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By presenting the phase properties of bistability in amplitude-modulation atomic force microscopy, we put forward a technique, 
the constant-phase mode, which may eliminate bistability. Using this approach, we keep the phase shift between driving and os-
cillation constant, slightly above 90°. In addition to the adjustment of the free amplitude, we add to amplitude-modulation atom-
ic force microscopy another feedback so that the tip always oscillates in the high-amplitude state. A numerical simulation is car-
ried out to demonstrate that the algorithm prevents bistability effectively. 
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Atomic force microscopy (AFM) [1] is a physics-based 
surface analysis using multiple modern technologies. Since 
its invention in 1986, AFM has rapidly developed into a 
major high-resolution tool for nanotechnology research 
[2,3]. More advanced techniques have been proposed to 
improve the performance of AFM [4,5]. 

Among dynamic imaging modes, amplitude-modulation 
AFM [6] (AM-AFM) is the simplest and most commonly 
used; however, it also faces a serious operational challenge 
of imaging bistability [7–13]. This problem may lead to a 
false image or instability of a scanned image, compromising 
the reliability of that image. Because AM-AFM is widely 
used, how to eliminate the bistability has become an im-
portant issue. 

It may be possible to reduce the bistability by increasing 
the free amplitude A0, enlarging the cantilever spring con-
stant kc, or selecting an appropriate set amplitude Aset [14]. 
However, increasing the free amplitude makes it more like-

ly to damage the probe and sample, and harder probes re-
duce the scanning image resolution. In addition, it is always 
a problem to choose an appropriate set amplitude. It is thus 
necessary to develop other methods to reduce bistability. 

Solares [15,16] proposed the combination of AM-AFM 
with frequency-modulation AFM to yield frequency and 
amplitude modulation AFM (FAM-AFM) and frequency 
and force modulation AFM (FFM-AFM). Although both 
methods prevent imaging bistability, the experimental im-
plementation of FAM-AFM can be challenging because of 
the problem of two control loops, where the external loop 
requires the internal loop to be stable to accurately repro-
duce the sample topography. The FFM-AFM instrument 
does not adjust the cantilever rest position during imaging, 
and sharp topographical features are thus expected to pro-
vide the greatest challenges. 

Phase shift is one of the main parameters in identifying 
the transition between low- and high-state in the bistability. 
In this work, from discussion of the bistability nature, a new 
algorithm is proposed to eliminate bistability and its feasi-
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bility is analyzed. Its effectiveness in eliminating bistability 
is demonstrated in a simulation. 

1  Methods and analysis 

1.1  Equation of motion 

There are many models describing the motion characteris-
tics of the probe in AFM. Two important models are the 
spring oscillator model and the high-harmonics model based 
on the improved Euler-Bernoulli equation [17,18]. To ana-
lyze the effect of the interaction between the tip and sample 
on the tip’s amplitude and phase, the spring oscillator model 
is sufficiently accurate and is the model we adopt in this 
work. In this model, the AFM’s cantilever is taken as a 
spring, the probe as a sphere, and the sample surface as a 
flat surface. The movement of the cantilever is then gov-
erned by [19] 
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where z is the tip-sample distance, zc the cantilever’s equi-
librium position, m the cantilever’s effective mass, Q the 
quality factor, kc the elastic constant, F0 the excitation force, 
0 the resonant frequency, and  the excitation frequency. 
In the following calculation, the tip-sample interaction 
F(zc,z) is based on the Derjaguin-Mäuller-Toporov model 
[20]. The interaction is calculated differently according to 
the interatomic distance a0. For distances larger than a0, the 
tip-sample interaction is calculated from the van der Waals 
force between the sphere and surface [20,21]. For distances 
smaller than a0, the repulsive force between the tip and 
sample is simulated by an indentation force derived from 
Hertz’s model [21,22]. Furthermore, it is assumed that the 
viscosity force is proportional to the deformation velocity 
and contact area. Thus, the interaction force in the contact 
region is given as [19] 

 

 

   

 

c c 02
c

* 3

2
c 0 c2 2

0

0 c c 0

, , ,
6( )

4
,

6 3 3

d
 , ,

d

AR
F z z z z a

z z

AR E R
F z z a z z

a

R z
a z z z z a

h t




   


    



      (2)

 

where A is the Hamaker constant, R is the radius of the tip, 
E and ν are respectively the elastic modulus and Poisson 
ratio, E*=[(1v2

tip)/Etip+(1v2
sample)/Esample]

1,  is the viscosi-
ty coefficient, and h is the thickness of the sample. 

1.2  Bistability  

Unless otherwise stated, we assume a tip curvature radius  
R = 20 nm, cantilever free resonant frequency f0 = 44.8 kHz 

and excitation frequency f = 44.8 kHz, free oscillation am-
plitude A0 = 10 nm, cantilever constant kc = 15 N/m, quality 
factor Q = 100, Hamaker’s constant A = 1019 J, sample and 
probe Poisson coefficients υsample = υtip = 0.3, sample Young 
modulus Esample = 1.2 GPa, probe modulus Etip = 130 GPa, 
viscosity coefficient  = 0, and interatomic distance a0 = 

0.25 nm. 
The oscillation amplitude A is the critical experimental 

parameter measured in AM-AFM. It reflects the change in 
sample height. The numerical solution of the probe motion 
equation shows that too large E* or too small  may lead to 
two different solutions, a low-amplitude solution and high- 
amplitude solution, ZH(L) = Z0 + AH(L) cos (t – H(L)) [14]. 

The dependence of the low- and high-oscillation solu-
tions on the remainder of the tip-surface separation is plot-
ted in Figure 1(a). The amplitude curve shows the separa-
tion as the tip retracts (solid line) and then approaches from 
(dotted line) the surface. When the tip-sample distance is 
6.9 to 10 nm, both branches provide a value of the ampli-
tude that matches the tip-sample distance; i.e. there is bista-
bility of the solid line for the high state and the dotted line 
for the low state.  

1.3  Relationship between phase shift and bistability 

The dependence of the phase shift between a tip position 
signal and excitation signal on the remainder of the tip-sur-     
face separation is plotted in Figure 1(b). The parameters are 
the same as in Figure 1(a). The solid line corresponds to the 
high state and dotted line to the low state. From 90°, the 
phase shift in the low state decreases as the tip-surface sep-
aration decreases. When the separation is 6.9 nm, there is a 
change in the phase shift from the low to the high state; i.e. 
from below 90° to above 90°. In the high state, different 
behavior is observed. The phase shift decreases monoton-
ically from 0° to 90° as the tip-surface separation increases. 
The phase shift is always greater than 90° before the tip  

 

Figure 1  (a) Amplitude as a function of tip-sample separation; (b) phase 
shift as a function of tip-sample separation. 
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amplitude equals the free amplitude. 
On the basis of the above, when the tip is working in the 

high state, the phase shift is maintained between 90° and 
0°, while the phase shift is maintained between 180° and 
90° in the low state. Experimental phase-shift curves re-
producing the above features have been obtained for SiO2, 
polyvinyl alcohol and mica surfaces [23–26]. 

Figure 2 presents the scanning images and its phase shift 
in the amplitude-modulation mode. The dotted line is the 
sample curve, the solid line the forward curve and the 
dashed line the backward curve. The parameters of the 
scanning image are free oscillation amplitude A0 = 10 nm, 
working amplitude set at Aset = 9 nm, scanning speed v = 20 
m/s, ratio of sampling period to oscillation period of 10, 
and proportional-integral-derivative (PID) parameters kP = 

0.04, kI = 0.2, and kD = 0.0. 
As in Figure 1, bistability is observed when the ampli-

tude falls between 6.9 and 10 nm. When the amplitude is set 
at 9 nm, the system is prone to bistable behavior as long as 
the sample height changes. 

The trace and retrace scan lines are presented in Figure 
2(a). These two lines do not coincide with each other. The 
deviation in the vertical height between forward and back-
ward imaging is about 1.85 nm. This deviation is exactly the 
amplitude difference between the two states. Therefore, the 
scanning image’s instability is caused by the bistability and 
the system produces a false image.  

Figure 2(b) clearly shows the bistability effect on the 
scanning image. In the forward curve, the phase shift is less 
than 90° and the tip works in the low state initially. When  

 

Figure 2  Bistability of the scanning curve. (a) Scanning image curve; (b) 
phase-shift curve.  

the tip scans the second step, the tip-sample distance de-
creases and the phase shift stabilizes at above 90°. There-
fore, the tip changes from low-state to high-state. However, 
in the backward curve, it is seen that the tip always works in 
the low state. As a result, there is deviation in the vertical 
height between the forward and backward curves of Figure 
2(a). Therefore, using the phase-shift curve is an effective 
way to detect bistable behavior. 

1.4  Effect of excitation amplitude changes on tip motion 

If the phase difference between the tip motion signal and 
excitation signal is always bounded within 90° to 0° and 
the tip always works in the high state, there is no state shift 
and imaging bistability is prevented. This can be achieved 
by adjusting the free amplitude. However, changing free 
amplitude affects the dependence curve of the amplitude 
and the position of equilibrium. Therefore, how to adjust the 
free amplitude to gain the best scanning image is discussed 
next. Here we set Aset as 9 nm. 

The dependence of the tip-sample distance on the free 
amplitude under the same amplitude is shown in Figure 3(a). 
The range of free amplitude is Aset–Aset × 1.5; i.e. 9–13.5 nm. 

The open circles in Figure 3(a) represent the curve of in-
creasing free amplitude. When the free amplitude A0 is less 
than or equal to 11.2 nm, the tip works in the low state. When 
A0 is greater than 11.2 nm, the tip works in the high state. 

 

Figure 3  (a) Tip-sample separation; (b) amplitude; (c) average force 
dependence on free amplitude for the same set amplitude. 
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Solid circles in Figure 3(a) represent the decreasing free 
amplitude, with the tip working in the high state. When the 
free amplitude A0  9 nm, the tip is in free oscillation and the 
curve may jump greatly at 9 nm. Therefore, the minimum 
free amplitude should be slightly higher than Aset. In this 
work, the minimum free amplitude is Aset × 1.001. The maxi-
mum tip-sample distance is 8.11 nm (A0 = 9 nm) and the mini-
mum tip-sample distance is 7.62 nm (A0 = 13.5 nm). There-
fore, the range is about 0.49 nm. The new error (0.49 nm) is 
only 26.5% of the error (1.85 nm) caused by bistability. 

The solid circles in Figure 3(b) show that the phase shift 
is always greater than 90°. Therefore, the tip works in the 
high state and the phase shift decreases as the free ampli-
tude decreases. Figure 3(b) also shows the curve of the in-
creasing free amplitude (open circles) and the phase shift is 
less than 90°. Therefore, the tip works in the low state and 
the phase shift decreases as the free amplitude increases. 
When the free amplitude increases to 11.2 nm, the tip jumps 
from the low state to the high state, and the phase shift be-
comes greater than 90°. Therefore, when the phase shift is 
less than 90°, the tip may work in the low state. However, 
the tip’s state jumps back to the high state with increasing 
free amplitude. Thus, we should force the tip to stay in the 
high state to prevent bistability. 

The relationship between the free amplitude and the av-
erage force of the tip-sample interaction during a cycle is 
represented in Figure 3(c). When the tip works in the high 
state (solid circles), the phase shift decreases as the free 
amplitude decreases, and the average tip-sample force also 
reduces. Therefore, the phase shift should be set between 
90° and 0° to keep the tip in the high state. To make the 
average tip-sample force as small as possible, the phase 
shift should be set as close as possible to 90°. However, 
the phase shift cannot be exactly 90° to avoid instability. 

2  Simulation and results 

On the basis of the above discussion, we should keep the tip 
in the high state by changing the free amplitude to prevent 
bistability. However, the free amplitude cannot be increased 
too greatly to avoid damaging the samples. In the following, 
a simulation system is built and the results are analyzed. 

The framework of the simulation system is shown in 
Figure 4. The external loop is the same as in the amplitude- 
modulation mode. We compare the tip’s actual amplitude 
with the set amplitude every 10 oscillation cycles (i.e. one 
sampling period) to obtain the error that is conveyed into 
the PID controller. The piezoelectric ceramic height is ad-
justed accordingly. In the internal loop, we compare the 
actual phase shift with the set phase shift every one oscilla-
tion cycle to obtain the error that is conveyed into the PID 
controller. We thus obtain a new free amplitude. 

The design of the PID that control the free amplitude are  

 

Figure 4  Schematic diagram of the simulation system.  

as follows [27]: 
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New free amplitude: 

 0 set aux( ) ( ).A i A A i  (5) 

The auxiliary value Aaux is a parameter. Additionally, the 
original PID parameters are still available with the addition 
of the auxiliary value Aaux even when the predetermined 
amplitude and quality factor change. To prevent system 
instability and contain the error caused by the change in free 
amplitude, the free amplitude is limited to between Aset × 

1.001 and Aset × 1.5.  
On the basis of the above theory, we carry out a simula-

tion using five coupled fourth-order Runge-Kutta algorithms. 
The chosen parameters are a set amplitude Aset = 9 nm, phase 
shift setpoint = 70°, and free amplitude A0≈9.55 nm corre-
sponding to Figure 3(b). The PID parameter values control-
ling the free amplitude are kP

*
 = 1, kI

*
 = 0.002, and kD

*
 = 2, and 

the other parameters are the same as in Figure 2. 
Figure 5 shows that the relationship between the ampli-

tude and the tip-sample distance in the constant-phase-shift 
amplitude modulation is quite linear. Additionally, the two 
curves of increasing tip-sample distance and decreasing 
tip-sample distance overlap, indicating that the method can 
effectively eliminate bistability. With the tip’s amplitude 
increasing, the free amplitude increases linearly, thus pro-
ducing a constant phase shift. 

The scanning curve of the simulation in the constant- 
phase amplitude modulation is shown in Figure 6(a) and the  
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Figure 5  Amplitude curve for constant phase.  

scanning curve compares better with Figure 2. The trace and 
retrace curves are at the same height. Figure 6(b) shows the 
phase-shift curve. The phase shift is mostly equal to 70°, 
and the region of the phase shift being less than 90° is rel-
atively narrow. Therefore, bistability has been effectively 
avoided. 

In simulation, the ratio (Aset/A0) between the set ampli-
tude and free amplitude is 0.9424. This high ratio easily 
leads to bistability in traditional AM-AFM. Figure 3(c) 
shows that the higher the Aset/A0 ratio, the smaller the inter-
action between tip and sample. However, when the phase 
shift is less than 90°, as the tip scans the rising step of the 
sample, the free amplitude suddenly becomes large, making  

 

Figure 6  Simulation scanning curve in the constant-phase mode. 

the interaction force between the tip and sample slightly 
greater in the constant-phase mode than in conventional 
AM-AFM.  

3  Conclusion 

In this work, we propose AM-AFM with constant phase to 
prevent bistability. Simulation results show that the phase 
shift can distinguish high and low states of bistability. The 
high-state phase shift is within 90° to 0°, and the low-state 
phase shift is within 180° to 90°. Therefore, when we 
adjust the free amplitude to limit the phase shift to a fixed 
value between 90° and 0°, we keep the tip in the high state, 
thereby preventing bistability.  

Simulation analysis shows when the amplitude Aset is set 
to 9 nm, and the free amplitude changes between Aset and 
Aset × 1.5, the largest deviation in the balance position is 
only 26.5% of the scanning deviation caused by the bista-
bility. Additionally, it is concluded that the tip can change 
indeed from a low to high state by increasing the free am-
plitude. The closer the set phase shift is to 90°, the smaller 
the free amplitude and the smaller the tip-sample interaction. 
The simulation results verify the feasibility of the proposed 
system, and the overall performance is very good. The re-
sults indicate that AM-AFM in constant-phase mode is 
more stable than conventional AM-AFM. 
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