), (400) 
and (420) peaks, coinciding with the standard face-centered 
cubic AgBr phase (JCPDS NO. 06-0438) while (001), (101),  
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Figure 1  XRD patterns of BiOBr, AgBr/BiOBr and AgBr. 

(102), (110), (112), (200), (212) and (310) peaks of BiOBr 
belonged to tetragonal BiOBr (JCPDS NO. 78-0348), re-
spectively. In addition, the AgBr/BiOBr composite exhibit-
ed coexisting phases of AgBr and BiOBr. With increasing 
amounts of AgBr in AgBr/BiOBr, the peak intensities of 
AgBr increased gradually while those of BiOBr decreased 
slightly. The average crystalline sizes of AgBr in the AgBr/ 
BiOBr composites were calculated to be 20.0, 27.0 and 28.5 
nm for 10 mol%, 30 mol% and 50 mol% AgBr/BiOBr, re-
spectively, according to the Scherrer formula [47]. Further-
more, no other impurity was detected, which suggests that the 
AgBr/BiOBr sample is composed only of AgBr and BiOBr. 

(ii) SEM and TEM analysis.  The SEM images of AgBr/ 
BiOBr (Figure 2) show that the BiOBr substrate comprised 
a flower-like 3-D aggregate shape with particle sizes of 5– 
10 m, as reported elsewhere [17]. The enlarged micro-
structure displays the lamellar structure of BiOBr. Com-
pared with single BiOBr, the deposited AgBr with irregular 
shapes on the surface of BiOBr filled in the gaps of the  
petals, which may facilitate the close contact of AgBr with 
BiOBr and the efficient transfer of the photoinduced carriers 
at the AgBr-BiOBr interface. 

Figure 3(a) shows that 50% AgBr/BiOBr had an irregular 
lamellar microstructure. Figure 3(b) displays the HRTEM 
image of 50% AgBr/BiOBr. The crystal lattice of BiOBr 
and AgBr can be clearly discerned in the HRTEM image of 
50% AgBr/BiOBr. It can be seen that three sets of lattice 
images are found with d spacings of 0.161 and 0.228 nm, 
corresponding to the (212) and (122) planes, respectively, of 
tetragonal BiOBr, while the d spacing of 0.145 nm can be 
indexed to the (400) plane of AgBr. This result confirms 
that the AgBr/BiOBr heterojunction was formed in the 
composite. 

(iii) DRS analysis.  Figure 4 shows the DRS of the AgBr, 
BiOBr, and AgBr/BiOBr samples. As can be seen, BiOBr 
had an absorption edge at about 460 nm, while AgBr had 
broader absorption in the visible region with an absorption 
edge of around 505 nm. The absorption edges of AgBr/ 
BiOBr were located in the range of 460–505 nm and had a  

 

Figure 2  SEM images of BiOBr (a) and 50% AgBr/BiOBr (b). 

 

Figure 3  TEM image (a) and HRTEM image (b) of 50% AgBr/BiOBr. 

monotonic red shift with increasing AgBr content in the 
AgBr/BiOBr, which suggests that considerable visible light 
can be absorbed by AgBr/BiOBr. 

Moreover, the band gap energy of a semiconductor can 
be calculated by eq. (1) [48,49]:  

   /2

g ,
n

hv Ehv A   (1) 
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Figure 4  DRS of AgBr, AgBr/BiOBr and BiOBr. 

where α, h, ν, Eg and A are the absorption coefficient, the 
Planck constant, light frequency, band gap energy, and a 
constant, respectively. Among them, n is determined by the 
type of optical transition of a semiconductor. The value of n 
for BiOBr is taken as 4, and also for AgBr, due to their in-
direct transition characteristics. Therefore, the Eg values of 
BiOBr and AgBr can be determined from a plot of (αhν)1/2 
versus energy (hv), as shown in Figure 5, and were found to 
be 2.60 and 2.39 eV, respectively. 

In addition, the valence band (VB) and conduction band 
(CB) edge position of a semiconductor can be estimated 
according to the following formulae [21]: 

 e
VB g0.5 ,E X E E    (2) 

 CB VB g ,E E E   (3) 

where EVB is the VB edge potential, X is the electronegativ-
ity of the semiconductor, which is the geometric mean of 
the electronegativity of the constituent atoms, Ee is the en-
ergy of free electrons on the hydrogen scale (about 4.5 eV). 
Therefore, the EVB of BiOBr and AgBr were calculated as 
2.98 and 2.50 eV, respectively. Thus, the ECB of BiOBr and 
AgBr were estimated to be 0.38 and 0.11 eV, separately. 
Therefore, BiOBr and AgBr had matching band potentials,  

 

Figure 5  Plot of (hv)1/2 versus energy (hv) for the band gap energies of 
AgBr and BiOBr. 

which facilitated the separation of photogenerated electrons 
and holes. 

2.2  Photocatalytic activity of AgBr/BiOBr  
photocatalyst 

The photocatalytic activities of as-prepared samples were 
evaluated by the degradation of MO under visible-light ir-
radiation. Figure 6 reveals that pure BiOBr had weak pho-
tocatalytic activity after 180 min irradiation whereas AgBr/ 
BiOBr presented a higher photocatalytic activity for the 
degradation of MO under visible-light irradiation. The deg-
radation efficiency of MO increased quickly until the AgBr 
content rose to 50% and then decreased, which suggests that 
optimal AgBr content was 50% in AgBr/BiOBr. The pho-
tocatalytic activity of AgBr/BiOBr changed with AgBr con-
tent can mainly attribute to the role of heterojunction formed 
between AgBr and BiOBr. When the AgBr content is low, 
the amount of AgBr/BiOBr heterojunction is not sufficient 
to separate the photogenerated electrons and holes, which 
leads to a slow increase in photocatalytic activity, while in 
the case of excessive AgBr content, the dispersion of AgBr 
became worse, and the interfaces and heterojunction struc-
tures between AgBr and BiOBr particles decreased. As a 
result, the interfacial charge transfer was suppressed and the 
photocatalytic activity was lowered. In addition, the in-
crease of AgBr content effectively improved the utilization 
of visible light, which raised the photocatalytic activity of 
AgBr/BiOBr. On the base of the synergetic effect of hetero-     
junction and light absorption, 50% AgBr/BiOBr exhibits the 
best photocatalytic activity for MO degradation. 

Based on the Langmuir-Hinshelwood (L-H) kinetics model 
[48,50–52], the photocatalytic process of MO can be ex-
pressed as [50] 

   app0ln ,k tC C   (4) 

where kapp is the apparent pseudo-first-order rate constant 
(min1), C is the MO concentration in aqueous solution at 
time t (mg/L) and C0 is the initial MO concentration (mg/L). 
The maximum kapp of MO degradation was 0.00619 min1,  

 

Figure 6  Effect of AgBr content on the degradation efficiency of MO. 
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obtained over the 50% AgBr/BiOBr photocatalyst. 
In order to display the combined role of AgBr/BiOBr for 

the enhancement of photocatalytic activities, comparative 
photocatalytic experiments were also carried out using dif-
ferent photocatalysts with the same mass of active compo-
nent, such as BiOBr and AgBr. Figure 7 shows that the cor-
responding values of kapp for MO degradation were 0.00025, 
0.00372 and 0.00619 min–1 for BiOBr, AgBr and 50% 
AgBr/BiOBr, respectively. Furthermore, the photocatalytic 
activity of AgBr/BiOBr was obviously higher than that of 
the sum of AgBr and BiOBr, which further emphasizes the 
role of the heterojunction between AgBr and BiOBr.  

The repeated tests (Figure 8) were accomplished and 
showed that the photocatalytic activity of AgBr/BiOBr ob-
viously declined. The used catalyst became a little darker 
than the fresh catalyst, which indicates that metallic silver 
was formed in the used AgBr/BiOBr. This phenomenon has 
also been observed in previous studies [34,38,39]. The XRD 
pattern of used AgBr/BiOBr (inset of Figure 8) shows that 
the crystal structures of AgBr and BiOBr are well main-
tained and no silver peaks are found at 38.16° and 44.07°. 
However, the trace amount of silver formed has affected the 
photocatalytic activity of AgBr/BiOBr. Further experiments 
should be executed to improve the stability of AgBr/BiOBr. 
For example, the decrease in the grain size of AgBr may 
facilitate the transfer of electrons and holes to the surface of 
AgBr, which will reduce the reaction probability between 
electrons and interstitial silver ions. 

2.3  Possible photocatalytic mechanism 

In the photocatalytic oxidation (PCO) process, electron-hole 
pairs are directly produced by photocatalyst after illumination. 
Subsequently, a series of photoinduced main active species 
including h+, ·OH and ·O2

 are suspected to be involved in 
the photocatalytic reaction. At present, different ways have 
been developed to detect these active species. In general, 
terephthalic acid (TA) combined with photoluminescence 
(PL) technique can be used as a molecular probe to detect  
·OH radicals. The PL emission spectra excited at 315 nm  

 

Figure 7  Effect of the combined role of AgBr and BiOBr on the kapp of MO. 

 

Figure 8  Stability of AgBr/BiOBr for the degradation of MO. Inset: 
comparison of XRD patterns of fresh and used 50% AgBr/BiOBr. 

from TA solution were measured every 60 min of illumina-
tion and the results are shown in Figure 9. It can be seen 
that no PL signal at about 425 nm was observed with in-
creasing irradiation time, which demonstrates that no ·OH 
radicals were formed during the PCO process and confirms 
that ·OH radicals are not the dominant active species. 

In order to further evaluate the effect of the other active 
species, a series of quenchers were introduced to scavenge 
the relevant active species. As an ·OH scavenger, isopro-
panol (IPA) was added to the reaction system [39], ammo-
nium oxalate (AO) was introduced as the scavenger of h+ 
[53] and benzoquinone (BQ) was adopted to quench ·O2

 
[39]. The concentration of scavengers used in this study was 
0.1 mmol/L. Control experiment was carried out without 
quenchers under otherwise identical conditions. 

The results of MO degradation efficiencies found with 
different quenchers are shown in Figure 10. AO and IPA 
did not obviously affect the kapp of MO degradation through-
out the experiments, which demonstrates that h+, as well 
as ·OH, are not the active species involved in the PCO 
process. However, after the addition of BQ, the kapp decreased 

 

Figure 9  ·OH trapping PL spectral changes observed during irradiation 
of AgBr/BiOBr in TA solution (excitation at 315 nm). 
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markedly, which shows that ·O2
 is the dominating active 

species for AgBr/BiOBr system. The generation of ·O2
 may 

be via a photogenerated electron reacting directly with O2 
adsorbed on the surface of the catalyst AgBr/ BiOBr. 

Based on the band gap structure of as-prepared AgBr/ 
BiOBr and the effects of scavengers, a possible pathway for 
the enhancement of photocatalytic activity of AgBr/BiOBr 
and photocatalytic degradation of MO was proposed as fol-
lows (Figure 11): under visible-light irradiation (>420 nm), 
both AgBr and BiOBr can be simultaneously excited to form 
electron-hole pairs. Subsequently, photogenerated electrons 
transfer from the CB bottom of AgBr to that of BiOBr. At 
the same time, photogenerated holes move in the opposite 
direction from the VB top of BiOBr to that of AgBr. Through 
this process electron-hole pairs can be separated efficiently, 
which may improve the photocatalytic activity of AgBr/ 
BiOBr. After that, electrons accumulated on the side of BiOBr 
react with O2 adsorbed on the surface of catalyst to generate 
reactive ·O2

 that finally leads to the degradation of MO.  
It is noted that the calculated VB potential of AgBr  

(2.50 eV) is more positive than the standard reduction po-
tential of ·OH/OH (2.38 eV) [24], but this result suggests 
that ·OH radical is not the key factor for the photocatalytic 
degradation of MO. Since the VB potential of AgBr is just 
around the ·OH/OH standard reduction potential, conside-     
ring the calculation method error of 0.2 eV [54,55], it  

 

Figure 10  kapp values of AgBr/BiOBr with different quenchers. 

 

Figure 11  Separation mechanism of photogenerated electrons and holes 
over AgBr/BiOBr under visible-light irradiation. 

appears that the over-potential is too small to oxidize OH 
into ·OH radical kinetically. In addition, the energy band 
matching of AgBr and BiOBr is the premise for the en-
hancement of AgBr/BiOBr, while the effect of the structure 
of the photocatalyst, such as crystalline structure, electron 
structure and surface structure, on the photocatalytic activity 
of AgBr/BiOBr needs to be investigated further. 

3  Conclusions 

AgBr/BiOBr was synthesized using a facile deposition- 
precipitation method. The as-prepared AgBr/BiOBr exhi-     
bited good performance for the degradation of MO and dis-
played much higher photocatalytic activity than either AgBr 
or BiOBr under visible-light irradiation (>420 nm). The 
maximum kapp of 0.00619 min1 for the degradation of MO 
was obtained when the AgBr content was 50%. Photocata-
lytic mechanism investigations demonstrate that the degrada-
tion of MO over the as-prepared AgBr/BiOBr under visible- 
light irradiation proceeds mainly via an ·O2

 oxidation pro-
cess. It may be a promising and efficient photocatalyst for 
environmental purification applications. The heterojunction 
formed between AgBr and BiOBr effectively separated the 
photogenerated electrons and holes, and further improved 
the photocatalytic activity of AgBr/BiOBr. 

This work was supported by the National Natural Science Foundation of 
China (20973071, 51172086), Natural Science Foundation of Educational 
Committee of Anhui Province (2012Z356) and Youth Foundation of Huai-
bei Normal University (2011xqxm31). 

1 Inumaru K, Murashima M, Kasahara T, et al. Enhanced photocata-
lytic decomposition of 4-nonylphenol by surface-organografted TiO2: 
A combination of molecular selective adsorption and photocatalysis. 
Appl Catal B: Environ, 2004, 52: 275–280 

2 Yamazakia S, Moria T, Katoua T, et al. Photocatalytic degradation of 
4-tert-octylphenol in water and the effect of peroxydisulfate as addi-
tives. J Photochem Photobiol A: Chem, 2008, 199: 330–335 

3 Tsai W T, Lee M K, Su T Y, et al. Photodegradation of bisphenol-A in 
a batch TiO2 suspension reactor. J Hazard Mater, 2009, 168: 269–275 

4 Wang R, Ren D, Xia S, et al. Photocatalytic degradation of bisphenol 
A (BPA) using immobilized TiO2 and UV illumination in a horizon-
tal circulating bed photocatalytic reactor (HCBPR). J Hazard Mater, 
2009, 169: 926–932 

5 Zhao W, Ma W H, Chen C C, et al. Efficient degradation of toxic or-
ganic pollutants with Ni2O3/TiO2xBx under visible irradiation. J Am 
Chem Soc, 2004, 126: 4782–4783 

6 Yu J C, Ho W K, Yu J G, et al. Efficient visible-light-induced photo-
catalytic disinfection on sulfur-doped nanocrystalline titania. Environ 
Sci Technol, 2005, 39: 1175–1179 

7 Ho W, Yu J C, Lee S C. Low-temperature hydrothermal synthesis of 
S-doped TiO2 with visible light photocatalytic activity. J Solid State 
Chem, 2006, 179: 1171–1176 

8 Sun Q, Xu Y M. Sensitization of TiO2 with aluminum phthalocyanine: 
Factors influencing the efficiency for chlorophenol degradation in 
water under visible light. J Phys Chem C, 2009, 113: 12387–12394 

9 Arabatzis I M, Stergiopoulos T, Bernard M C, et al. Silver modified 
titanium dioxide thin films for efficient photodegradation of methyl 
orange. Appl Catal B: Environ, 2003, 42: 187–201 

10 Ishibai Y, Sato J, Nishikawa T, et al. Synthesis of visible-light active 



 Lin H L, et al.   Chin Sci Bull   August (2012) Vol.57 No.22 2907 

TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for 
high photocatalytic activity. Appl Catal B: Environ, 2008, 79: 117–121 

11 Li G S, Zhang D Q, Yu J C. Ordered mesoporous BiVO4 through 
anocasting: A superior visible light-driven photocatalyst. Chem Ma-
ter, 2008, 20: 3983–3992 

12 Tang J W, Zou Z G, Ye J H. Effects of substituting Sr2+ and Ba2+ for 
Ca2+ on the structural properties and photocatalytic behaviors of 
CaIn2O4. Chem Mater, 2004, 16: 1644–1649 

13 Yamasita D, Takata T, Hara M, et al. Recent progress of visible- 
light-driven heterogeneous photocatalysts for overall water splitting. 
Solid State Ionics, 2004, 172: 591–595 

14 Shi R, Lin J, Wang Y J, et al. Visible-light photocatalytic degradation 
of BiTaO4 photocatalyst and mechanism of photocorrosion suppres-
sion. J Phys Chem C, 2010, 114: 6472–6477 

15 Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar struc-
ture with high photocatalytic activity by CTAB as Br source and 
template. J Hazard Mater, 2009, 167: 803–809 

16 Zhang J, Shi F J, Lin J, et al. Self-assembled 3-D architectures of BiOBr 
as a visible light-driven photocatalyst. Chem Mater, 2008, 20: 2937–2941 

17 Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, char-
acterization and photocatalytic activity of hierarchical BiOX (X=Cl, 
Br, I) nanoplate microspheres. J Phys Chem C, 2008, 112: 747–753 

18 Jiang Z, Yang F, Yang G D, et al. The hydrothermal synthesis of 
BiOBr flakes for visible-light-responsive photocatalytic degradation 
of methyl orange. J Photochem Photobiol A: Chem, 2010, 212: 8–13 

19 Chang X F, Huang J, Cheng C, et al. BiOX (X=Cl, Br, I) photocata-
lysts prepared using NaBiO3 as the Bi source: Characterization and 
catalytic performance. Catal Commun, 2010, 11: 460–464 

20 An H Z, Du Y, Wang T M, et al. Photocatalytic properties of BiOX 
(X=Cl, Br, and I). Rare Metals, 2008, 27: 243–250 

21 Wang W D, Huang F Q, Lin X P, et al. Visible-light-responsive pho-
tocatalysts xBiOBr-(1x)BiOI. Catal Commun, 2008, 9: 8–12 

22 Henle J, Simon P, Frenzel A, et al. Nanosized BiOX (X=Cl, Br, I) 
particles synthesized in reverse microemulsions. Chem Mater, 2007, 
19: 366–373 

23 Zhang X, Zhang L Z, Xie T F, et al. Low-temperature synthesis and 
high visible-light-induced photocatalytic activity of BiOI/TiO2 heter-
ostructures. J Phys Chem C, 2009, 113: 7371–7378 

24 Cheng H F, Huang B B, Dai Y, et al. One-step synthesis of the 
nanostructured AgI/BiOI composites with highly enhanced visible- 
light photocatalytic performances. Langmuir, 2010, 26: 6618–6624 

25 Li Y Y, Wang J S, Yao H C, et al. Chemical etching preparation of 
BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. 
Catal Commun, 2011, 12: 660–664 

26 Chang X F, Yu G, Huang J, et al. Enhancement of photocatalytic ac-
tivity over NaBiO3/BiOCl composite prepared by an in situ formation 
strategy. Catal Today, 2010, 153: 193–199 

27 Zhang L, Wang W Z, Zhou L, et al. Fe3O4 coupled BiOCl: A highly effi-
cient magnetic photocatalyst. Appl Catal B: Environ, 2009, 90: 458–462 

28 Chai S Y, Kim Y J, Jung M H, et al. Heterojunctioned BiOCl/Bi2O3, 
a new visible light photocatalyst. J Catal, 2009, 262: 144–149 

29 Shamaila S, Sajjad A K L, Chen F, et al. WO3/BiOCl, a novel hete-    
rojunction as visible light photocatalyst. J Colloid Interface Sci, 2011, 
356: 465–472 

30 Kakuta N, Goto N, Ohkita H, et al. Silver bromide as a photocatalyst 
for hydrogen generation from CH3OH/H2O solution. J Phys Chem B, 
1999, 103: 517–519 

31 Hu C, Lan Y Q, Qu J H, et al. Ag/AgBr/TiO2 visible light photocata-
lyst for destruction of azodyes and bacteria. J Phys Chem B, 2006, 
110: 4066–4072 

32 Lan Y Q, Hu C, Hu X X, et al. Efficient destruction of pathogenic 
bacteria with AgBr/TiO2 under visible light irradiation. Appl Catal B: 
Environ, 2007, 73: 354–360 

33 Elahifard M R, Rahimnejad S, Haghighi S, et al. Apatite-coated 
Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. 

J Am Chem Soc, 2007, 129: 9552–9553 
34 Zang Y J, Ramin F. Photocatalytic activity of AgBr/TiO2 in water under 

simulated sunlight irradiation. Appl Catal B: Environ, 2008, 79: 334–340 
35 Pourahmad A, Sohrabnezhad S, Kashefian E. AgBr/nanoAlMCM-41 

visible light photocatalyst for degradation of methylene blue dye. 
Spectrochim Acta Part A, 2010, 77: 1108–1114 

36 Zhou X F, Hu C, Hu X X, et al. Plasmon-assited degradation of toxic 
pollutions with Ag-AgBr/Al2O3 under visible-light irradiation. J Phys 
Chem C, 2010, 114: 2746–2750 

37 Rodrigues S, Uma S, Martyanov I N, et al. AgBr/Al-MCM-41 visible- 
light photocatalyst for gas-phase decomposition of CH3CHO. J Catal, 
2005, 233: 405–410 

38 Zang Y J, Farnood R, Currie J. Photocatalytic activities of AgBr/Y- 
zeolite in water under visible light irradiation. Chem Eng Sci, 2009, 
64: 2881–2886 

39 Li G T, Wong H K, Zhang X W, et al. Degradation of acid orange 7 
using magnetic AgBr under visible light: The roles of oxidizing spe-
cies. Chemosphere, 2009, 76: 1185–1191 

40 Wang P, Huang B B, Qin X Y, et al. Ag/AgBr/WO3·H2O: Visi-
ble-light photocatalyst for bacteria destruction. Inorg Chem, 2009, 48: 
10697– 10702 

41 Zhang L S, Wong K H, Chen Z G, et al. AgBr-Ag-Br2WO6 nanojunc-
tion system: A novel and efficient photocatalyst with double visi-
ble-light active components. Appl Catal A: Gen, 2009, 363: 211–229 

42 Zhang L S, Wong K H, Yip H Y, et al. Effective photocatalytic dis-
infection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction sys-
tem irradiated by visible light: The role of diffusing hydroxyl radicals. 
Environ Sci Technol, 2010, 44: 1392–1398 

43 Asi M A, He C, Su M H, et al. Photocatalytic reduction of CO2 to 
hydrocarbons using AgBr/TiO2 nanocomposites under visible light. 
Catal Today, 2011, 175: 256–263 

44 Cao J, Luo B D, Lin H L, et al. Photocatalytic activity of novel 
AgBr/WO3 composite photocatalyst under visible light irradiation for 
methyl orange degradation. J Hazard Mater, 2011, 190: 700–706 

45 Victora R H. Calculated electronic structure of silver halide crystals. 
Phys Rev B, 1997, 56: 4417–4421 

46 Cheng H F, Huang B B, Wang P, et al. In situ ion exchange synthesis 
of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontam-
ination of pollutants. Chem Commun, 2011, 47: 7054–7056 

47 Galceran M, Pujol M C, Zaldo C, et al. Synthesis, structural, and op-
tical properties in monoclinic Er:KYb(WO4)2 nanocrystals. J Phys 
Chem C, 2009, 113: 15497–15506 

48 Jiang R, Zhu H Y, Li X D, et al. Visible light photocatalytic decol-
ourization of C. I. Acid Red 66 by chitosan capped CdS composite 
nanoparticles. Chem Eng J, 2009, 152: 537–542 

49 Dong X, Ding W, Zhang X, et al. Mechanism and kinetics model of 
degradation of synthetic dyes by UV-vis/H2O2/Freeioxallate com-
plexes. Dye Pigments, 2007, 74: 470–476 

50 Li Y, Li X, Li J, et al. Photocatalytic degradation of methyl orange by 
TiO2-coated activated carbon and kinetic study. Water Res, 2006, 40: 
1119–1126 

51 Sun J H, Wang X L, Sun J Y, et al. Photocatalytic degradation and 
kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. 
J Mol Catal A: Chem, 2006, 260: 241–246 

52 Wu C, Chang H, Chen J. Basic dye decomposition kinetics in a pho-
tocatalytic slurry reactor. J Hazard Mater, 2006, 137: 336–343 

53 Zhang N, Liu S Q, Fu X Z, et al. Synthesis of M@TiO2 (M=Au, Pd, 
Pt) core-shell nanocomposites with tunable photoreactivity. J Phys 
Chem C, 2011, 115: 9136–9145 

54 Butler M A, Ginley D S. Prediction of flatband potentials at semi-
conductor-electrolyte interfaces from atomic electronegativities. J 
Electrochem Soc, 1978, 125: 228–232 

55 Chang X F, Huang J, Tan Q Y, et al. Photocatalytic degradation of 
PCP-Na over BiOI nanosheets under simulated sunlight irradiation. 
Catal Commun, 2009, 10: 1957–1961 

 
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction 

in any medium, provided the original author(s) and source are credited. 


