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Keccak is one of the five hash functions selected for the final round of the SHA-3 competition, and its inner primitive is a permu-
tation called Keccak-f. In this paper, we observe that for the inverse of the only nonlinear transformation in Keccak-f, the algebraic 
degree of any output coordinate and the one of the product of any two output coordinates are both 3, which is 2 less than its size 
of 5. Combining this observation with a proposition on the upper bound of the degree of iterated permutations, we improve the 
zero-sum distinguisher for the Keccak-f permutation with full 24 rounds by lowering the size of the zero-sum partition from 21590 
to 21575. 
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Zero-sum distinguishers, introduced by Aumasson and 
Meier and presented at the rump session of CHES 2009, are 
a method for generating zero-sum structures for iterated 
permutations, which combine higher order differential tech-
nique with inside-out technique and are mainly decided by 
the algebraic degree of the permutation. In the public com-
ment on the NIST Hash competition 2010, zero-sum distin-
guishers are shown to be deterministic and valid, although 
they generate zero-sum structures with only a small ad-
vantage over the generic method. Zero-sum distinguishers 
can also be used to create partitions of inputs into many 
different zero-sum structures for the permutation [1]. 

Keccak is a family of cryptographic sponge functions and 
is one of the five hash functions selected for the third (and 
final) round of the SHA-3 competition. Its core component 
is a permutation named Keccak-f, which is composed of 
several iterations of five transformations. A first zero-sum 
distinguisher for the Keccak-f permutation with 16 rounds 
was given in 2009. Since then, zero-sum distinguishers for 

the Keccak-f permutation with a greater number of rounds 
were obtained [1,2], with the smallest known zero-sum par-
tition for the Keccak-f permutation with full 24 rounds hav-
ing size 21590. 

In this paper, we study the properties of the inverse of the 
nonlinear transformation in Keccak-f, and observe that the 
algebraic degree of the product of any two output coordi-
nates of this inverse is 2 less than its size. This enables us 
construct a zero-sum partition for the Keccak-f permutation 
with full 24 rounds of size 21575. 

1  Zero-sum distinguishers 

We first introduce the notions of higher order derivatives 
related to zero-sum distinguishers. 

1.1  Higher order derivatives 

Higher order derivatives were introduced into cryptography 
by Lai in [3].  
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Definition 1.  Let f(x) be a Boolean function from 2
nF  

to F2. The derivative of f at point a 2
nF  is defined by 

( ) ( ) ( )a f x f x a f x    . 

The i-th (i>1) derivative of the function f at points {a1, 
a2, …, ai} is defined by 

 ( ) ( 1)

1 1 1,..., ,...,( ) ( )



   

i i

i i ia a a a af x f x , 

where 
( 1)

1 1,..., ( )
i

ia a f x



  is the (i1)-th derivative of f at points 

{a1, a2, … , ai-1}. The 0-th derivative of f is defined to be f (x) 
itself. 

Higher order derivatives should be computed at points 
that are linearly independent, otherwise the derivative will 
trivially be zero. Note that the degree of the derivative of a 
function is at least 1 less than the degree of the function. 
This implies that the (d+1)-th derivative of an n-variable 
Boolean function of degree d is zero, and this is used in 
many cryptanalysis methods including zero-sum distin-
guishers. 

1.2  Zero-sum properties 

Note that the permutation used in a hash function does not 
depend on a secret parameter, and this property of the per-
mutation can be exploited from the middle. The zero-sum 
property introduced by Aumasson and Meier is based on 
higher order differential technique and inside-out technique. 
The main idea is to take higher order derivatives at initial 
states inverted from an intermediate internal state subspace, 
which differs from traditional higher order differential dis-
tinguishers that take derivatives directly from the initial 
state subspace. So zero-sum distinguishers lower the degree 
of higher order derivatives by nearly half with the added 
cost of some inverted computations. 

We now give the definitions of zero-sum and zero-sum 
partitions. Further details can be found in [1]. 

Definition 2.  Let F be a function from 2
nF  into 2

mF . A 

zero-sum for F of size K is a subset {x1, x2, …, xK} 2 nF  of 

elements which sum to zero and for which the correspond-
ing images by F also sum to zero. That is, 

1 1

( ) 0
K K

i i
i i

x F x
 

   . 

Definition 3.  Let P be a permutation from 2
nF  into 2

nF . 

A zero-sum partition for F of size K=2k is a collection of 
2nk disjoint zero-sums Xi={xi,1, xi,1, … ,

,2ki
x } 2 nF . That is, 
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2  Description of the Keccak-f permutation 

The size of Keccak-f is 1600, and the state can be repre-
sented by a 3-dimensional binary matrix of size 5×5×64. 
The five transformations are respectively called , , ,  
and . Only the transformation  is nonlinear, its degree 
being 2 while the degree of its inverse is 3. The Boolean 
components of  are listed in Table 1. More details of the 
Keccak-f permutation are available in the website of the 
NIST Hash competition. 

3  Generalized and intuitive upper bound of the 
degree of iterated permutations 

High algebraic degree is an important design principle for 
cryptographic algorithms. It is difficult to determine the 
algebraic degree when the number of rounds in the algo-
rithm is too big. Estimating the upper bound on the algebra-
ic degree is relatively feasible. In [4], Canteaut and Videau 
gave an upper bound on the degree of composition of non-
linear functions and used it to estimate the algebraic degree 
of the whole algorithm. In the rump session of Crypto 2010, 
Boura et al. [2] proposed an improved upper bound for iter-
ated permutations with a nonlinear layer composed of paral-
lel applications of small balanced S-boxes. We next discuss 
this latter upper bound and give a proposition for a visual-
ized bound in some cases. 

Theorem 1[2]. Let f be a function from 2
nF  into 2

nF  

corresponding to the concatenation of m smaller balanced 
S-boxes, S1, ..., Sm, defined over 2

nF . Let k be the maximal 

degree of the product of any k coordinates from any one of 
these smaller S-boxes. Then, for any function G from 2

nF  

into 2
lF , we have 

  deg( )
deg

n G
G F n




  , 
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Most notably, we have 

Table 1  Boolean components of  

Output Corresponding Boolean function 

0 x0+x2+x1x2 

1 x1+x3+x2x3 

2 x2+x4+x3x4 

3 x0+x3+x0x4 

4 x1+x4+x0x1 
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Moreover, if n0 3 and all S-boxes have degree at most   
n0 2, we have 

 
0

deg( )
deg

2

n G
G F n

n


 


 . 

Lemma 1.  Let f be a function from 2
nF  into 2

nF  cor-

responding to the concatenation of m smaller S-boxes, S1, ..., 

Sm, defined over 0

2 .nF  Let k be the maximal degree of the 

product of any k coordinates of any one of these smaller 
S-boxes. If n0 2k 1(k 1) and i n0 1 for any i from 1 
to n0 1, and i n0 2 for any i from 1 to k 1 (k2), then 

0 0 0( )( ) ( ) 0in k n n i      

for any i from 1 to n0 1. 
Proof: When k = 1, then we have 
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When k 2, then we have 

0 0 0 0 0

0 0

0
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in k n n i n k n i

n k n
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First, from Theorem 1, we know that the condition that 
the S-boxes are balanced in confirms that the inequality   
i n0 1 is satisfied for any i from 1 to n0 1. This is not a 
necessary condition, however, and it is not necessary to 
limit the condition to balanced S-boxes. That is, the condi-
tion in Theorem 1 can be generalized. 

Second, note that the parameter  in the theorem is the 

maximum value of 0

0 i

n i

n 



 for i from 1 to n0 1. Lemma 1 

tells us that the positive integer n0 k also suffices in some 

cases. That is, the inequality 0
0

0 i

n i
n k

n 


 


 always holds 

under the conditions of the lemma, so we get  (n0 k). 
With the more generalized condition and more determi-

nate parameter, we have the following intuitive upper bound 
by combining the theorem and the lemma. 

Proposition 1.  Let f be a function from 2
nF  into 2

nF  

corresponding to the concatenation of m smaller S-boxes, 

S1, ..., Sm, defined over 0
2 .nF  Let k be the maximal degree 

of the product of any k coordinates of any one of these 
smaller S-boxes. If n0 2k 1(k 1) and i n0 1 for any i 
from 1 to n0 1, and i n0 2 for any i from 1 to k 1 

(k2), then, for any function G from 2
nF  into 2

lF , we have 

0

deg( )
deg( )

n G
G F n

n k


 


 . 

Actually, when the conditions of Proposition 1 are satis-
fied and n0 is an even number, then the parameter  can be 
improved to n0 k1/2, but a discussion of this is not rele-
vant to this paper. 

4  Improved zero-sum distinguisher for Keccak-f 

4.1  An observation about Keccak-f 

We give the Boolean components of 1 and the product of 
any two output coordinates of the transformation in Tables 
2 and 3 respectively. 

From Table 3, an interesting observation about the in-
verse of the nonlinear layer of Keccak-f can be obtained. 

Observation: For the inverse of the only nonlinear trans-
formation in Keccak-f, the algebraic degree of any output 
coordinate and the one of the product of any two output 
coordinates are both 3, which is 2 less than its size of 5. 

4.2  Improved zero-sum partition for full 24-rounds 
Keccak-f permutation 

Let R denote the Keccak-f round permutation. Note that   

Table 2  Boolean components of 1 

Output Corresponding Boolean function 

0
1 x0+x2+x4+x1x2+x1x4+x3x4+x1x3x4 

1
1 x0+x1+x3+x0x2+x0x4+x2x3+x0x2x4 

2
1 x1+x2+x4+x0x1+x1x3+x3x4+x0x1x3 

3
1 x0+x2+x3+x0x4+x1x2+x2x4+x1x2x4 

4
1 x1+x3+x4+x0x1+x0x3+x2x3+x0x2x3 

Table 3  Product of any two output coordinates of 1 

Output Corresponding Boolean function 

0
11

1 x0+x0x1+x0x2+x0x3+x0x4+x0x2x3+x0x2x4 

0
12

1 x2+x4+x0x2+x0x4+x1x2+x1x4+x3x4+x0x3x4+x1x3x4 

0
13

1 x0+x2+x0x3+x0x4+x1x2+x2x3+x2x4+x3x4+x1x2x3+x1x2x4 

0
14

1 x4+x0x3+x0x4+x1x4+x2x4+x1x2x4+x1x3x4 

1
12

1 x1+x0x1+x1x2+x1x3+x1x4+x0x1x3+x1x3x4 

1
13

1 x0+x3+x0x1+x0x2+x0x4+x1x3+x2x3+x0x1x4+x0x2x4 

1
14

1 x1+x3+x0x1+x0x3+x1x4+x2x3+x3x4+x0x2x3+x2x3x4 

2
13

1 x2+x0x2+x1x2+x2x3+x2x4+x0x2x4+x1x2x4 

2
14

1 x1+x4+x0x1+x1x2+x1x3+x2x4+x3x4+x0x1x2+x0x1x3+x0x3x4+x2x3x4 

3
14

1 x3+x0x3+x1x3+x2x3+x3x4+x0x1x3+x0x2x3 
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is the only nonlinear transformation in R. Combining our 
earlier observation and Proposition 1, we have 

    deg( )
deg deg

3

n G
G R G n 

     

and 

   1 1 deg( )
deg deg

2

n G
G R G n  

    , 

where G is any function from 
5

2F  into 2
lF . Our upper 

bounds on the degree of the inverse of Keccak-f are less 
than the bounds in [2] when the number of rounds is more 
than seven. The comparisons are listed in Table 4. 

Combining these upper bounds on deg(R) with those in 
[2] and our lowered upper bounds on deg(R ), we have a 
zero-sum partition of size 21575 for the full Keccak-f permu-
tation. This is smaller than the original size of 21590, as  

Table 4  Comparison of the upper bounds on deg(R)  

Round Bound in [2] Our bound 

1 3 3 

2 9 9 

3 27 27 

4 81 81 

5 243 243 

6 729 729 

7 1309 1164 

8 1503 1382 

9 1567 1491 

10 1589 1545 

11 1596 1572 

12 1598 1586 

13 1599 1593 

14 1599 1596 

15 1599 1598 

16 1599 1599 
 

confirmed in the updated version of [2] appearing in the 
Preproceedings of FSE 2011. Indeed, one can consider the 
intermediate states after the three linear layers ,  and , in 
the 12-th round of Keccak-f in any subspace V correspond-
ing to a collection of 315 rows, because the upper bound of 
the backward 11 rounds is 1572 and that of the forward 12 
rounds is 1536 [2]. 

5  Discussion 

In this paper, we lower the size of a zero-sum partition for 
the Keccak-f permutation with full 24 rounds based on an 
interesting observation about the inverse of the nonlinear 
transformation in the permutation. One can verify that some 
of the products of three output coordinates also have a de-
gree of only 3. This property may be used for more practical 
cryptanalysis of Keccak in the future. 
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