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The ferric perchlorate-promoted reaction of [60]fullerene (C60) with ethyl 2-methylacetoacetate generates fullerenyl hemiketal as 
a mixture of trans and cis isomers, while the reaction with ethyl acetoacetate gives a C60-fused dihydrofuran derivative. A possi-
ble reaction mechanism for the formation of these products is proposed. 
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Various types of reactions for the functionalization of full-
erenes have been developed over the past 20 years [1–3]. 
However, metal salt-promoted reactions of fullerenes have 
been somewhat neglected. Recently, we have investigated 
[60]fullerene (C60) reactions mediated by metal salts such as 
Mn(OAc)3 [4–16], Cu(OAc)2 [7], Pb(OAc)4 [12], Pd(OAc)2 
[17,18], and Fe(ClO4)3 [19–21] to synthesize certain desired 
fullerene derivatives. Fe(ClO4)3 has been employed to pro-
mote the reaction of C60 with nitriles [19], aldehydes/ketones 
[20], and substituted malonate esters [21] to prepare C60- 
fused oxazoles, 1,3-dioxolanes, and lactones. In continua-
tion of our interest in the Fe(ClO4)3-mediated reactions of 
C60 [19–21], we report the Fe(ClO4)3-promoted reaction of C60 
with representative -keto esters such as ethyl 2-methylace-       
toacetate and ethyl acetoacetate to give fullerenyl hemiketal 
and C60-fused dihydrofuran derivatives. 

1  Experimental 

1.1  Materials  

C60 (>99.9 %) was purchased from Henan Puyang Co., Ltd. 

Ferric(III) perchlorate was purchased from Alfa Aesar. 
Ethyl 2-methylacetoacetate, ethyl acetoacetate, acetic anhy-
dride, and o-dichlorobenzene were all AR grade reagents. 
The reaction products were purified by flash chromatog-
raphy over silica gel (200–300 mesh). 

1.2  Instrumentation 

The UV-vis spectra were measured in CHCl3 using a Shi-
madzu UV-2501 PC spectrometer. IR spectra were taken on 
a Shimadzu FTIR-8600 spectrometer with KBr pellets. 1H 
NMR (300 MHz) and 13C NMR (75 MHz) spectra were 
recorded on a Bruker AVANVE 300 spectrometer. Mass 
spectra were recorded on a BIFLEXIII MALDI-TOF mass 
spectrometer with 4-hydroxy--cyanocinnamic acid as the 
matrix. 

1.3  Preparation of fullerenyl hemiketal 1 

A mixture of C60 (36.0 mg, 0.05 mmol), ethyl 2-methylace-     
toacetate (15 L, 0.1 mmol), and acetic anhydride (95 L, 
1.00 mmol) was dissolved in o-dichlorobenzene (6 mL), and 
then the resulting solution was deoxygenated by means of a 
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nitrogen stream for 10 min. After Fe(ClO4)3·xH2O (46.0 mg, 
0.10 mmol, dissolved in 1 mL of acetonitrile) was added, 
the reaction mixture was heated under a nitrogen atmos-
phere with vigorous stirring in an oil bath preset at 80°C for 
20 min. The reaction solution was passed through a silica 
gel (100–200 mesh) plug to remove any insoluble material. 
After the solvent was vacuum evaporated, the residue was 
separated on a silica gel (100–200 mesh) column with car-
bon disulfide as the eluent to give unreacted C60 (24.2 mg, 
67%), then with carbon disulfide/toluene as the eluent for 
trans-1 (6.5 mg, 15%) and then cis-1 (2.6 mg, 6%). trans-1: 
1H NMR (300 MHz, CS2/CDCl3)  5.70 (s, 1H), 4.34 (dq,  
J = 10.8, 7.1 Hz, 1H), 4.25 (dq, J = 10.8, 7.1 Hz, 1H), 2.33 (s, 
3H), 2.11 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); 13C NMR (75 
MHz, CS2/CDCl3 with Cr(acac)3 as the relaxation reagent, 
all 1C unless indicated)  172.97, 151.80, 151.00, 150.97, 
148.22, 147.00, 146.60, 145.68, 145.51 (2C), 145.44, 
145.32 (2C), 145.15, 145.11, 145.03, 144.95, 144.82, 
144.79, 144.76, 144.70, 144.43, 144.30 (2C), 144.23 (2C), 
144.20, 144.17 (2C), 143.83, 143.68, 143.50, 143.42, 
141.99, 141.90, 141.84, 141.78, 141.68 (2C), 141.45 (2C), 
141.33 (3C), 141.08, 140.99, 140.83 (2C), 140.59, 140.50, 
140.23, 138.90, 138.67, 138.13 (2C), 137.75, 137.21, 
137.16, 136.37, 107.65, 97.55 (sp3-C of C60), 72.83 (sp3-C 
of C60), 63.74, 61.63, 22.99, 22.76, 13.33; FT-IR ν/cm1 
(KBr) 2924, 1708, 1432, 1378, 1279, 1111, 1042, 1011, 938, 
575, 526; UV-vis (CHCl3) max/nm (log ) 256 (4.93), 314 
(4.45), 427 (3.24), 691 (2.24); MS (-MALDI TOF) m/z 880 
(M). cis-1: 1H NMR (300 MHz, CS2/CDCl3)  4.50 (dq, J = 

10.9, 7.1 Hz, 1H), 4.37 (dq, J = 10.9, 7.1 Hz, 1H), 3.12 (s, 
1H), 2.15 (s, 3H), 2.08 (s, 3H), 1.48 (t, J = 7.1 Hz, 3H); 13C 
NMR (75 MHz, CS2/DMSO-d6 with Cr(acac)3 as the relax-
ation reagent, all 1C unless indicated)  169.39, 152.56, 
152.16, 151.98, 148.10, 146.10, 145.51, 144.59, 144.40 
(2C), 144.35, 144.32, 144.29 (2C), 144.08 (3C), 144.03, 
143.93, 143.79, 143.72, 143.52, 143.47, 143.39, 143.21 
(3C), 143.19, 143.10, 143.04, 142.86 (2C), 142.56, 141.08, 
141.02, 140.79, 140.71 (3C), 140.45, 140.40 (2C), 140.25 
(2C), 140.13, 140.08, 140.01, 139.76, 139.69, 139.66, 
139.53, 137.71, 137.57 (2C), 137.44, 137.39, 136.82, 
136.26, 135.98, 105.67, 95.78 (sp3-C of C60), 73.52 (sp3-C 
of C60), 65.88, 59.85, 21.10, 17.46, 13.10; FT-IR ν/cm1 
(KBr) 2924, 1728, 1448, 1381, 1256, 1158, 1111, 1011, 932, 
575, 527; UV-vis (CHCl3) max/nm (log ε) 255 (5.00), 314 
(4.52), 427 (3.30), 693 (2.49); MS (-MALDI TOF) m/z 880 
(M). 

1.4  Preparation of fullerenyl dihydrofuran 2 

Using the same procedure as for the preparation of fullerene 
hemiketal 1, the reaction of C60 (36.0 mg, 0.05 mmol) with 
ethyl acetoacetate (13 L, 0.1 mmol), Fe(ClO4)3·xH2O (46.0 
mg, 0.10 mmol), and acetic anhydride (95 L, 1.00 mmol) 
at 80°C for 30 min gave the unreacted C60 (26.8 mg, 74%) 

and C60-fused dihydrofuran derivative 2 [7,22–24] (8.4 mg, 
20%). 

2  Results and discussion 

Our success in the Fe(ClO4)3-mediated reaction of C60 with 
substituted malonate esters [21] prompted us to extend the 
substrates to -keto esters such as ethyl 2-methylacetoace-      
tate and ethyl acetoacetate in the presence of acetic anhy-
dride (Ac2O). 

The reaction of C60 with ethyl 2-methylacetoacetate was 
found to exclusively give hemiketal 1 as a mixture of the 
trans and cis isomers rather than a C60-fused lactone (Scheme 
1). The trans and cis isomers of hemiketal 1 differed signif-
icantly in polarity and could be easily separated by column 
chromatography over silica gel giving 15% and 6% yields 
(45% and 18% based on consumed C60), respectively.  

 
Scheme 1  Fe(ClO4)3-mediated reaction of C60 with 2-methylacetoacetate 
in the presence of Ac2O. 

The identities of both trans-1 and cis-1 isomers were 
confirmed by MS, 1H NMR, 13C NMR, FT-IR, and UV-vis 
spectra. In the 1H NMR spectra of both trans-1 and cis-1 
isomers, the two methylene protons in the ethoxy group 
were nonequivalent and split as two double quartets due to 
the adjacent chiral center, which was analogous to those of 
C60-fused lactones [21]. The assignments of trans-1 and 
cis-1 isomers were confirmed by nuclear Overhauser en-
hancement spectroscopy (NOESY) spectra (Figure 1), where 
a cross peak between the methyl protons (1.48) of the eth-
oxy group and hydroxyl proton (3.12) could only be found 
in the cis-1 isomer. 13C NMR spectra of trans-1 and cis-1 
isomers showed similar spectral patterns. The two sp3-carbons 
of the C60 cage were located at 72.83–73.52 and 95.78– 
97.55, and the observation of at least 46 lines in the 135– 
153 range for the 58 sp2-carbons of the C60 skeleton includ-
ing some overlapped ones was consistent with the C1 sym-
metry of their molecular structures. The chemical shift for 
the hemiketal carbon in the trans isomer (107.65) was 
shifted downfield about 2 relative to that in the cis isomer 
(105.67). A similar phenomenon has been previously ob-
served [25,26]. 
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Figure 1  (a) NOESY spectra of the trans isomer of hemiketal 1. (b) 
NOESY spectra of the cis isomer of hemiketal 1.  

Theoretical calculations were further exploited to support 
our assignments of trans-1 and cis-1 isomers. The relative 
energy of the trans-1 and cis-1 isomers calculated at the 
B3LYP/6-31G* level showed that the trans-1 isomer was 
0.65 kcal/mol more stable than the cis-1 isomer (Figure 2), 
consistent with the higher product yield of the trans-1 isomer. 

Fullerenyl hemiketals and kemiacetals are scarce in the 
literature [27]. Here we provide a new protocol to access 
fullerenyl hemiketals via a simple one-pot procedure. In 
addition, the hydroxy group of hemiketals 1 has the poten-
tial for further functionalization such as esterification and 
etherification to obtain various fullerene derivatives. 

In comparison, the reaction of C60 with ethyl acetoacetate 
afforded neither a C60-fused lactone nor a hemiketal deriva-
tive, instead yielding mainly the known C60-fused dihydro-
furan derivative 2 [7,22–24] in 20% yield (77% based on 
consumed C60) (Scheme 2). 

Although the exact pathway is not known for the for-
mation of hemiketal 1 and C60-fused dihydrofuran deriva-
tive 2, a possible reaction mechanism is shown in Scheme 3.  

 

Figure 2  Optimized geometries of the trans and cis isomers of hemiketal 1. 

 

Scheme 2  Fe(ClO4)3-mediated reaction of C60 with ethyl acetoacetate in 
the presence of Ac2O. 

 

Scheme 3  Proposed reaction mechanism for the formation of products 1 
and 2.  

Ethyl 2-methylacetoacetate, or ethyl acetoacetate reacts with 
Fe(ClO4)3 to generate radical A along with the formation of 
Fe(ClO4)2 and HClO4 [28,29]. Addition of radical A to C60 
produces fullerenyl radical B, which undergoes intramole-     
cular cyclization to give radical C. Oxidation of radical C 
by another molecule of Fe(ClO4)3 results in cation D ac-
companied by counteranion ClO4

 and Fe(ClO4)2. However, 
an alternative pathway leading to D via the oxidation of B 
followed by cyclization cannot be excluded. The addition of 
H2O, originated from the water of hydration in Fe(ClO4)3· 
xH2O or concomitant water in the system, to cation D with 
the loss of H+ results in E, which is actually hemiketal 1 
when R = Me. In the case of R = H, elimination of H2O from 
intermediate E catalyzed by H+ gives the C60-fused dihy-
drofuran derivative 2. Other alternative reaction mechanisms 
may exist. For example, when ethyl acetoacetate is em-
ployed as the substrate, a reaction pathway via enolate salt 
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formation followed by homolytical addition to C60 and sub-
sequent cyclization may also operate [7]. In addition, direct 
loss of H+ from intermediate D can also produce a C60-fused 
dihydrofuran derivative 2 when R = H. 

3  Conclusion 

The Fe(ClO4)3-mediated reaction of C60 with -keto esters 
such as ethyl 2-methylacetoacetate and ethyl acetoacetate 
under similar reaction conditions resulted in fullerenyl 
hemiketal 1 and C60-fused dihydrofuran derivative 2, re-
spectively. A plausible reaction mechanism involving the 
same type of intermediates in the first several steps is pro-
posed to explain the formation of both products 1 and 2. 
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