Atmospheric Science

January 2011 Vol.56 No.1: 84–88 doi: 10.1007/s11434-010-4211-3

¹⁰Be/⁷Be implies the contribution of stratosphere-troposphere transport to the winter-spring surface O₃ variation observed on the Tibetan Plateau

ZHENG XiangDong^{1*}, SHEN ChengDe², WAN GuoJiang³, LIU KeXin⁴, TANG Jie¹ & XU XiaoBin¹

¹ Chinese Academy of Meteorological Sciences, Beijing 100081, China;

² Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;

³ State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;

⁴ State Key laboratory of Nuclear Physics and Technology & Institute of Heavy Ion Physics, Peking University, Beijing 100871, China

Received July 7, 2010; accepted September 19, 2010

¹⁰Be/⁷Be is a stratospheric sensitive tracer. In this paper, measurements of ¹⁰Be/⁷Be and surface O_3 from October 2005 to May 2006 at Mt. Waliguan (hereafter WLG, 100.898°E, 39.287°N, 3810 m, a.s.l.), China global atmospheric watch (GAW) observatory, are introduced and used to investigate the stratosphere-troposphere transport (STT) and its impact on surface O_3 on the Tibetan Plateau. The results show that the magnitude of STT is weak in winter, followed by strengthening from the end of winter to the middle of spring (from mid February to mid April) with large increases in ¹⁰Be,⁷Be,¹⁰Be/⁷Be and surface O_3 . At the end of spring (from the end of April to mid May in this paper), the STT weakened, and the continuous increase of surface O_3 at WLG is produced by tropospheric photochemistry reactions.

¹⁰Be/⁷Be, stratosphere-troposphere transport, surface O₃, Mt. Waliguan

Citation: Zheng X D, Shen C D, Wan G J, et al. ¹⁰Be/⁷Be implies the contribution of stratosphere-troposphere transport to the winter-spring surface O₃ variation observed on the Tibetan Plateau. Chinese Sci Bull, 2011, 56: 84–88, doi: 10.1007/s11434-010-4211-3

⁷Be and ¹⁰Be are produced mainly from collisions of cosmic rays with oxygen and nitrogen atoms in the upper atmosphere, including the upper troposphere and stratosphere. Both ⁷Be and ¹⁰Be are absorbed easily by sub-micrometersize aerosol particles once produced. ⁷Be as a natural tracer of downward transport from the upper atmosphere had been gradually established since the 1960s, and the first application of ¹⁰Be/⁷Be as a stratospheric tracer was addressed by Rasebeck et al. [1] in 1981. The half -lives of ⁷Be and ¹⁰Be are 53.3 d and 1.5×10^6 a, respectively, while the average age of the stratospheric air mass is ~1.5 a. In the stratosphere, although the initial production rate of ¹⁰Be is lower than that of ⁷Be, ¹⁰Be/⁷Be increases as the ⁷Be isotope naturally decays to a lower concentration until reaching its equilibrium concentration, resulting in higher ¹⁰Be/⁷Be. In the troposphere, the ratio of ¹⁰Be/⁷Be is little influenced by wet deposition scavenging of aerosol particles because they are from the same source, making the ratio a more sensitive tracer of stratosphere than using ⁷Be or ¹⁰Be alone. Research on ¹⁰Be measurements is mainly conducted in the field of paleoclimatology. However, as a natural stratospheric tracer, ¹⁰Be/⁷Be effectively indicates the contribution of Stratosphere-Troposphere Transport (STT) to surface-level O₃ variations as observed in the European Alps and Arctic regions [2,3]. Jordan et al. [4] reported latitudinal distribution of ¹⁰Be/⁷Be values in the upper troposphere and lower stratosphere over several regions through analysis of extensive aircraft aerosol samples. However, publications of at-

^{*}Corresponding author (email: zhengxd@cams.cma.gov.cn)

[©] The Author(s) 2011. This article is published with open access at Springerlink.com

mospheric ¹⁰Be measurements are still limited because of the complexities in ¹⁰Be target preparation and ¹⁰Be detection by Accelerator Mass Spectrometry (AMS). Shen et al. [5] reported short-term ¹⁰Be concentrations in dust deposition sampled in Beijing and Ningbo. Measurements of ¹⁰Be/⁷Be in atmospheric aerosol samples have not yet been reported in China.

Tropospheric O₃ is a significant trace gas due its oxidation and greenhouse characteristics. Tropospheric photochemical production and the direct or indirect STT are the two primary sources of tropospheric O₃. The debate on which source is dominant is ongoing, especially on the extensive spring peaks in surface O₃ in the northern hemisphere [6]. With respect to atmospheric circulation, the seasonally intensified downward transport branch (presented as STT) of the stratospheric Brewer-Dobson circulation in the northern hemisphere increases the fraction of stratosphere O_3 in troposphere, contributing to the rise of surface O₃ [7]. However, atmospheric chemistry suggests that as the solar radiation seasonally increases in spring, tropospheric O₃ may be largely produced in the short-term through photochemical reactions with precursors, such as NO_x, which are emitted in significant amounts in winter [8].

Mt. Waliguan (hereafter WLG) is located on the northeast margin of the Tibetan Plateau. It was selected as a site for China's Global Atmospheric Watch (GAW) observatory. Long-term observations reveal that surface O_3 at WLG increases from winter to spring, reaching its maximum in June. There are several publications presenting possible mechanisms of the summer O_3 maximum at WLG [9–13]. However, the mechanisms for winter and spring surface variations at WLG require elucidation. In this paper, weekly concentrations of ⁷Be and ¹⁰Be measured on aerosol samples obtained from October 2005 to May 2006 at WLG are presented, and ¹⁰Be/⁷Be is used as a sensitive stratospheric tracer to investigate the STT and its contribution to winter-spring variation in surface O_3 .

1 Measurements and data set

Measurements of ⁷Be and ²¹⁰Pb analysis were described in an earlier study [14]. Every aerosol particle sample was continuously collected over one week by a pump with flow rate of ~1.3 m³ min⁻¹. The collector is a three-layered polypropylene filter. The sampled filters were then sent to the State Key Laboratory of Earth Geochemistry (SKLEG), Chinese Academy of Sciences, to measure ⁷Be and ²¹⁰Pb. The total relative measurement errors are from ±1.4% to ±6.4% [14]. Complying with the standard operation procedures issued by the World Meteorological Organization (WMO), surface O₃ at WLG is routinely measured by UV absorption analyzers (Thermal Environment, Model 49C) with a precision of ±2×10⁻⁹ volume mixing ratio [15]. The long-term surface O₃ data is also periodically audited by the assigned WMO laboratory with stringent inter-comparison measurements [16].

After ⁷Be and ²¹⁰Pb were analyzed, the aerosol samples were sent to the Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, for target preparation for AMS ¹⁰Be analysis. The detailed procedures for making ¹⁰Be targets have been described in other references [5,17]. Briefly, the filters were alternately pulverized and leached to extract final ¹⁰Be residues in BeO. The ¹⁰Be AMS target was made by mixing Nb powder with the BeO. These targets were sent to the 6 MeV EN tandem AMS system, National Key Laboratory of Nuclear Physics and Technology, Peking University for ¹⁰Be measurements. The detection limit of ¹⁰Be in the AMS system is 6×10^{-15} . The standard, 10 Be/ 9 Be, is 2.67×10⁻¹¹ with a precision higher than 5‰, and was imported from the US National Institute of Standards and Technology [18]. The total relative error for the ¹⁰Be determination is estimated to within $\pm 5\%$, including errors caused by the efficiency of leaching filters and ¹⁰Be measurements [17].

2 Results and analysis

Figure 1 shows the weekly concentrations of ⁷Be, ¹⁰Be and ²¹⁰Pb at WLG from October 2005 to May 2006. Because precipitation is the most significant sink for the Be and Pb isotopes, weekly precipitation and occurrence fog are also shown in Figure 1. The variations in ⁷Be and ¹⁰Be concentrations are generally consistent. ¹⁰Be concentration was lower than that of ⁷Be before February 2006, and then rose, exceeding ⁷Be concentration. After mid April, both ¹⁰Be and ⁷Be concentrations began to decrease. The weekly variations in Be isotope concentration are somewhat associated with synoptic processes indicated by precipitation and fog records. Be isotope concentration increased almost continuously during two periods with little precipitation, one was from circa December 2005 to February 2006, another was from circa mid of March to mid of April in 2006. However, in the second dry period, Be concentrations increased as a result of STT (Figure 2). Be isotope concentrations began to reduce after mid April as precipitation increased.

The main source of ²¹⁰Pb is from land surface emission. Figure 1 shows that ²¹⁰Pb concentration in the spring did not increase as did Be isotopes. When maximum ²¹⁰Pb concentrations occurred in winter, concentrations of Be isotope did not rise correspondingly. These comparisons suggest that dust or soil emissions have little impact on variation in Be isotope concentration at WLG, and the cause of spring ¹⁰Be and ⁷Be enhancement is only the intensified STT. The temporal increases of ²¹⁰Pb, ¹⁰Be and ⁷Be concentration during the two non-precipitation periods are due to weak wet scavenging. To some extent, the general decreasing trend of ²¹⁰Pb concentration from winter to spring is associated with

Figure 1 Weekly concentrations of ¹⁰Be, ⁷Be and ²¹⁰Pb measured in aerosol samples obtained at WLG from October 2005 to May 2006. Weekly precipitation (vertical bars) and fog occurrence (F) are also shown.

Figure 2 Weekly variation in ¹⁰Be/⁷Be, ⁷Be/²¹⁰Pb and surface O₃ concentration at WLG.

seasonal increase in precipitation.

Figure 2 presents weekly variations of surface O₃ concentration, ¹⁰Be/⁷Be, and ⁷Be/²¹⁰Pb. ⁷Be/²¹⁰Pb is considered to be a tracer unaffected by wet scavenging processes. The STT during the period from 15 February to the end of April is evidenced by the simultaneous elevations of surface O₃ and ¹⁰Be/⁷Be. However, for the last five samples starting from the end of April, the clear reductions of ¹⁰Be/⁷Be reveal a weakening of STT. At the same time, the continuous increase of surface O₃ at WLG supports dominant tropospheric photochemical O₃ production. This transfer is consistent with estimations of monthly average surface O₃ budget using the ⁷Be observation alone. In that study, the contribution from STT to the surface O₃ budget in May 2003 was concluded to be less than that in April and June, and the input from tropospheric chemical production was dominant for the surface O_3 budget [19].

Using high values of ${}^{7}\text{Be}/{}^{21\bar{0}}\text{Pb}$, studies have plausibly interpreted that summer surface O₃ at WLG is influenced by

downward transport from the upper atmosphere [12,13]. However, the last four samples in Figure 2 demonstrate the different physical processes implied by $^{7}\text{Be}/^{210}\text{Pb}$, and $^{10}\text{Be}/^{7}\text{Be}$. Obviously, the implication of strengthening downward transport from the stratosphere is not reasonable based on the observed increase of $^{7}\text{Be}/^{210}\text{Pb}$ alone. Due to differences in the source distribution, ^{210}Pb is more sensitive to wet scavenging than Be isotopes [20], and this caused a higher $^{7}\text{Be}/^{210}\text{Pb}$ ratio at the end of spring and even throughout the summer at WLG, but a corresponding strengthening STT did not occur.

The inter-comparisons of ¹⁰Be, and ¹⁰Be/⁷Be ratio between WLG and the other sites are given in Table 1. It has been noted that ⁷Be concentrations tend to have the highest values in comparisons with data obtained at the sites with elevations or latitudes similar to WLG [23]. In Table 1, ¹⁰Be also tends to have the highest concentration at WLG, but the case for ¹⁰Be/⁷Be is much different given the fact that WLG is located at lower latitude. Although being at high elevation,

 Table 1
 ¹⁰Be and ¹⁰Be/⁷Be at WLG and at other sites

Location	Lat., Long., and altitude a.s.l.	$^{10}\text{Be}\ (10^4\ \text{atoms}\ \text{m}^{-3})$	¹⁰ Be ^{/7} Be
Jungfraujoch	46.533°N, 7.983°E, 3.58 km	5–12 [3]	2.0-3.0 [3]
Zugspitze	47.416°N, 10.983°E, 2.962 km	3–8 [3]	1.5-2.0 [3]
Alert	82.5°N, 62.3°W	0.5-8 [2]	1.8-3.4 [2]
Ljungbyhed	56.08°N, 13.23°E,	0.68-1.55 [3]	0.65-0.8 [3]
Visby	57.63°N, 18.32°E,	1.79–5.43 [20]	0.87-1.71 [21]
Kiruna	67.84°N, 20.34°E,	1.47-1.48 [20]	1.05-1.25 [21]
Antarctica	South Pole, 2.8 km	3.31–7.33 [1]	1.52-1.71 [1]
WLG (for all samples)	36.287°N, 100.89°E, 3.81km	7.53–25.4	0.61-1.75
WLG (Fall and Winter)	36.287°N, 100.89°E, 3.81km	7.53–12.3	0.97-1.11
PEM-B, Flight#17	39°–44°N, 136°–139°E, troposphere	0.9–3.6 [4]	0.97-3.82 [4]
SONEX, Flight#8	55°-68°N, 5.4°W-11.9°E, tropopshere	1.1–126 [4]	0.45-1.65 [4]
Northern Hemisphere	North to 50°N, West Pacific Ocean	N/A	1.24±0.27 [22]
Southern Hemisphere	South to 60°S, Pacific Ocean	N/A	1.92±0.44 [22]

the relatively lower ${}^{10}\text{Be}/{}^7\text{Be}$ (and the lower surface O_3 concentration) in winter indicates that impacts from STT on near-surface air masses is not obvious in the plateau region. This does not support the conclusions of certain models addressing the significance of STT on surface O_3 on the Tibetan Plateau [24]. The high winter concentrations of ${}^7\text{Be}$ and ${}^{10}\text{Be}$ at WLG are the result of continuous accumulation of aerosol particles at the residence altitudes of the surface boundary layer because of the little precipitation. In this study, the total precipitation from October 2005 to February 15, 2006 is no more than 10 mm, and only very weak wet scavenging was prevalent.

3 Discussion

Some transport processes at time scales of less than one week would be smoothed in the data because of the fixed weekly sampling for ¹⁰Be/7Be determination, especially in the case of deep STT that generally persists for just 1-2 d or less. For an individual sampling week with a lasting precipitation event, the correlations between surface O₃ and ¹⁰Be/⁷Be before, during or after the precipitation would be also filtered out by the averaging. Therefore, in situ aerosol sampling schedule based on synoptic changes is recommended. In addition, ¹⁰Be/7Be is considered to be little influenced by wet scavenging. However, because Be isotopes reside in aerosol particles, and the fact that behavior of aerosol particle differs from atmospheric trace gases such as O₃ may also influence the interpretation of ¹⁰Be/⁷Be. To utilize a tracer residing in the gaseous phase should better describe the contribution of STT to surface O₃, for example, ¹⁸O in $CO_2[11]$, while ¹⁷O in CO_2 which is entirely produced in the stratosphere deserves to be more considered [25,26].

4 Conclusion

Winter and spring concentrations of ¹⁰Be and ⁷Be at WLG

are generally higher than those measured at other sites. However, in winter the relatively lower ${}^{10}\text{Be}/{}^7\text{Be}$ and surface O₃ concentration demonstrates the weakness of STT and its impact on surface O₃. From the end of winter to the middle of spring (from mid February to mid April), continuous elevations of ${}^{10}\text{Be}$, ${}^7\text{Be}$, and surface O₃ concentration and ${}^{10}\text{Be}/{}^7\text{Be}$ support the seasonal intensified STT and its positive contribution to the surface O₃ budget. At the end of spring (from the end of April to mid of May in this study), the reductions of ${}^{10}\text{Be}$ and ${}^7\text{Be}$ concentration and ${}^{10}\text{Be}/{}^7\text{Be}$ suggest weakening of the STT, while the continuous increase of surface O₃ at WLG is from the positive input of tropospheric photochemical reactions.

We thank Dr. H. N. Lee from the Environmental Measurements Laboratory, Department of Homeland Security, New York, USA for providing instruments for in-situ aerosol sampling. We acknowledge the operational work done at Mt. Waliguan, China Global Atmospheric Observatory. This work was supported by the National Science Foundation of China (40575013, 40175032 and 40830102).

- Raisbeck G M, Yiou F, Fruneaou M, et al. Cosmogenic ¹⁰Be/⁷Be as a probe or atmospheric transport processes. Geophys Res Lett, 1981, 8: 1015–1018
- 2 Dibb J E, Meeker L D, Finkel R C, et al. Estimation of stratospheric input to the Arctic troposphere: ⁷Be and ¹⁰Be in aerosols at Alert, Canada. J Geophys Res, 1994, 99: 12855–12864
- 3 Zanis P E, Gerasopoulos A, Priller, et al. An estimate of the impact of stratosphere-to-troposphere transport (STT) on the lower free tropospheric ozone over the Alps using ¹⁰Be and ⁷Be measurements. J Geophys Res, 2003, 108: 8520, doi:10.1029/2002JD002604
- 4 Jordan C E, Dibb J E, Finkel R E. ¹⁰Be/⁷Be tracer of atmospheric transport and stratosphere-troposphere exchange. J Geophys Res, 2003, 108: 4234
- 5 Shen C D, Ding P, Wang N, et al. ¹⁴C and ¹⁰Be in the samples of dust deposition obtained in Beijing—Celebration of Prof. Liu Dongsheng's 90 Birth Day (in Chinese). Quat Sci, 2007, 27: 919–921
- 6 Vingarzan R. A review of surface ozone background levels and trends. Atmos Environ, 2004, 38: 3431–3442
- 7 Levy H, Mahlmann J D, Moxim W J, et al. Tropospheric ozone: The role of transport. J Geophys Res, 1985, 90: 3753–3772
- 8 Penkett S A, Brice K A. The spring maximum in photooxidants in the Northern Hemisphere troposphere. Nature, 1986, 319: 655–657
- 9 Ma J Z, Zheng X D, Xu X D. Comment on "Why does surface ozone

peak in summertime at Wa Liguan?" by Bin Zhu et al. Geophys Res Lett, 2005, 32: 01805

- 10 Ding A, Wang T. Influence of stratosphere-to-troposphere exchange on the seasonal cycle of surface ozone at Mount Waliguan in western China. Geophys Res Lett, 2006, 33: L03803, doi:10.1029/2005GL0-24760
- 11 Liang M C, Tang J, Chan C Y, et al. Signature of stratospheric air at the Tibetan Plateau. Geophys Res Lett, 2008, 35: L20816
- 12 Zheng X D, Wan G J, Tang J, et al. ⁷Be and ²¹⁰Pb radioactivity and implications on sources of surface ozone at Mt. Waliguan. Chinese Sci Bull, 2005, 50: 167–171
- 13 Lee H N, Tositti L, Zheng X D, et al. Analyses and comparisons of variations of ⁷Be, ²¹⁰Pb, and ⁷Be/²¹⁰Pb with ozone observations at two Global Atmosphere Watch stations from high mountains. J Geophys Res, 2007, 112: D05303
- 14 Wan G J, Zheng X D, Lee H N, et al. A comparative study on seasonal variation of ⁷Be concentrations in surface air between Mt. W aliguan and Mt Guanfeng (in Chinese). Geochemica, 2006, 35: 257– 264
- 15 Tang J, Li X S, Zhao Y C, et al. Preliminary analysis on the surface ozone observed at Mt. Waliguan (in Chinese). Variations of Ozone Over China and Its Impacts on Climate and Environment (I). Beijing: Meteorological Press, 1996. 19–29
- 16 Klausen J, Christoph Z, Bringitte B, et al. Uncertainty and bias of surface ozone measurements at selected Global Atmospheric Watch sites. J Geophys Res, 2003, 108: ACL17 1–11
- 17 Shen C D, Beer J, Ivy-Ochs S, et al. ¹⁰Be, ¹⁴C distribution, and soil production rate in a soil profile of a grassland slope Heshan hilly land,

Guangdong. Radiocarbon, 2004, 46: 445-454

- 18 Liu K X, Gao H L, Zhou L P, et al. AMS measurements of ¹⁰Be concentration in Chinese loess using PKUAMS. Nucl Instr Methods Phys Res (B), 2004, 223: 168–171
- 19 Zheng X D, Wang G J, Tang J. Source characteristics of O₃ and CO₂ at Mt. WaLiguan Observatory, Tibetan Plateau implied by using ⁷Be and ²¹⁰Pb. Sci China Earth Sci, 2011, 56, doi: 10.1007/s11434-010-4121-x
- 20 Huh C A, Su C C, Shiau L J. Factors controlling temporal and spatial variations of atmospheric deposition of ⁷Be and ²¹⁰Pb in northern Taiwan. J Geophys Res, 2006, 111: D16304, doi: 10.1029/2006JD0-07180
- 21 Aldahan A, Possnert G, Vintersved I. Atmospheric interactions at northern high latitudes from week Be-isotopes in surface air. Appl Radiat Isotopes, 2001, 54: 345–353
- 22 Nagai H, Tada W, Kobayashi T. Production rates of ⁷Be and ¹⁰Be in the atmosphere. Nucl Instr Methods Phys Res (B), 2000, 172: 781– 796
- 23 Zheng X D, Wan G J, Chen Z Y, et al. Measurement and meteorological analysis of ⁷Be and ²¹⁰Pb in aerosol at Waliguan Observatory. Adv Atmos Sci, 2008, 24: 404–416
- 24 Hsu J, Prather M J, Wild O. Diagnosing the stratosphere to troposphere flux of ozone in a chemistry transport model. J Geophys Res, 2005, 110: D19305, doi:10.1029/2005JD006045
- 25 Langford A O, Aikin K C, Eubank C S, et al. Stratospheric contribution to high surface ozone in Colorado during springtime. Geophys Res Lett, 2009, 36: L12801
- 26 Thiemens M H, Jackson T, Mauersberger K, et al. Oxygen isotope fractionation in stratospheric CO₂. Geophys Res Lett, 1991, 18: 669–672
- **Open Access** This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.