Skip to main content
Log in

Unsteady analysis of six-DOF motion of a 6:1 prolate spheroid in viscous fluid

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Free-moving simulations of airplanes, submarines and other automobiles under extreme and emergency conditions are becoming increasingly important from operational and tactical perspectives. Such simulations are fairly challenging due to the extreme unsteady motions and high Re (Reynolds) numbers. The aim of this study is to perform a six-DOF motion simulation of a 6:1 prolate spheroid that is falling in a fluid field. Prior to conducting the six-DOF simulation, some verification simulations were performed. First, a laminar flow past an inclined prolate spheroid at a Re number of 1000 and incidence angle of 45° with a tetrahedral mesh was simulated to verify the relevant targeted discrete method for an unstructured mesh. Second, to verify the LES (large eddy simulation) models and dependent parameters for the DDES (delayed detached eddy simulation), a turbulent flow past a sphere was performed at a subcritical Re number of 10000. Third, a steady maneuvering problem about a prolate spheroid pitching up from 0° to 30° incidence at a uniform angular velocity was established based on a dynamic tetrahedral mesh with changing topology and the ALE (arbitrary Lagrangian-Eulerian) method of fluid-structure coupling at a Re number of 4.2 × 106. Finally, two six-DOF motions of an inclined 6:1 prolate spheroid at an initial incidence of 45° were simulated at different Re numbers of 10000 and 4.2 × 106.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Han, and V. C. Patel, J. Fluid Mech. 92, 643 (1979).

    Article  ADS  Google Scholar 

  2. C. E. Costis, D. P. Telionis, and N. T. Hoang, J. Aircraft 26, 810 (1989).

    Article  Google Scholar 

  3. M. Tobak, and D. J. Peake, Annu. Rev. Fluid Mech. 14, 61 (1982).

    Article  ADS  Google Scholar 

  4. K. C. Wang, J. Fluid Mech. 72, 49 (1975).

    Article  ADS  Google Scholar 

  5. T. Cebeci, and W. Su, J. Fluid Mech. 191, 47 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  6. L. A. Yates, and G. T. Chapman, AIAA J. 30, 1819 (1992).

    Article  ADS  Google Scholar 

  7. X. Zhang, C. Pan, J. Q. Shen, and J. J. Wang, Sci. China-Phys. Mech. Astron. 58, 064702 (2015).

    Google Scholar 

  8. K. C. Wang, AIAA J. 10, 1044 (1972).

    Article  ADS  Google Scholar 

  9. K. C. Wang, “On the difpute about open separation”, AIAA Paper No. 83-0296, 1983.

    Google Scholar 

  10. K. C. Wang, H. C. Zhou, and S. Harring, in Three-dimensional separated flow structure over prolate spheroids: Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences (London, 1990), pp. 73–90.

    Google Scholar 

  11. M. Tobak, and D. J. Peake, Annu. Rev. Fluid Mech. 14, 61 (1982).

    Article  ADS  Google Scholar 

  12. S. Ahn, and R. L. Simpson, “Cross-flow separation on a prolate spheroid at angles of attack”, AIAA paper No. 92-0428, 1992.

    Book  Google Scholar 

  13. C. J. Chesnakas, D. Taylor, and R. L. Simpson, AIAA J. 35, 990 (1997).

    Article  ADS  Google Scholar 

  14. S. H. Rhee, and T. Hino, “Numerical simulation of unsteady turbulent flow around maneuvering prolate spheroid”, AIAA paper No. 2002-1026, 2002.

    Google Scholar 

  15. G. D. Watt, C. R. Baker, A. G. Gerber, and C. Fouts, in Scripted hybrid mesh adaption for high incidence RANS flows about axisymmetric shapes: Proceedings of 44th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NC, 2006).

    Book  Google Scholar 

  16. C. Fureby, N. Alin, N. Wikström, S. Menon, N. Svanstedt, and L. Persson, AIAA J. 42, 457 (2004).

    Article  ADS  Google Scholar 

  17. N. Wikström, U. Svennberg, N. Alin, and C. Fureby, J. Turb. 5, 29 (2004).

    Article  ADS  Google Scholar 

  18. A. Karlsson, and C. Fureby, “LES of the Flow Past a 6:1 Prolate Spheroid”, AIAA paper No. 2009-1616, 2009.

    Google Scholar 

  19. N. W. Scott, and E. P. N. Duque, “Scripted hybrid mesh adaption for high incidence RANS flows about axisymmetric shapes”, AIAA paper No. 2005-1362, 2005.

    Google Scholar 

  20. F. Jiang, J. P. Gallardo, and H. I. Andersson, Phys. Fluids 26, 113602 (2014).

    Article  ADS  Google Scholar 

  21. F. Jiang, J. P. Gallardo, H. I. Andersson, and Z. Zhang, Phys. Fluids 27, 093602 (2015).

    Article  ADS  Google Scholar 

  22. G. K. El khoury, H. I. Andersson, and B. R. Pettersen, J. Fluid Mech. 659, 365 (2010).

    Article  ADS  Google Scholar 

  23. N. T. Hoang, T. G. Wetzel, and R. L. Simpson, “Unsteady measurements over a 6:1 prolate spheroid undergoing a pitch-up maneuver”, AIAA Paper No. 94-0197, 1994.

    Google Scholar 

  24. N. T. Hoang, T. G. Wetzel, and R. L. Simpson, “Surface pressure measurements over a 6:1 prolate spheroid undergoing time-dependent maneuvers”, AIAA Paper No. 94-1908-CP, 1994.

    Google Scholar 

  25. T. G. Wetzel, and R. L. Simpson, “Unsteady three-dimensional cross-flow separation measurements on a prolate spheroid undergoing time-dependent maneuvers”, AIAA Paper No. 97-0618, 1997.

    Google Scholar 

  26. T. G. Wetzel, and R. L. Simpson, AIAA J. 36, 2063 (1998).

    Article  ADS  Google Scholar 

  27. K. Granlund, and R. L. Simpson, “Experimetally obtained forces and moments on slender bodies during steady and unsteady maneuvers”, AIAA paper No. 2009-1292, 2009.

    Google Scholar 

  28. S.W. Xu, and X. Y. Deng, Sci. China-Phys. Mech. Astron. 58, 044701 (2015).

    Google Scholar 

  29. N. Alin, C. Fureby, and S. U. Svennberg, in Large Eddy Simulation of the Transient Flow around a Submarine during Maneuver: Proceedings of 45th AIAA Aerospace Science Meeting and Exhibit (Reno, Nevada, 2007), pp. 1–18.

    Google Scholar 

  30. C. Q. Gao, W. W. Zhang, Y. L. Liu, Z. Y. Ye, and Y. W. Jiang, Sci. China-Phys. Mech. Astron. 58, 084701 (2015).

    Article  ADS  Google Scholar 

  31. L. K. Taylor, A. Arabshahi, and D. L. Whitfield, “Unsteady three-dimensional incompressible navier-stokes computations for a prolate spheroid undergoing time-dependent maneuvers”, AIAA paper No. AIAA-95-0313, 1995.

    Book  Google Scholar 

  32. M. C. Bettle, A. G. Gerber, and G. D. Watt, Comp. Fluids 38, 1833 (2009).

    Article  Google Scholar 

  33. M. C. Bettle, A. G. Gerber, and G. D. Watt, Comp. Fluids 102, 215 (2014).

    Article  Google Scholar 

  34. J. B. Kuipers, Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality (Princeton University Press, Princeton, 1999).

    MATH  Google Scholar 

  35. C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys, 14, 227 (1974).

    Article  ADS  Google Scholar 

  36. P. R. Spalart, and S. R. Allmaras, La Rech. Aerospatiale 1, 5 (1994).

    Google Scholar 

  37. U. Piomelli, and E. Balaras, Annu. Rev. Fluid Mech. 34, 349 (2002).

    Article  ADS  Google Scholar 

  38. U. Piomelli, E. Balaras, H. Pasinato, K. D. Squires, and P. R. Spalart, Int. J. Heat Fluid Flow 24, 538 (2003).

    Article  Google Scholar 

  39. P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, and A. Travin, Theoret. Comput. Fluid Dyn. 20, 181 (2006).

    Article  ADS  Google Scholar 

  40. P. R. Spalart, Annu. Rev. Fluid Mech. 41, 181 (2009).

    Article  ADS  Google Scholar 

  41. E. Villiers, The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows, Dissertation for the Doctoral Degree (Imperial college of Science, Technology and Medicine, London, 2006).

    Google Scholar 

  42. S. Jindal, L. N. Long, P. E. Plassmann, and N. Sezer-Uzol, “Large eddy simulations around a sphere using unstructed grids”, AIAA paper No. 2004-2228, 2004.

    Google Scholar 

  43. J. Schöberl, Comput. Visualizat. Sci. 1, 41 (1997).

    Article  Google Scholar 

  44. Y. Xiong, H. Guan, and C. J. Wu, Appl. Math. Mech. 37, 1129 (2016).

    Google Scholar 

  45. S. Menon, A Numerical Study of Droplet Formation and Behavior Using Interface Tracking Methods, Dissertation for the Doctoral Degree (University of Massachusetts Amherst, 2011).

    Google Scholar 

  46. H. Jasak, and Z. Tukovic, in Dynamic mesh handling in OpenFOAM applied to fluid-structure interaction simulations: European Conference on Computational Fluid Dynamics (Lisbon, Portugal, 2010), pp. 14–17.

    Google Scholar 

  47. L. L. Zhu, H. Guan, and C. J. Wu, Sci. China-Phys. Mech. Astron. 58, 594701 (2015).

    Article  ADS  Google Scholar 

  48. H. R. Zhang, J. J. Fan, W. Yuan, and W. H. Zhang, Sci. China-Phys. Mech. Astron. 58, 594702 (2015).

    Article  ADS  Google Scholar 

  49. M. Dai, and D. P. Schmidt, J. Comp. Phys. 208, 228 (2005).

    Article  ADS  Google Scholar 

  50. C. L. Lawson, Discrete Math. 3, 365 (1972).

    Article  MathSciNet  Google Scholar 

  51. E D B L’Isle, and P. L. George, Institute for Mathematics and Its Applications (Springer, New York, 1995), pp. 107–112.

    Google Scholar 

  52. P. M. Knupp, Office Sci. Tech. Inf. Tech. Rep. 36, 13 (1999).

    Google Scholar 

  53. P. M. Knupp, Finite Elem. Anal. Des. 39, 217 (2003).

    Article  Google Scholar 

  54. C. M. Rhie, and W. L. Chow, Joint Thermophys. Fluids Plasma Heat Tranfer. Conf. 21, 1525 (1982).

    Google Scholar 

  55. J. H. Ferziger, and M. Perić, Computational Methods for Fluid Dynamics (2nd ed) (Springer, Berlin, 2001).

    MATH  Google Scholar 

  56. H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows, Dissertation for the Doctoral Degree (Imperical College, University of London, London, 1996), pp. 83–86.

    Google Scholar 

  57. R. I. Issa, J. Comp. Phys. 62, 40 (1986).

    Article  ADS  Google Scholar 

  58. E. H. Smart, Advanced Dynamics (Macmillan, London, 1951).

    MATH  Google Scholar 

  59. T. Li, J. X. Sui, and C. J. Wu, Appl. Math. Mech. 37, 27 (2016).

    Article  Google Scholar 

  60. E. Achenbach, J. Fluid Mech. 54, 565 (1972).

    Article  ADS  Google Scholar 

  61. G. S. Constantinescu, H. Pasinato, Y. Q. Wang, and K. D. Squires, “Numerical investigation of flow past a prolate spheroid”, AIAA paper No. 2002-0588, 2002.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChuiJie Wu.

Additional information

Contributed by ChuiJie Wu (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Guan, H. & Wu, C. Unsteady analysis of six-DOF motion of a 6:1 prolate spheroid in viscous fluid. Sci. China Phys. Mech. Astron. 60, 114711 (2017). https://doi.org/10.1007/s11433-017-9071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9071-y

Keywords

Navigation