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We propose a mean-field Bak-Sneppen (MFBS) model with varying interaction strength. The interaction strength, here denoted 
by , specifies the degree of interaction, and varies smoothly between 0 for no interaction and 1 for full interaction (restoring the 
original BS model). Our simulations of the MFBS model reveal some interesting features. When  is non-zero, the MFBS model 
can evolve to a self-organized critical (SOC) state. The critical exponent of the avalanche size distribution, , is insensitive to 
changes in . The critical exponent of average avalanche size, , and the avalanche dimension exponent, D, both increase slightly 
with  < 0.5 but remain constant if  > 0.5. The critical threshold fc decreases almost linearly with . 

Bak-Sneppen model, self-organized criticality, critical exponents 

 

Citation:  Li W, Luo Y, Wang Y F, et al. A mean-field Bak-Sneppen model with varying interaction strength. Chinese Sci Bull, 2011, 56: 36393642, doi: 
10.1007/s11434-011-4654-1 

 

 
 
Self-organized criticality (SOC) proposed by Bak et al. [1] 
can be used to explain the origin of power laws displayed 
by many different systems, such as forest fires [2–4] and 
power systems [5,6].  

The Bak-Sneppen (BS) evolution model [7] is a proto-
type displaying SOC. The BS model mimics the biological 
evolution in a very simple but most characterized way: Ld 
species are located on a d-dimensional lattice of linear size 
L. Initially, Ld random numbers P(f), chosen from a uniform 
distribution between 0 and 1, are assigned independently to 
each species that reflects the fitness of that species. At each 
time step, the global extremal site, i.e. the species with the 
smallest fitness within the system, and its 2d nearest neigh-
bors are assigned new random numbers also chosen from 
the same P(f). The updates continue until a stationary state 
is reached where the density of the fitness is uniform above 
fc and vanishes under this critical threshold. 

The BS model has received much attention since its in-
troduction [8,9]. It features behaviors such as avalanches 

created when there is a cascade of fitness changes below the 
threshold. Li and Cai [10] introduced the so-called LC-ava-     
lanche based on the average fitness as variable. Some exact 
results have been found for the LC-avalanche [11,12]. Fol-
lowing Li and Cai, another avalanche has been defined [13]. 
The application of LC-avalanche has also been extended to 
the analysis of stock markets [14,15]. 

We focus on the failing of the original BS model in not 
explicitly treating the strength of the interactions, namely, 
when the extremal site and its nearest neighbors are updated 
at the same time. This is not true in real situations; that is, it 
is necessary to distinguish the strength of interactions. We 
have already considered such situations in [16] by relating 
the interaction strength to the respective fitness of each 
neighbor. Here, we introduce an even simpler modified BS 
model by introducing a form of interaction strength; we call 
this the mean-field Bak-Sneppen (MFBS) model with in-
teraction strength. We will see that this model may facilitate 
our simulations. Our ultimate aim is that this modified ver-
sion enables theoretical aspects of the model to be studied in 
more detail. 
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1  A mean-field Bak-Sneppen model 

Our mean-field Bak-Sneppen model is defined as follows: 
(1) Ld species are located on a d-dimensional lattice of 

linear size L. Initially, Ld random numbers, chosen from a 
uniform distribution between 0 and 1, P(f), are assigned 
independently to each species as fitness. 

(2) At each iteration, the smallest fitness within the sys-
tem will be updated by a random number from P(f). The 
fitness of its 2d nearest neighbors will be updated with ran-
dom numbers also taken from P(f), but with probability α 
fixed in the range 0<<1. 

(3) Repeat (2). 
As stated above, we interpret  as interaction strength. 

Since  is fixed during iterations and is independent of fit-
ness, the model has characteristics of a mean-field approach. 
If  is set to zero, there is no interaction and all fitness val-
ues will eventually become unity where no SOC can be ob-
served. If  is set to unity, the original BS model is restored. 
In between this range, we have an infinite number of MFBS 
models, the features of which we study extensively here.  

2  Simulation results 

We shall first generate data from the MFBS model under 
various conditions. Our basic set-up is: d=1, L=10000,  is 
incremented between 0 and 1 in steps of 0.1. For each , we 
ran 100 simulations with different initial conditions; most 
results obtained (mainly critical exponents and critical thresh-      
old fc) are averaged over 100 different realizations. 

2.1  Avalanche size distribution 

Our simulations reveal that, as long as  is greater than 0, 
the MFBS model can display SOC characteristics, namely, a 
power-law distribution for the avalanche sizes. Normally, 
we need to observe the avalanches based on fc. However, 
one knows that the critical point cannot be precisely identi-
fied. An alternative way is to choose an auxiliary parameter 
f0 close to fc (we will give details below how to obtain the 
critical value numerically) and observe the so-called f0-ava-      
lanches near the critical point. For a certain value of f0, an 
f0-avalanche of size S is defined as a sequence of S succes-
sive events for which the smallest fitness fmin< f0 is confined 
between two events when fmin> f0. This definition ensures 
that the so-called mutation events during an avalanche are 
spatially and temporally correlated. This also guarantees the 
hierarchical structure of avalanches: larger avalanches con-
sist of smaller ones. 

Therefore, the avalanche size distribution can be de-
scribed by  

   ~ ,


P S S  (1) 

where  is the critical exponent for the f0-avalanche as f0 
approaches fc.  

In Figure 1, we display a log-log plot of the avalanche 
size distribution of MFBS setting =0.5. To reduce the sta-
tistical errors we smooth the data points using bins of ex-
ponential width. Here  is measured to be 0.890±0.002 in 
this case. We also measured  for different ′s; these are 
plotted in Figure 2 which shows that  is insensitive to 
changes in . This means that the nature of the model is 
nearly independent of the interaction details. The value of  
for =1 is consistent with that measured in [7]. 

2.2  Avalanche dimension 

It can be inferred that, an avalanche is a compact cluster 
which relates spatial and temporal dimensions. Analogous 
to fractals, one can define the number of sites covered by an 
avalanche:  

 

Figure 1  Avalanche size distribution for MFBS with = 0.5. 

 

Figure 2  The dependence of critical exponent  on interaction strength . 
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 /
cov ~ ,D dn S  (2) 

where d is the dimension, S the avalanche size, and D is 
called the avalanche dimension. 

Figure 3 shows in a log-log plot the variation of ncov with 
S for =0.7, from which we obtain D=2.349±0.002. We 
also measured the values of D for different , which is 
graphed in Figure 4. Clearly D increases slightly with  if 
the latter is less than 0.5; if  is greater than 0.5, D is nearly 
constant with . Our measurement of D at =1 is consistent 
with that from [8].  

2.3  Average avalanche size and critical fitness 

According to the scaling requirement of critical phenomena, 
the average size of f0-avalanches should diverge as the crit-
ical point is approached. Therefore, for avalanche size, we 
assume the following scaling ansatz:  

 

Figure 3  Avalanche dimension for MFBS with =0.7. 

 

Figure 4  Dependence of avalanche dimension on . 

  
0 c 0~ ,fS f f
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where  is the critical exponent for the average size, and fc is 
the critical threshold. According to [3], an exact equation 
can be derived which relates  and fc:  

    
0cov c 0 01 ,   - -fn f f f  (4) 

where f0 is chosen close to fc. 
Based on eq. (4), we have calculated  and fc for different 

. Figure 5 displays the plot f0 vs.(1f0)/<ncov> for =0.7 
from which we have =2.720±0.001 and fc=0.828±0.001. 

Figures 6 and 7 show the dependence of  and fc on , 
respectively. As can be seen,  rises slightly with a decreas-
ing rate before peaking at about =0.5 and remaining con-
stant thereafter, whereas fc falls nearly linearly with .  and 
fc for =1 are in agreement with previous results [3]. 

 

Figure 5  Measurement of critical exponent  and critical threshold fc for 
MFBS with =0.4. 

 

Figure 6  Dependence of  on . 
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Figure 7  Dependence of critical threshold fc on . 

3  Discussion and conclusions 

We presented a MFBS model by introducing a parameter  
to describe the interaction strength among nearest neighbors. 
We find that as long as the interaction strength is non-zero, 
our model can self-organize into a critical state where the 
size distribution of avalanches follows a power law. The 
critical exponent  for the avalanche size distribution is in-
sensitive to the variation of . The critical exponent  for 
average avalanche size, and the avalanche dimension D 
increases slowly when  is smaller than 0.5 but saturates 
thereafter. fc decreased nearly linearly over the entire range 
of . 

It would be worth checking, both theoretically and nu-
merically, if =0.5 is indeed a turning point for MFBS. We 
would also need to understand the relationship between fc 
and . For instance, can an exact equation be derived simi-
lar to that obtained for the original BS model? 
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