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The Quantitative Genetic Analysis Station (QGAStation) is a software package that has been developed to perform statistical 
analysis for complex traits. It consists of five domains for handling data from diallel crosses, regional trials, core germplasm col-
lections, QTL mapping, and microarray experiments. The first domain contains genetic models for diallel cross analysis, in which 
genetic variance components and genetic-by-environment interactions can be estimated, and genetic effects can be predicted. The 
second domain evaluates the performance of varieties in regional trials by implementing a general statistical method that outper-
forms ANOVA in tackling unbalanced data that arises frequently in trials across multiple locations and over a number of years. 
The third domain, using predicted genotypic values as proxy, constructs core germplasm collections covering sufficient genetic 
diversity with lower redundancy. The fourth domain manages genotypic and phenotypic data for QTL mapping. Linkage maps 
can be constructed and genetic distances can be estimated; the statistical methods that have been implemented apply to both chi-
asmatic and achiasmatic organisms. Another part of this domain can filter systematic noises in phenotypic data. The fifth domain 
focuses on the cDNA expression data that is generated by microarray experiments. A two-step strategy has been implemented to 
detect differentially expressed genes and to estimate their effects. Except in the fourth domain, the major statistical methods that 
have been used are mixed linear model approaches that have been implemented in the C language. Computational efficiency is 
further boosted for computers that are equipped with graphics processing units (GPUs). A user friendly graphic interface is pro-
vided for Microsoft Windows and Apple Mac operating systems. QGAStation is available at http: //ibi.zju.edu.cn/software/qga/. 

QGAStation, genetic software, complex traits, GPU 

 

Citation:  Chen G B, Zhu Z X, Zhang F T, et al. Quantitative genetic analysis station for the genetic analysis of complex traits. Chin Sci Bull, 2012, 57: 27212726, 
doi: 10.1007/s11434-012-5108-0 

 

 

 
For nearly a century, quantitative genetics has been syn-
chronized to both statistics and genetics and, more recently, 
to computer science too. The discovery of Mendel’s laws 
introduced the concept of genes to biology, and suggested 
that the resemblance between individuals can be ascribed to 
genes that are inherited along generations. Whether discrete 
genes could address the continuous distributions of pheno-
types was in doubt until quantitative genetics answered this 
question in the affirmative; it is now accepted that Mendel’s 
factors can explain why one individual differs from another 
in degree rather than in kind [1]. In the first 30 years of the 

last century, when biotechnology was in its infancy, quanti-
tative genetics used mathematical theory that was largely 
laid down by pioneers like Ronald Fisher, Sewall Wright 
and J.B.S. Haldane. In the past two decades, developments 
in biotechnology and computer science have contributed to 
the rapid advance of quantitative genetics.  

Quantitative genetics uses cutting-edge biotechnology 
that requires sophisticated experimental designs, such as 
factorial design, nested design, and Latin square design, to 
analyze and understand the results of complex genetic stud-
ies. The diallel cross method [2,3] is a well-established 



2722 Chen G B, et al.   Chin Sci Bull   July (2012) Vol.57 No.21 

mating scheme used by plant and animal breeders, as well 
as by geneticists, to investigate the genetic underpinnings of 
quantitative traits. Through diallel cross analyses, it can 
partition phenotypic variations into various genetic compo-
nents in terms of their genetic origins like additive, domi-
nance, and epistasis [4]. The development of molecular 
markers in the 1980’s supported the emergence of quantita-
tive trait locus (QTL) mapping [5]; however, QTL mapping 
rarely pinpoints the exact functional genetic variants because 
QTLs are often quite wide and cover hundreds of genes. If 
the expressions of the genes under a QTL can be monitored, 
then further clues to the identity of the genetic variants re-
sponsible for the trait could be identified. Microarrays can be 
used to monitor the expressions of genes which help to nar-
row down the candidate genes for a QTL [6]. 

Most, if not all, phenotypic outcomes of interest are 
quantitative and complex traits, while studying the genetic 
architecture of complex traits poses a major challenge in 
elucidating the hierarchical metabolic processes that may 
perturb phenotypic outcomes [7]. Properly designed exper-
iments can translate biological processes into reliable data 
encoding the mechanisms of complex traits, and this data 
can only be decoded by careful data processing. Experi-
mental design is a Bayesian process in which clues obtained 
from previous experience are applied to current experimen-
tation [8]. Single data from one individual experiment is 
rarely enough to address complex traits well, but integrated 
data from multiple biological layers can strengthen the 
analysis and, if this is still insufficient, a likelihood function 
can be used to dissect complex traits. The large amounts of 
data that are generated from different experiments with dif-
ferent designs and platforms are hard to manage. Further, 
biological data is often blunted by chaos making analysis 
difficult. 

Although analyzing the dataset separately with different 
statistical packages remains an option, an integrated plat-
form delivers more convenience. To meet the rising de-
mands in data management and analysis, we have devel-
oped the Quantitative Genetic Analysis Station (QGASta-
tion), which is a comprehensive genetic analysis package 
for the statistical analysis of complex traits. QGAStation 
enables geneticists and breeders to manage and analyze data 
collected from different experiments, such as diallel crosses, 
regional trials, core germplasm collections, QTL mapping, 
and microarrays. It has a user-friendly graphic interface and 
can run on Microsoft Windows and Mac OS X operating 
systems. The statistical methods and the genetic models in 
QGAStation were tested comprehensively by Monte Carlo 
simulations and real datasets, and thus should be highly 
reliable. To accelerate the computation process, the compu-
tationally intensive modules have been thoroughly imple-
mented and optimized in C language, and are boosted by 
graphic processing unit (GPU). When the user’s computer is 
equipped with one or more GPUs, QGAStation’s computa-
tional efficiency can be further enhanced. 

1  Features of QGAStation 

1.1  An overview of statistical methodologies imple-
mented in QGAStation 

The statistical models implemented in QGAStation are 
mainly in the form of mixed linear models that are useful in 
handling complicated genetic models even for unbalanced 
data. The variance and covariance components of genetic 
models included in QGAStation are estimated using either 
the restricted maximum likelihood (REML) method or the 
minimum norm quadratic unbiased estimation (MINQUE) 
method [9], which is theoretically as precise as REML but 
requires less computation. For REML, the stopping rule for 
convergence is automated by QGAStation. When the use of 
REML creates an overwhelming computational burden, 
MINQUE can be used as an alternative. In general, 
MINQUE(1) with the prior values set to 1, is used to esti-
mate variance components and MINQUE(0/1), with the 
prior values of covariances set to 0 and the prior values of 
variances set to 1, is used to estimate covariance and vari-
ance components simultaneously [10]. In the mixed linear 
models, best linear unbiased prediction (BLUP) is used to 
predict random effects if the variance components are esti-
mated with REML, whereas linear unbiased prediction (LUP) 
or adjusted unbiased prediction (AUP) is the options in 
QGAStation if the variance components are estimated by 
MINQUE [11]. The empirical variances of parameters are 
estimated by jackknife resampling [12], and subsequently 
t-tests are constructed to test the null hypotheses. 

In the simplest case, a set of genetic experimental data 
would contain observations of a single trait, with one ob-
servation per individual. However, most datasets are usually 
much more complicated than that. Some datasets may con-
tain multiple observations per individual of a single trait 
across, for example, different growth stages; while other 
datasets may contain observations of multiple traits that 
may, or may not, be related. QGAStation implements a 
general conditioning method to take care of both types of 
datasets [13,14]. For the first case, a developmental trajectory 
of genes of the complex trait can be profiled. For the second 
case, causal inference among traits can be implemented. A 
conditioning method is embedded into the diallel cross analy-
sis and the QTL mapping domains in QGAStation. 

1.2  Description of the five domains of functions in 
QGAStation 

The five domains of functions included in QGAStation are 
summarized in Table 1, and described briefly below. For full 
details of each model, please refer to the online user manual. 

1.2.1  Diallel crosses 

This domain contains statistical methods implementing di-
allel cross analyses for agronomic traits, seed traits, and 
animal traits. These statistical methods are implemented in  
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Table 1  Genetic and statistical models for complex traits that are included in QGAStation 

Sessiona) Model Parameters 
Diallel crosses   
Agronomic models A A|Eb), also called G|E 
 AD A+D|E 
 ADAA A+D+AA|E 
 ADM A+D+M|E 
 ADPM A+D+P+M|E 
 AMC A+M+C|E, a haploid model 
Seed models ADM A+D+M|E 
 GoGe Ao+Do+Ae+De|E 
 GoCGm (diploid organisms) Ao+Do+C+Am+Dm|E 
 GoCGm (triploid organisms) Ao+Do+C+Am+Dm|E 
 GoGeGm Ao+Do+Ae+De+Am+Dm|E 
 GoGeCGm Ao+Do+Ae+De+C+Am+Dm|E 
Animal models Sex model A+D+M+L|E 
 SexM model A+D+Am+Dm+L|E 
Regional trials Test model V+L+Y|.c) 
 Treat model V+T+L+Y|. 
Germplasm core collection Stepwise clustering Constructs an optimal core collection. 
QTL mapping   
Linkage map  Achiasmatic model Constructs linkage maps. 
Preliminary analysis  Removes systematic effects and conditional analysis. 
Microarray experiments A two step strategy-based method Selects differentially expressed genes, and estimates their effect. 

a) The main sessions are in bold font. b) “|E” implies that the model includes interactions between environment (E) and every term preceding “|”. c) “|.” 
implies that the model includes all pair-wise interactions of terms preceding “|”. 

 
three sets of genetic models (described below) constructed 
under the general theory established by Cockerham [15]. 
The selection of the required minimum number of parental 
lines depends on the subjects being studied. For some or-
ganisms such as rice and cotton, six is considered as a good 
initial number to balance the capture of genetic diversity 
and its cost. If, for some organisms, the F1 population is 
hard to retrieve, the F2 population can be used as a substi-
tute. When an experiment is conducted over multiple envi-
ronment systems, randomize block design should be con-
sidered whenever possible [16]. 

(i) Agronomic models.  In general, the total phenotypic 
variance of an agronomic trait is ascribed to genotypic and 
environmental factors [17]. In the simplest case, phenotypic 
outcomes of pure lines can be fitted by an additive (A) ef-
fect only model, the A model in QGAStation. However, 
most agronomic traits of interest are complex traits that are 
also controlled by other effects; thus, the A effect can be 
extended by including a dominance (D) genetic variance 
component. For these complex cases, the AD model in 
QGAStation can be used. Epistasis [18] can be taken into 
account using the additive × additive (AA) interaction term 
and users can select the ADAA model [19] to analyze addi-
tive, dominance, and additive × additive effects. 

When the reciprocal effects, maternal (M) and cytoplas-
mic (C), are of interest, the ADM model [20] can be used. 
The ADMP model [21] can be used to estimate the maternal 
and paternal effect (M, P) contribution to the phenotypic 
outcomes [22,23]. The AMC model, which can be applied 
to haploid-based experiments, such as anther culture studies 
[24] should also be mentioned. Thus, using this model, the 
total genetic variance can be ascribed to its additive, mater-
nal and cytoplasm origins. 

(ii) Seed models.  There are two kinds of quantitative 
traits for seeds, diploid or triploid, in which genetic vari- 
ances are determined based on whether the plants are of 
dicotyledoneae or monotyledoneae origin. In addition to the 
direct embryo genetic effects (Go) of diploid seeds, the traits 
are also influenced by maternal nuclear genetic (Gm) and 
cytoplasm (C) effects. Consequently, three genetic compo- 
nents exist and they can be fitted by the GoCGm model [10] 
in QGAStation. In contrast, most cereal crops have triploid 
endosperms and thus the endosperm effect (Ge) has to be 
considered. Therefore, there can be up to four distinct  
genetic components for cereal seed traits, summarized as 
GoGeCGm model [25]. When the cytoplasmic effect is tiny 
or ignorable, this model can be reduced to the GoGeGm 
model. In much simpler cases, the GeGo model may be suf- 
ficient to analyze the contribution of embryo and endosperm 
to QTLs in, for example, barley seeds [26]. 

(iii) Animal models.  It is known that the genetic archi- 
tectures of quantitative traits in animals are often substan- 
tially characterized by sex. There are three sex-determina- 
tion systems, the XY system (XY for male, XX for female), 
ZW system (ZZ for male, ZW for female) and X0 system 
(haploid X for male, XX for female). The XY system is 
mainly found in mammals, while ZW is found in birds and 
insects, such as chicken and silk worm. For these two sys- 
tems, the X (or Z) chromosome is dosage compensation 
when Y (or W) inserts to chromosome forming a XY (or 
ZW) cell, implying that a certain proportion of genes are 
sex-specific and have sex-linked (L) effects. In addition, 
differences in maternal feeding and nursing patterns can 
also influence the phenotypes of offspring. Thus, for off- 
spring, besides their own additive and dominance effects, it 
is essential to build into a genetic model both sex linked and 
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maternal effects [11]. To fit these two genetic sources of 
variations, the Sex model is implemented in QGAStation. 
The maternal effect can be further partitioned into maternal 
additive (Am) and maternal dominance (Dm) effects and so 
the SexM model [27] has been implemented in QGAStation 
to include them. 

For the three genetic models that can be used for diallel 
cross analyses, some parameters are automatically estimated 
by QGAStation depending upon the model that has been 
selected. The narrow sense and broad sense heritabilities 
can always be estimated, and, in addition, a generalized 
approach is implemented to predict heterosis effects specific 
to each environment [28]. For experiments that are con-
ducted in multiple environment systems, genetic term × 
environment (GE) can also be estimated. 

1.2.2  Regional trials 

Regional trials are used to assess the performance of differ-
ent varieties (V). A trial often takes place across multiple 
locations (L) and over a number of years (Y), so things like 
catastrophes and faults are hard to prevent. For these rea-
sons, the data from such trials often contains missing values, 
which can eventually lead to imbalances in the data. For 
balanced data, ANOVA is the most widespread statistical 
method that has been used for analysis. However, the power 
of ANOVA appears to be low for unbalanced data. Because 
mixed linear model approaches outperform ANOVA in 
handling unbalance data, QGAStation uses mixed linear 
models to analyze regional trial data regardless of whether 
the data is balanced or unbalanced [29]. In QGAStation, the 
performance of varieties is assessed by linear contrasts of 
their effects with the control; other remaining terms that can 
take into account the L, Y, V × L, V × Y, and L × Y effects, 
can be estimated or predicted depending on whether they 
are fixed or random effects in a model. For qualities 
weighted over multiple traits, QGAStation applies a cus-
tomizable vector, each element of which scores a trait to 
produce an overall evaluation [30]. 

1.2.3  Germplasm core collections 

Collecting germplasm resource can be cumbersome and 
time-consuming, but it reserves genetic diversity that may 
benefit future breeding programs. After the concept of core 
collection was proposed [31], it was realized that a 
well-selected subset of the original resource can fulfill the 
breeding requirement but with a reduced size. If the core 
collection of an original germplasm resource includes con-
ventionally weighted phenotypic values, then the genetic 
consistency can often become rather redundant. To avoid 
this, QGAStation uses predicted genotypic values to sample 
a population and to build its core collection [32]. This 
method keeps a substantial genetic polymorphism in the 
reference population. Two kinds of genetic distances (Eu-
clidean and Mahalanobis distances), three sampling strate-
gies, and seven linkage rules are available to draw an opti-

mal core collection [33]. 

1.2.4  QTL mapping 

QTL mapping is one of the most promising tools that has 
been used to assist breeding programs [34]. It often consists 
of two preliminary steps, construction of a linkage map us-
ing genetic markers, and processing of the phenotypic data. 

(i) Linkage map construction.  The software packages 
commonly used for constructing genetic linkage maps, for 
example MapMaker and JoinMap [35,36], are built on chi-
asmatic models that assume the occurrence of chiasmate in 
both male and female gametogenesis. However, model or-
ganisms such as fruit fly and silk worm, are achiasmatic. If 
the data for such organisms are processed using chiasmatic 
models, the genetic distances between pairs of markers will 
be underestimated. Because QGAStation has integrated an 
achiasmatic model [37], it groups and orders markers, and 
estimates their genetic distances more accurately than the 
existing software. 

(ii) Phenotypic data processing.  Theoretically, a map-
ping population grows in heterogeneous environments (dif-
fering either in degree or in kind) that may bring in substan-
tial systematic noise (or bias) and reduce the mapping pre-
cision. However, if the environments are well documented, 
QGAStation can be used to filter out the noise to calibrate 
the phenotypes. This step significantly improves the accu-
racy and statistical power for the subsequent QTL mapping. 

As mentioned in section 1.1, the QTL mapping domain 
of QGAStation supported a conditioning method to deal 
with complicated cases of trait data. If multiple trait obser-
vations are recorded for each individual in a mapping popu-
lation, then the observations often can be sorted into two 
generic categories: longitudinal data of a single trait over its 
development, and, more loosely, a set of multiple relevant 
traits. For longitudinal data of a single trait with respect to a 
specific time point, conditional QTL analysis can generate 
vivid profiles as reported in a previous study [38,39]. For a 
set of multiple relevant traits, after conditioning on some 
trait(s), QTL mapping may give insightful results such as 
cause-result relationships between the different traits. For 
example, in a rapeseed QTL mapping study [40] of oil con-
tent and protein content traits that were previously believed 
to suppress each other, it was demonstrated that these traits 
were reciprocal in some of the detected QTLs. 

1.2.5  Microarray experiments 

Microarray technology is characterized by its unique 
strength in monitoring the expressions of thousands of 
genes simultaneously and it has been widely used to identi-
fy novel genes or pathways in a large number of organisms. 
However, gene expression is very sensitive to environmen-
tal factors and the data that is produced is often highly noisy. 
QGAStation offers a seamless two-step strategy to identify 
differentially expressed genes in cDNA microarray experi-
ments [41]. In step one, genes expressed differentially in 
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multiple environments are chosen using a loose criterion; 
the selected genes are then imported to the second step for a 
more stringent scrutiny. These two steps can be used to 
confirm the real differentially expressed genes and to esti-
mate some quantities of interest, such as gene × treatment 
interactions. This strategy outperforms the t-test method and 
promises high power with a controlled false discovery rate. 

2  Boosting the performance of QGAStation 
with GPU programming 

By adopting the Compute Unified Device Architecture 
(CUDA) programming model, the variance and covariance 
component estimations in QGAStation was built to be 
compatible with the GPU framework. Although to lower the 
computational burden, users can choose to estimate the var-
iance and covariance components by MINQUE or REML 
method, the intensive matrix calculations, especially matrix 
inversion and pseudo-inversion are inevitable and can ex-
haust computational resource when the number or the size 
of the matrices increase considerably. QGAStation software 
handles this problem using the massive parallel computation 
technique brought by the GPU. Proper numerical algorithms 
are chosen for all kinds of matrix calculations and thor-
oughly implemented to take advantage of the many core and 
stream processing features of the GPU. Especially for ma-
trix inversions, the LU decomposition is used in the GPU 
mode instead of using the widespread and numerically 
cheap Sherman-Morrison formula which contains strong 
loop dependency and is hard to parallelize. The computa-
tional advantage rooted in the GPU framework is substantial. 
When hardware supporting CUDA, for example the Nvidia 
Tesla C2070 display card on which the software was tested, 
is available, QGAStation running in the GPU mode can 
achieve as much as a 150-fold speedup compared with 
when it is run in the CPU mode on a single Intel® Xeon® 
X5680 CPU (3.33 GHz). Because QGAStation software can 
detect the availability of the GPU automatically, the GPU 
mode is implicitly used whenever it is available. 

3  Discussion 

In quantitative genetics, when studying the genetic factors 
that underlie a trait of interest, laboratory work and statisti-
cal analyses are naturally complementary. It has been noted 
that, the further back we trace the history of the biological 
sciences, the more time and effort scientists have spent in 
generating and collecting data. Recently, especially after 
marker genotyping and gene expression profiling became 
routine laboratory techniques, the economic feasibility of 
understanding complex traits became a reality. Various 
methods have been used, such as diallel crosses, regional 
trials, core collection constructions, QTL mapping, and mi-

croarray analysis. Automated assaying platforms have pro-
duced a surge of data on an unprecedented scale, and this 
has led to a split between bench work and computational 
analysis; a shift that probably will become even more obvi-
ously in the future [42]. 

In this report, we have described QGAStation, an inte-
grated platform that can be used by geneticists and breeders 
to manage and analyze genetic datasets collected from dif-
ferent biological layers. At its most basic level, QGAStation 
consists of a series of genetic models and statistical algo-
rithms that can be found in the bin folder of the package. 
Now thoroughly streamlined, QGAStation only needs the 
user to identify the models that best fit the problems they 
want to address; thus, sparing the user the need to carry out 
detailed statistical modeling and parameter estimation. Ad-
vanced users, however, can develop their own scripts using 
Perl or Python to customize the workflow of the modules 
(in the bin folder) as required. To ensure that QGAStation 
remains synchronized with the frontier of quantitative ge-
netics, it is updated frequently. Here we have presented a 
concise introduction to QGAStation, users can refer to the 
manual for more details on usage and on the data formats 
that can be used with this software package. 

Two issues should be mentioned here. First, the choice of 
a genetic model for a dataset is dependent on the users’ ex-
perience and for some traits this can be difficult and often 
requires heuristic skills. For example, it may be nontrivial to 
determine the appropriate genetic model of the ratio of 
length and width of a rice grain. Because the grain is formed 
before the endosperm fills, it could be an agronomic trait; 
however, as the organism grows, the endosperm will de-
velop, making the seed model a potentially better choice. To 
use QGAStation effectively, it is not essential that there is 
firm agreement as to which models should be selected. The 
second issue for the genetic models for agronomic traits, 
seed traits, and animal traits, is that the number of genera-
tions required in a dataset should increase quasi-propor- 
tionally with the number of estimated parameters. There are 
two main reasons for this requirement. First, when a term is 
added to the model, the precision of estimates may decline 
because of the enlarged sampling variance caused by col-
linearity. Although all the models have been tested inten-
sively via Monte Carlo simulations, their robustness might 
still be challenged by extreme cases that are as yet discov-
ered. Second, each of the models was built with a certain 
design of experiments [43] in mind, and so the number of 
generations for a genetic model should be satisfied whenev-
er possible. It is always true that a well-planned experiment 
translates to a reliable conclusion. 

QGAStation is currently available as desktop versions to 
fit the computer environments used by most geneticists and 
breeders. Particularly a Mac OS X version of QGAStation 
has been developed because of the popularity of Apple 
computers. Current desktop versions of QGAStation usually 
offer sufficient computational power to address most of the 
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genetic problems described in this report. Because genetic 
data is being generated at an increasingly rapid pace, it is 
not unlikely that this package will lag behind some of the 
analysis task in the coming years. For example, while 
QGAStation can handle an inverse matrix with hundreds of 
rows and columns, it will fail if presented with a matrix of 
thousands of rows and columns. Fortunately, information 
technology is already producing high-performance compu-
ting clusters, GPU-boosted computation, and cloud compu-
ting. As shown by QGAStation, GPU technology can dra-
matically enhance computational efficiency. Some or all of 
these platforms will help advance statistical computation 
and data storage in the near future. Integrating these tech-
nologies requires and deserves more attention, since they 
will contribute to a better understanding of genetics. 
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