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In view of the fact that complex signals are often used in the digital processing of certain systems such as digital communication 
and radar systems, a new complex Duffing equation is proposed. In addition, the dynamical behaviors are analyzed. By calculat-
ing the maximal Lyapunov exponent and power spectrum, we prove that the proposed complex differential equation has a chaotic 
solution or a large-scale periodic one depending on different parameters. Based on the proposed equation, we present a complex 
chaotic oscillator detection system of the Duffing type. Such a dynamic system is sensitive to the initial conditions and highly 
immune to complex white Gaussian noise, so it can be used to detect a weak complex signal against a background of strong noise. 
Results of the Monte-Carlo simulation show that the proposed detection system can effectively detect complex single frequency 
signals and linear frequency modulation signals with a guaranteed low false alarm rate. 
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Chaos theory is one of the most significant achievements of 
nonlinear science. Many scholars have researched the basic 
theoretical issues [1–7] and practical applications of chaos. 
Hitherto, chaos theory has been widely applied in the con-
trol [8], synchronization [9], prediction [10], communica-
tion [11,12], and detection fields, among others. In signal 
detection, detection of weak signals using a chaotic oscilla-
tor in the real domain [13–19] has been studied by some 
researchers, with most researchers using a Duffing oscillator 
or modified version thereof. The basic idea is that a chaotic 
system is sensitive to the initial conditions and less influ-
enced by noise. Nowadays complex signal processing is 
being used in many fields of science and engineering in-
cluding digital communication systems, radar systems, an-
tenna beamforming applications, coherent pulse measure-
ment systems, and so on. As such, it is very meaningful to 
study how to detect a complex signal against a noisy back-
ground. 

Most of the recent works on complex chaos have focused 
on solving complex nonlinear differential equations, com-

plex chaos control and synchronization, and so on. For ex-
ample, Cveticanin [20] developed an approximate analytic 
approach for solving strong nonlinear differential equations 
of the Duffing type with a complex-valued function. Fur-
thermore, excellent agreement is found between the analytic 
results and numerical ones. Li et al. [21] developed a sto-
chastic averaging method for a quasi-Hamilton system to 
study the stationary solution in a nonlinear stochastically 
complex dynamical system. Rauh et al. [22] proved by 
means of a quadratic Lyapunov function that the complex 
Lorenz model is globally stable and presented an analytic 
expression for the upper bound on the magnitude of the 
time-dependent electric field. Mahmoud and Aly [23] illus-
trated the existence of periodic attractors of complex 
damped nonlinear systems by constructing Poincaré plots, 
and investigated the stability properties of the solutions of a 
complex nonlinear equation. The strange attractors, chaotic 
behavior and the problem of chaos control for a complex 
Duffing oscillator are studied in [24]. Ref. [25] investigated 
the phenomenon of chaos synchronization of two different 
chaotic complex systems of the Chen and Lü type via 
methods for active control and global synchronization. 
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Based on the work in [24], Li et al. [26] studied the problem 
of chaos control for a complex Duffing oscillation system. 
Up to now, no study on detecting complex signals using a 
complex chaotic system has been published. First, we pro-
pose a non-symmetrical complex Duffing equation based on 
the real Duffing equation. By calculating the maximal Lya-
punov exponent (MLE) and power spectrum, we prove that 
the proposed complex differential equation has a chaotic 
solution or a large-scale periodic one depending on different 
parameters. Furthermore, it is very sensitive to different 
initial conditions. Then, based on the proposed complex 
Duffing equation, a complex Duffing oscillator detection 
model is constructed. Last, under the condition of a guaran-
teed low false alarm rate, we investigate the performance of 
detection of such a dynamic system for noisy complex sin-
gle frequency signals and complex linear frequency modu-
lation (LFM) signals using Monte-Carlo simulations.  

1  Theoretical basis 

1.1  Complex Duffing equation 

The most common form of the real Duffing equation [14] is: 

 3 cos( )x kx x x t     , (1) 

where k is the viscous damping factor, (−x+x3) plays the 
role of nonlinear elastic restitution, and  cos(t) is the inter-
nal periodic force. According to this equation, a new com-
plex Duffing equation is constructed as  

  2
expz kz z z z jt      ,   (2) 

where  1z x jy j     is a complex function, k, , 

and (≥ 0) are real parameters, and the dots are time de-
rivatives. For the purpose of adapting to weak signals with 
different frequencies instead of a certain signal with angular 
frequency  =1 rad/s, let t   (  is an arbitrary val-
ue). Eq. (2) then becomes 

  2

2

1
exp

k
z z z z z j  


     .  (3) 

Eq. (3) represents a system of two coupled nonlinear se-
cond-order differential equations (for the sake of readability, 
t denotes ): 
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2

1
cos

k
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Then, we study the nonlinear dynamical behavior of the 
new complex Duffing equation. By introducing four new 

variables, 1 2 3 4, , ,
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(i) Case of 0  .  For the case of 0  , the equa-

tions in eq. (5) are completely symmetrical; that is, if one 
starts from initial conditions 0 0( , )x x  = 0 0( , )y y , the x and 

y variables behave identically. From eq. (5) (= 0), we can 
easily obtain a saddle point of the phase plane at 
( , , , ) (0,0,0,0),x x y y   and two focal points at 

1 1
,0, ,0

2 2 
 
  
 

 and 
1 1

,0, ,0
2 2 

 
   
 

, respectively. 

Points  ,x x  and  ,y y  finally remain at one of the two 

focal points depending on the initial values. Using a 
fourth-order Runge-Kutta algorithm to solve eq. (5), we can 
obtain the solutions for different initial conditions as shown 
in Figure 1(a) and (b), where 1 rad/ s,  0.5,  1,k     

the step length h=0.05 s, and the simulation time ts=200 s. 
In the following experiments, the same parameters as given 
above are used unless specified otherwise. From Figure 1, 
we can see that for initial values [1,1,1,1] , the points ( , )x x  
finally remain at the left focus ( 0.707,0) , whereas for 
initial values [ 1, 1, 1, 1]    , the points ( , )x x  finally re-
main at the right focus (0.707,0) . We plot only the phase 
plane trajectory of ( , )x x  for the different initial conditions 

since the equations in eq. (5) are symmetrical, and the same 
trajectory for ( , )y y  can be obtained.  

(ii) Case of > 0.  For the case of > 0, eq. (5) show 
very complicated dynamical behavior. Figure 2 shows the 
bifurcation diagram of variations in variable x with changes 
in parameter . It can be seen that the complex Duffing os-
cillator eq. (3) has both chaotic behavior and large-scale  
periodic behavior, and that it remains in a large-scale peri-
odic state for a wide range of parameter . From the 
zoom-in plot within = [0.7, 0.8], we can obtain the critical 
value (0.72,  0.73)c   at which the system is in a critical 

state (chaotic, but on the verge of changing to a large-scale 
periodic state). 

1.2  Chaotic state and large-scale periodic state 

In this section, we give examples of chaotic and large-scale 
periodic solutions for eq. (3). Let 0 0 00.5, 1,( , , ,k x x y    

0 ) (0,0,0,0)y  , and 1   rad/s. For = 0.6, eq. (3) has 

chaotic behavior with the phase plane trajectories of ( , )x x  
and ( , )y y as shown in Figure 3(a) and (b), respectively.  
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Figure 1  Phase plane trajectories of ( , )x x  for different initial condi-

tions (= 0). (a) Trajectory for initial values 0 0 0 0( , , , ) (1,1,1,1)x x y y   ; (b) 

trajectory for initial values 0 0 0 0( , , , ) ( 1, 1, 1, 1)x x y y       . 

 

Figure 2  Bifurcation diagram for the complex Duffing eq. (3). 

There are a few differences between the two trajectories. 
Any system, containing at least one positive MLE or con-
taining a power spectrum with prominent peaks separated 
by broad-band domains, is defined to be chaotic [24]. From 
Figure 3(c), the MLEs are always positive within the simu-
lation time, and from Figure 3(d), the power spectrum Px() 

of x has three prominent peaks separated by broad-band 
domains, indicating that the system is in a chaotic phase 
state. 

For the same conditions as used above, with  = 0.73,  
eq. (3) has large-scale periodic behavior. The diagrams cor-
responding to Figure 3 are shown in Figure 4. From Figure 
4(a) and (b), the phase trajectories quickly stabilize on pe-
riodic orbits with a certain width after undergoing a short 
transient state. From Figure 4(c), the MLEs remain negative 
after t > 97 s, and from Figure 4(d), the power spectrum 
Px() of x has only one peak at = 1 rad/s, indicating that 
the system is in a large-scale phase state. 

2  Detection model for the complex Duffing  
oscillator and simulation 

From section 1, the complex Duffing eq. (3) is sensitive to 
parameter , and a tiny periodic perturbation can change the 
dynamical behavior. So one can detect whether the desired 
signal really exists by checking the state of the system in the 
phase space. The following detection model for the complex 
Duffing oscillator is constructed: 

  2

2

1 0.5
exp ( )cz z z z z j t cs t 


      ,   (6) 

where c is the critical value and cs(t) is the input complex 
signal to be detected. Before the signal to be detected is 
input, the system is put into the critical state. Note that be-
cause of the truncation error involved in the Runge-Kutta 
algorithm, different initial conditions may cause a distinct 
discrepancy in the critical value [15]. The accuracy of c 
may be chosen in accordance with practical demand, and we 
set c = 0.72 in our experiments. Next we investigate the 
detection performance of the model (6) using Monte-Carlo 
simulations. 

(i) Experiment 1.  Complex white Gaussian noise is 
used as the input signal to be detected. First, we only input 
noise into the detection system, that is cs(t)=n(t), so that the 
effect of complex white Gaussian noise on the complex 
detection system can be investigated. Noise has a nonde-
terministic effect on a nonlinear system, and it may induce 
different dynamical behavior such as chaos, order, or escape 
from the attractor [27]. The purpose of this paper is to detect 
the desired signal in noise, so we need the complex detec-
tion system to be immune to noise. In other words, the sys-
tem should remain in a chaotic state after the noise is input. 
Thus, we do not want the noise to induce the phase transi-
tion. If so, misjudgment occurs, which is known as a false 
alarm in a radar system. A false alarm occurs when a 
non-target event exceeds the detection criterion and is mis-
takenly identified as a target. We use this term to denote the 
phenomenon in which noise induces the phase transition.  

In many applications, for a given detection probability, a  
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Figure 3  Example of a chaotic state (k = 0.5, = 1, = 1 rad/s, = 0.6). (a) Phase plane trajectory of ( , )x x ; (b) phase plane trajectory of ( , )y y ; (c) 

MLEs; (d) power spectrum of x. 

 
Figure 4  Example of a large-scale periodic state (k = 0.5, = 1, = 1 rad/s, = 0.73). (a) Phase plane trajectory of ( , )x x ; (b) phase plane trajectory of 

( , )y y ; (c) MLEs; (d) power spectrum of x. 



 Deng X Y, et al.   Chin Sci Bull   June (2012) Vol.57 No.17 2189 

lower false alarm rate is better. Conversely, for a given tol-
erable false alarm rate, a higher detection probability is bet-
ter. By means of Monte-Carlo simulations, we investigated 
the false alarm rates of the system (6) when noise is input at 
different levels. Table 1 lists the false alarm rates of the 
detection system under different conditions. Note that for 
the case of noise power 2  0.005 W, we carried out 
10000 simulations with only a false alarm occurring, and 
the false alarm rate equal to 410 . So we can roughly con-
clude that the detection system is strongly immune to com-
plex white Gaussian noise below 0.005 W, which lays a 
good foundation for the reliable detection of the desired 
signal in noise.  

In practical detection, the noise power should first be es-
timated using data in which no desired signal exists. Then, 
if the estimation is greater than 0.005 W, the noisy signal to 
be detected needs to be multiplied by an attenuation factor 
to ensure that the noise power is below 0.005 W, so that a 
low false alarm rate can be guaranteed. Note that the value 
of noise power 0.005 W corresponds to c = 0.72, and if the 
accuracy of c is improved (by expressing the value to more 
decimal places), we can ascertain through simulation that 
the tolerable noise power will decline to retain the same 
false alarm rate. 

(ii) Experiment 2.  Detection of complex single frequen-
cy signals in complex white Gaussian noise. Let the input of 
the complex detection system be ( ) exp( ) ( ),cs t A j t n t   

where the complex single frequency signal exp( )A j t  

has the same frequency and initial phase as the internal pe-
riodic force, A is the amplitude of the signal, and ( )n t  is 
complex white Gaussian noise. Then, the total force is 
( ) exp( ) ( )c A j t n t   . We fixed the noise power 2   

0.005 W and gradually changed the amplitude A of the 
complex signal to be detected, to investigate the detection 
probabilities of the system under different signal-to-noise 
ratios (SNR). The SNR is defined as: 

 


 
  

 

2

10 2
SNR 10 log  dB

2

A
.  (7) 

The number of Monte-Carlo simulations used to estimate 
each detection probability was 200. In every simulation, the 
noise was first input into the system to test whether a false  

Table 1  False alarm rate induced by complex white Gaussian noise at 
different levels 

No. 
Noise power 

(W) 
Number of 
simulations 

Number of false 
alarms 

False alarm 
rate (%) 

1 0.1 1000 452 45.2 

2 0.05 1000 301 30.1 

3 0.01 1000 26 2.6 

4 0.005 10000 1 0.01 

5 0.001 1000 0 0 

alarm occurred, and then the signal corrupted by this noise 
was input into the system to test whether the desired signal 
was detected. Figure 5 plots the curve of the obtained detec-
tion probabilities with different SNRs. No false alarms oc-
curred in our experiments. From Figure 5, the lower the 
SNR, the lower the detection probability. Furthermore, to 
achieve a detection probability over 90%, the SNR should 
usually be greater than -20 dB. 

(iii) Experiment 3.  Detection of complex LFM signals 
in complex white Gaussian noise. Let the input of the com-
plex detection system be 2

0( ) exp[ ( 0.5 )]cs t A j t bt   

( )n t , where 0  is the initial frequency of the LFM signal 

and b is the slope. Generally, the approach for chaotic de-
tection has an obvious advantage in detecting signals with 
the same frequency as the internal periodic force. But the 
frequency of the LFM signal changes with time, so the de-
tection performance for the LFM signal should be worse 
than that for the single frequency signal. This can easily be 
investigated through experiments. 

Next, we investigated the effect of different slopes and 
frequency ranges on the detection performance of the sys-
tem. To obtain results accurately, the simulation time ts was 
chosen as 400 s, and the signals to be detected once again 
had a length of 200 s (padded with trailing zeros to length 
400 s). With the frequency of the internal periodic force 

1  rad/s, noise power 2  0.005 W, and 0 =0 rad/s, 

we altered the value of slope b. The number of Monte-Carlo 
simulations used to estimate each detection probability was 
200. The process for the simulation was the same as in ex-
periment 2. Once again, no false alarms occurred in these 
simulations. Table 2 lists the detection probabilities for dif-
ferent slopes values. From Table 2, for the case of SNR= 
-10 dB, the detection probability for slope b=0.01 rad/s2 is 
the highest and no signal is detected for the slope b=0.05 
and 0.1 rad/s2. For the case of SNR=2 dB, the detection 
probabilities increase because of the improved SNR, even 
reaching 100% for the slope b=0.005 and 0.01 rad/s2. 

 
 

 

Figure 5  Curve of detection probabilities for complex single frequency 
signals. 
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Table 2  Detection probabilities of the complex chaotic detection system 
for different complex LFM signals 

Number 
Slope 

(rad/s2) 
Frequency 

range (rad/s) 

Detection probability 

SNR= −10 dB SNR=2 dB 

1 0.005 [0, 1] 85.5% 100% 

2 0.01 [0, 2] 89.5% 100% 

3 0.025 [0, 5] 71% 90% 

4 0.05 [0, 10] 0 4% 

5 0.1 [0, 20] 0 0 

3  Discussion and conclusions 

(i) Comparison of two complex Duffing equations.  In 
2001, Mahmoud et al. [24] presented the following complex 
Duffing equation 

  2
expz z z z j t      ,   (8) 

where z x jy  , and , ,   , and   are positive real 

parameters. Let 1, 1   , and 1  rad/s. Then we can 

obtain the critical value of eq. (8)  0.22,0.23c   from 

its bifurcation diagram. Next we compare the required time 
for eqs. (3) and (8) to enter large-scale periodic solutions 
after undergoing a transient state. For eq. (3), for the case of 
 = 0.73, the solution space begins to enter a large-scale 
periodic state at simulation time 97st  s. With an increase 

in , the required time decreases quickly. For example, the 
time is 31st  s for  = 0.8. Comparatively, for eq. (8), the 

required time is 229st  s for  = 0.23. With an increase in 

, the time decreases slowly. For example, the time is 
191st  s for  = 0.8. It is well known that the speed with 

which a chaotic equation transforms into a stable large-scale 
periodic solution is very important for detecting signals 
quickly and accurately. In this sense, the proposed eq. (3) in 
this paper is more suited to signal detection than eq. (8). For 
eq. (8), the reason for having a longer transient state may be 
the lack of a viscous damping term kz . 

(ii) On the detection capability of the complex Duffing 
system for complex LFM signals.  In general, the parts of 
LFM signals with nearly the same frequency as the internal 
periodic force in a chaotic system have an effect on the 
phase state transition. In addition, the amplitude of these 
signals must be large enough, and the duration of these sig-
nals must be long enough. Otherwise, if the amplitude of 
signals is too small to induce the phase transition, or if the 
duration of signals is too short to complete the phase transi-
tion, the system will remain in the chaotic state. In experi-
ment 3 of section 2, without consideration of noise, the in-
stantaneous frequency of the LFM signal is ( )t   

2
0

0

d( 0.5 )

d

t bt
bt

t





  , so the instantaneous frequency is 

dependent on the slope b. The larger the slope, the faster the 
variation in frequency of signals. Under the condition of a 
fixed SNR (such as SNR= -10 dB), the duration of signals 
with nearly the same frequency as the internal periodic 
force (1 rad/s) will become shorter with an increase in the 
slope. A larger slope will result in lower detection probabil-
ity. Though the slope of case 1 in Table 2 is smaller than 
that of case 2, the lack of signals with frequencies greater 
than 1 rad/s results in a lower detection probability than 
case 2. For cases 4 and 5, the frequency of the LFM signals 
changes quickly from 0 to 10 rad/s and 20 rad/s, respective-
ly. The duration of signals with frequency around 1 rad/s is 
too short to induce the phase transition, so the signal can 
hardly be detected. On the other hand, under the condition 
of a fixed slope, the higher the SNR is, the greater is the 
obtained detection probability. For example, for the slope 
b=0.005 rad/s2, the detection probability improves from 
85.5% to almost 100% when the SNR is enhanced from -10 
to 2 dB. The problem of how to improve the performance of 
detection of such a wideband signal needs to be further in-
vestigated. 

In this paper, a new complex Duffing equation was pro-
posed, and its dynamical behavior was analyzed. Based on 
the proposed equation, we constructed a complex chaotic 
oscillator detection system to detect complex signals in 
noise. We investigated the influence of noise on the detec-
tion system and the detection performance of the system for 
complex signals. The experimental results show that the 
complex chaotic oscillator is highly immune to noise at a 
certain level, and has good detection performance for weak 
complex single frequency signals and LFM signals. This 
work lays the foundation for complex digital signal pro-
cessing in digital communication systems, radar systems, 
and so on.  
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