Skip to main content
Log in

Chemo-mechanical coupling effect on high temperature oxidation: A review

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The rapid development in the field of chemo-mechanical coupling has drawn increasing attention in recent years. Chemo-mechanical coupling phenomena exist in many research areas, ranging from development of advanced batteries, biomechanical engineering, hydrogen embrittlement, and high temperature oxidation, etc. In this review, we attempt to provide an overview of the recent advances in chemo-mechanical coupling study on high temperature oxidation. The theoretical frameworks, computational modeling, and experimental studies on this subject are summarized and discussed. The stress-diffusion coupling effect in diffusion-controlled oxidation process, stress-induced evolution of oxide morphology in microscale experiment, and stress-oxidation interaction at crack front for intergranular fracture are highlighted. In addition, potential applications and possible methods via surface engineering for improving oxidation-resistance of high temperature structural materials are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitaguchi H S, Li H Y, Evans H E, et al. Oxidation ahead of a crack tip in an advanced Ni-based superalloy. Acta Mater, 2013, 61: 1968–1981

    Google Scholar 

  2. Dai J, Zhu J, Chen C, et al. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J Alloys Compd, 2016, 685: 784–798

    Google Scholar 

  3. Saillard A, Cherkaoui M, Capolungo L, et al. Stress influence on high temperature oxide scale growth: Modeling and investigation on a thermal barrier coating system. Philos Mag, 2010, 90: 2651–2676

    Google Scholar 

  4. Golmon S, Maute K, Dunn M L. Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries. Comput Struct, 2009, 87: 1567–1579

    Google Scholar 

  5. Ma Y, Yao X, Su Y. Shape optimization and material gradient design of the sharp hot structure. Acta Astronaut, 2014, 103: 106–112

    Google Scholar 

  6. Su Y Q, Yao X F, Wang S, et al. Improvement on measurement accuracy of high-temperature DIC by grayscale-average technique. Optics Lasers Eng, 2015, 75: 10–16

    Google Scholar 

  7. Wang S, Yao X F, Su Y Q, et al. High temperature image correction in DIC measurement due to thermal radiation. Meas Sci Technol, 2015, 26: 095006

    Google Scholar 

  8. Fang X, Qu Z, Zhang C, et al. In-situ testing of surface evolution of SiC during thermal ablation: Mechanisms of formation, flowing and growth of liquid silica beads. Ceramics Int, 2017, 43: 7040–7047

    Google Scholar 

  9. Qu Z, Fang X, Su H, et al. Measurements for displacement and deformation at high temperature by using edge detection of digital image. Appl Opt, 2015, 54: 8731–8737

    Google Scholar 

  10. Clarke D R, Oechsner M, Padture N P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull, 2012, 37: 891–898

    Google Scholar 

  11. Evans A G, Clarke D R, Levi C G. The influence of oxides on the performance of advanced gas turbines. J Eur Ceramic Soc, 2008, 28: 1405–1419

    Google Scholar 

  12. Evans H E. Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers. J Electrochem Soc, 1978, 125: 1180–1185

    Google Scholar 

  13. Wang H, Shen S. A chemomechanical coupling model for oxidation and stress evolution in ZrB2-SiC. J Mater Res, 2017, 32: 1267–1278

    Google Scholar 

  14. Dong X, Fang X, Feng X, et al. Diffusion and stress coupling effect during oxidation at high temperature. J Am Ceram Soc, 2013, 96: 44–46

    Google Scholar 

  15. Dong X, Fang X, Feng X, et al. Oxidation at high temperature under three-point bending considering stress-diffusion coupling effects. Oxid Met, 2016, 86: 125–133

    Google Scholar 

  16. Zhou H, Qu J, Cherkaoui M. Stress-oxidation interaction in selective oxidation of Cr-Fe alloys. Mech Mater, 2010, 42: 63–71

    Google Scholar 

  17. Wang C, Ai S, Fang D. Effect of oxidation-induced material parameter variation on the high temperature oxidation behavior of nickel. Acta Mech Solid Sin, 2016, 29: 337–344

    Google Scholar 

  18. Wang H, Shen S. A chemomechanical model for stress evolution and distribution in the viscoplastic oxide scale during oxidation. J Appl Mech, 2016, 83: 051008

    Google Scholar 

  19. Bruemmer S M, Olszta M J, Toloczko M B, et al. Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water. Corrosion Sci, 2018, 131: 310–323

    Google Scholar 

  20. Jin X, Li P, Hou C, et al. Oxidation behaviors of ZrB2 based ultrahigh temperature ceramics under compressive stress. Ceramics Int, 2019, 45: 7278–7285

    Google Scholar 

  21. Kurpaska L, Favergeon J, Lahoche L, et al. On the determination of growth stress during oxidation of pure zirconium at elevated temperature. Appl Surf Sci, 2018, 446: 27–35

    Google Scholar 

  22. Shen Q, Li S Z, Yang L, et al. Coupled mechanical-oxidation modeling during oxidation of thermal barrier coatings. Comput Mater Sci, 2018, 154: 538–546

    Google Scholar 

  23. Ramsay J D, Evans H E, Child D J, et al. The influence of stress on the oxidation of a Ni-based superalloy. Corrosion Sci, 2019, 154: 277–285

    Google Scholar 

  24. Le Saux M, Guilbert T, Brachet J C. An approach to study oxidation-induced stresses in Zr alloys oxidized at high temperature. Corrosion Sci, 2019, 140: 79–91

    Google Scholar 

  25. Zhao Y, Chen Y, Ai S, et al. A diffusion, oxidation reaction and large viscoelastic deformation coupled model with applications to SiC fiber oxidation. Int J Plast, 2019, 118: 173–189

    Google Scholar 

  26. Fang X, Liu F, Su H, et al. Ablation of C/SiC, C/SiC-ZrO2 and C/SiC-ZrB2 composites in dry air and air mixed with water vapor. Ceramics Int, 2014, 40: 2985–2991

    Google Scholar 

  27. Fang X, Zhang G, Feng X. Performance of TBCs system due to the different thicknesses of top ceramic layer. Ceramics Int, 2015, 41: 2840–2846

    Google Scholar 

  28. Fang X, Liu F, Lu B, et al. Bio-inspired microstructure design to improve thermal ablation and oxidation resistance: Experiment on SiC. J Am Ceram Soc, 2015, 98: 4010–4015

    Google Scholar 

  29. Fang X, Liu F, Xia B, et al. Formation mechanisms of characteristic structures on the surface of C/SiC composites subjected to thermal ablation. J Eur Ceramic Soc, 2016, 36: 451–456

    Google Scholar 

  30. Zhou Z, Peng X, Wei Z, et al. A thermo-chemo-mechanical model for the oxidation of zirconium diboride. J Am Ceram Soc, 2015, 98: 629–636

    Google Scholar 

  31. Peng J, Fang X, Qu Z, et al. Isothermal oxidation behavior of NiAl and NiAl-(Cr,Mo) eutectic alloys. Corrosion Sci, 2019, 151: 27–34

    Google Scholar 

  32. Evans A G, Hutchinson J W. The mechanics of coating delamination in thermal gradients. Surf Coatings Tech, 2007, 201: 7905–7916

    Google Scholar 

  33. Zhou H. Stress-Diffusion Interaction During Oxide Scale Growth on Metallic Alloys. Dissertation for Dcotoral Degree. Atlanta: Georgia Institute of Technology School of Mechanical Engineering, 2010

    Google Scholar 

  34. Rhines F N, Wolf J S. The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel. Metall Trans, 1970, 1: 1701–1710

    Google Scholar 

  35. Clarke D R. The lateral growth strain accompanying the formation of a thermally grown oxide. Acta Mater, 2003, 51: 1393–1407

    Google Scholar 

  36. Tolpygo V K, Clarke D R. Competition between stress generation and relaxation during oxidation of an Fe-Cr-Al-Y alloy. Oxidation Met, 1998, 49: 187–212

    Google Scholar 

  37. Freund L B, Nix W D. A critical thickness condition for a strained compliant substrate/epitaxial film system. Appl Phys Lett, 1996, 69: 173–175

    Google Scholar 

  38. Zhang T Y, Lee S, Guido L J, et al. Criteria for formation of interface dislocations in a finite thickness epilayer deposited on a substrate. J Appl Phys, 1999, 85: 7579–7586

    Google Scholar 

  39. Dong X, Feng X, Hwang K C. Stress-diffusion interaction during oxidation at high temperature. Chem Phys Lett, 2014, 614: 95–98

    Google Scholar 

  40. Panicaud B, Grosseau-Poussard J L, Dinhut J F. General approach on the growth strain versus viscoplastic relaxation during oxidation of metals. Comput Mater Sci, 2008, 42: 286–294

    Google Scholar 

  41. Maharjan S, Zhang X, Wang Z. Effect of oxide growth strain in residual stresses for the deflection test of single surface oxidation of alloys. Oxid Met, 2012, 77: 93–106

    Google Scholar 

  42. Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidaton of Metals. Cambridge: Cambridge University Press, 2006

    Google Scholar 

  43. Young D J. High Temperature Oxidation and Crossion of Metals. Elservier, 2008

  44. Sabioni A C S, Huntz A M, Philibert J, et al. Relation between the oxidation growth rate of chromia scales and self-diffusion in Cr2O3. J Mater Sci, 1992, 27: 4782–4790

    Google Scholar 

  45. Yearian H J, Randell E C, Longo T A. The structure of oxide scales on chromium steels. Corrosion, 1956, 12: 55–65

    Google Scholar 

  46. Dong X, Feng X, Hwang K C. Oxidation stress evolution and relaxation of oxide film/metal substrate system. J Appl Phys, 2012, 112: 023502

    Google Scholar 

  47. Suo Y, Yang X, Shen S. Residual stress analysis due to chemo-mechanical coupled effect, intrinsic strain and creep deformation during oxidation. Oxid Met, 2015, 84: 413–427

    Google Scholar 

  48. Evans H E. Stress effects in high temperature oxidation of metals. Int Mater Rev, 1995, 40: 1–40

    Google Scholar 

  49. Tsai S C, Huntz A M, Dolin C. Growth mechanism of Cr2O3 scales: Oxygen and chromium diffusion, oxidation kinetics and effect of yttrium. Mater Sci Eng-A, 1996, 212: 6–13

    Google Scholar 

  50. Kofstad P. Diffusion and Electrical Conductivity in Binary Metal Oxide. New York: Wiley, 1972

    Google Scholar 

  51. Loeffel K, Anand L, Gasem Z M. On modeling the oxidation of high-temperature alloys. Acta Mater, 2013, 61: 399–424

    Google Scholar 

  52. Deal B E, Grove A S. General relationship for the thermal oxidation of silicon. J Appl Phys, 1965, 36: 3770–3778

    Google Scholar 

  53. Chou K C. A kinetic model for oxidation of Si-Al-O-N materials. J Am Ceramic Soc, 2006, 89: 1568–1576

    Google Scholar 

  54. Mott N F. A theory of the formation of protective oxide films on metals. Trans Faraday Soc, 1939, 35: 1175–1177

    Google Scholar 

  55. Mott N F. The theory of the formation of protective oxide films on metals, II. Trans Faraday Soc, 1940, 35: 472–483

    Google Scholar 

  56. Mott N F. The theory of the formation of protective oxide films on metals—III. Trans Faraday Soc, 1947, 43: 429–434

    Google Scholar 

  57. Mott N F. Oxidation of metals and the formation of protective films. Nature, 1940, 145: 996–1000

    Google Scholar 

  58. Cabrera N, Mott N F. Theory of the oxidation of metals. Rep Prog Phys, 1940, 12: 163–184

    Google Scholar 

  59. Roy C, Burgess B. A study of the stresses generated in zirconia films during the oxidation of zirconium alloys. Oxid Met, 1970, 2: 235–261

    Google Scholar 

  60. Gauthier W, Pailler F, Lamon J, et al. Oxidation of silicon carbide fibers during static fatigue in air at intermediate temperatures. J Am Ceramic Soc, 2009, 92: 2067–2073

    Google Scholar 

  61. Larché F, Cahn J W. A linear theory of thermochemical equilibrium of solids under stress. Acta Metall, 1973, 21: 1051–1063

    Google Scholar 

  62. Larché F C, Cahn J. The effect of self-stress on diffusion in solids. Acta Metall, 1982, 30: 1835–1845

    Google Scholar 

  63. Larché F C, Cahn J W. Overview No. 41 The interactions of composition and stress in crystalline solids. Acta Metall, 1985, 33: 331–357

    Google Scholar 

  64. Wang W L, Lee S, Chen J R. Effect of chemical stress on diffusion in a hollow cylinder. J Appl Phys, 2002, 91: 9584–9590

    Google Scholar 

  65. Krishnamurthy R, Srolovitz D J. Stress distributions in growing oxide films. Acta Mater, 2003, 51: 2171–2190

    Google Scholar 

  66. Brassart L, Suo Z. Reactive flow in solids. J Mech Phys Solids, 2013, 61: 61–77

    MathSciNet  Google Scholar 

  67. Cui Z, Gao F, Qu J. Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries. J Mech Phys Solids, 2013, 61: 293–310

    MathSciNet  Google Scholar 

  68. Haftbaradaran H, Song J, Curtin W A, et al. Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J Power Sources, 2011, 196: 361–370

    Google Scholar 

  69. Haftbaradaran H, Gao H, Curtin W A. A surface locking instability for atomic intercalation into a solid electrode. Appl Phys Lett, 2010, 96: 091909

    Google Scholar 

  70. Kao D B, McVittie J P, Nix W D, et al. Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides. IEEE Trans Electron Devices, 2002, 35: 25–37

    Google Scholar 

  71. Coffin H, Bonafos C, Schamm S, et al. Oxidation of Si nanocrystals fabricated by ultralow-energy ion implantation in thin SiO2 layers. J Appl Phys, 2006, 99: 044302

    Google Scholar 

  72. Yue M, Dong X, Fang X, et al. Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature. J Appl Phys, 2018, 123: 155301

    Google Scholar 

  73. Suo Z, Kubair D V, Evans A G, et al. Stresses induced in alloys by selective oxidation. Acta Mater, 2003, 51: 959–974

    Google Scholar 

  74. El Kadiri H, Horstemeyer M F, Bammann D J. A theory for stress-driven interfacial damage upon cationic-selective oxidation of alloys. J Mech Phys Solids, 2008, 56: 3392–3415

    MATH  Google Scholar 

  75. Loeffel K, Anand L. A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int J Plast, 2011, 27: 1409–1431

    MATH  Google Scholar 

  76. Yu P, Shen S. A fully coupled theory and variational principle for thermal-electrical-chemical-mechanical processes. J Appl Mech, 2014, 81: 111005

    Google Scholar 

  77. Wang H, Suo Y, Shen S. Reaction-diffusion-stress coupling effect in inelastic oxide scale during oxidation. Oxid Met, 2015, 83: 507–519

    Google Scholar 

  78. Suo Y, Shen S. General approach on chemistry and stress coupling effects during oxidation. J Appl Phys, 2013, 114: 164905

    Google Scholar 

  79. Suo Y, Shen S. Dynamical theoretical model and variational principles for coupled temperature-diffusion-mechanics. Acta Mech, 2012, 223: 29–41

    MathSciNet  MATH  Google Scholar 

  80. Hu S, Shen S. Non-equilibrium thermodynamics and variational principles for fully coupled thermal-mechanical-chemical processes. Acta Mech, 2013, 224: 2895–2910

    MathSciNet  MATH  Google Scholar 

  81. Zhang X, Zhong Z. A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction. J Mech Phys Solids, 2017, 107: 49–75

    MathSciNet  Google Scholar 

  82. Yang F. Interaction between diffusion and chemical stresses. Mater Sci Eng-A, 2005, 409: 153–159

    Google Scholar 

  83. Yang F. Effect of local solid reaction on diffusion-induced stress. J Appl Phys, 2010, 107: 103516

    Google Scholar 

  84. Yang Q S, Qin Q H, Ma L H, et al. A theoretical model and finite element formulation for coupled thermo-electro-chemo-mechanical media. Mech Mater, 2010, 42: 148–156

    Google Scholar 

  85. Fang X, Jia J, Feng X. Three-point bending test at extremely high temperature enhanced by real-time observation and measurement. Measurement, 2015, 59: 171–176

    Google Scholar 

  86. Li Y, Fang X, Zhang S, et al. Microstructure evolution of FeNiCr alloy induced by stress-oxidation coupling using high temperature nanoindentation. Corrosion Sci, 2018, 135: 192–196

    Google Scholar 

  87. Wang D, Yin Y, Wu J, et al. Interaction potential between parabolic rotator and an outside particle. J Nanomaterials, 2014, 2014: 1–8

    Google Scholar 

  88. Lv C, Chen C, Chuang Y C, et al. Substrate curvature gradient drives rapid droplet motion. Phys Rev Lett, 2014, 113: 026101

    Google Scholar 

  89. Nichols F A, Mullins W W. Morphological changes of a surface of revolution due to capillarity-induced surface diffusion. J Appl Phys, 1965, 36: 1826–1835

    Google Scholar 

  90. Yin Y, Chen C, Lü C, et al. Shape gradient and classical gradient of curvatures: Driving forces on micro/nano curved surfaces. Appl Math Mech-Engl Ed, 2011, 32: 533–550

    MathSciNet  MATH  Google Scholar 

  91. Fang X, Li Y, Wang D, et al. Surface evolution at nanoscale during oxidation: A competing mechanism between local curvature effect and stress effect. J Appl Phys, 2016, 119: 155302

    Google Scholar 

  92. Fang X, Li Y, Feng X. Curvature effect on the surface topography evolution during oxidation at small scale. J Appl Phys, 2017, 121: 125301

    Google Scholar 

  93. Li Y, Fang X, Qu Z, et al. In situ full-field measurement of surface oxidation on Ni-based alloy using high temperature scanning probe microscopy. Sci Rep, 2018, 8: 6684

    Google Scholar 

  94. Li Y, Fang X, Xia B, et al. In situ measurement of oxidation evolution at elevated temperature by nanoindentation. Scripta Mater, 2015, 103: 61–64

    Google Scholar 

  95. Fang X, Li Y, Zhang C, et al. Transition of oxide film configuration and the critical stress inferred by scanning probe microscopy at nanoscale. Chem Phys Lett, 2016, 660: 33–36

    Google Scholar 

  96. Cruchley S, Evans H, Taylor M. An overview of the oxidation of Ni-based superalloys for turbine disc applications: Surface condition, applied load and mechanical performance. Mater at High Temp, 2016, 33: 465–475

    Google Scholar 

  97. Németh A A N, Crudden D J, Armstrong D E J, et al. Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy. Acta Mater, 2017, 126: 361–371

    Google Scholar 

  98. Tolpygo V K, Dryden J R, Clarke D R. Determination of the growth stress and strain in α-Al2O3 scales during the oxidation of Fe-22Cr-4.8Al-0.3Y alloy. Acta Mater, 1998, 46: 927–937

    Google Scholar 

  99. Clarke D R. Stress generation during high-temperature oxidation of metallic alloys. Curr Opin Solid State Mater Sci, 2002, 6: 237–244

    Google Scholar 

  100. Wouters Y, Pint B, Monceau D. Special issue on corrosion-mechanical loading interactions. Oxid Met, 2017, 88: 1–2

    Google Scholar 

  101. Dehm G, Jaya B N, Raghavan R, et al. Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales. Acta Mater, 2017, 142: 248–282

    Google Scholar 

  102. Kumar S, Curtin W A. Crack interaction with microstructure. Mater Today, 2007, 10: 34–44

    Google Scholar 

  103. Jaya B N, Wheeler J M, Wehrs J, et al. Microscale fracture behavior of single crystal silicon beams at elevated temperatures. Nano Lett, 2016, 16: 7597–7603

    Google Scholar 

  104. Luo L, Zou L, Schreiber D K, et al. In-situ transmission electron microscopy study of surface oxidation for Ni-10Cr and Ni-20Cr alloys. Scripta Mater, 2016, 114: 129–132

    Google Scholar 

  105. Zhou G, Luo L, Li L, et al. Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys Rev Lett, 2012, 109: 235502

    Google Scholar 

  106. Wheeler J M, Michler J. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev Sci Instruments, 2013, 84: 045103

    Google Scholar 

  107. Raghavan R, Harzer T P, Chawla V, et al. Comparing small scale plasticity of copper-chromium nanolayered and alloyed thin films at elevated temperatures. Acta Mater, 2015, 93: 175–186

    Google Scholar 

  108. Fritz R, Kiener D. Development and application of a heated in-situ SEM micro-testing device. Measurement, 2017, 110: 356–366

    Google Scholar 

  109. Zou Y, Wheeler J M, Ma H, et al. Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett, 2017, 17: 1569–1574

    Google Scholar 

  110. Wheeler J M, Armstrong D E J, Heinz W, et al. High temperature nanoindentation: The state of the art and future challenges. Curr Opin Solid State Mater Sci, 2015, 19: 354–366

    Google Scholar 

  111. Trenkle J C, Packard C E, Schuh C A. Hot nanoindentation in inert environments. Rev Sci Instruments, 2010, 81: 073901

    Google Scholar 

  112. Schuh C A, Packard C E, Lund A C. Nanoindentation and contact-mode imaging at high temperatures. J Mater Res, 2006, 21: 725–736

    Google Scholar 

  113. Mehrer H. Diffusion in Solids. Berlin: Springer-Verlag, 2007

    Google Scholar 

  114. Chan K S. Time-dependent crack growth thresholds of Ni-base superalloys. Metall Mat Trans A, 2014, 45: 3454–3466

    Google Scholar 

  115. Jiang R, Proprentner D, Callisti M, et al. Role of oxygen in enhanced fatigue cracking in a PM Ni-based superalloy: Stress assisted grain boundary oxidation or dynamic embrittlment? Corrosion Sci, 2018, 139: 141–154

    Google Scholar 

  116. Viskari L, Hörnqvist M, Moore K L, et al. Intergranular crack tip oxidation in a Ni-base superalloy. Acta Mater, 2013, 61: 3630–3639

    Google Scholar 

  117. Zhou H, Qu S. The effect of nanoscale twin boundaries on fracture toughness in nanocrystalline Ni. Nanotechnology, 2010, 21: 035706

    Google Scholar 

  118. Zhou H, Qu S, Yang W. Toughening by nano-scaled twin boundaries in nanocrystals. Model Simul Mater Sci Eng, 2010, 18: 065002

    Google Scholar 

  119. Viskari L, Johansson S, Stiller K. Oxygen influenced intergranular crack propagation: analysing microstructure and chemistry in the crack tip region. Mater at High Temp, 2011, 28: 336–341

    Google Scholar 

  120. Kitaguchi H S, Moody M P, Li H Y, et al. An atom probe tomography study of the oxide-metal interface of an oxide intrusion ahead of a crack in a polycrystalline Ni-based superalloy. Scripta Mater, 2015, 97: 41–44

    Google Scholar 

  121. Dugdale H, Armstrong D E J, Tarleton E, et al. How oxidized grain boundaries fail. Acta Mater, 2013, 61: 4707–4713

    Google Scholar 

  122. Zhang J. High Temperature Deformation and Fracture of Materials. Cambridge: Woodhead Publishing Limited, 2010

    Google Scholar 

  123. Ryan M. Peering below the surface. Nat Mater, 2004, 3: 663–664

    Google Scholar 

  124. Vehoff H, Ochmann P, Göken M, et al. Deformation processes at crack tips in NiAl single- and bicrystals. Mater Sci Eng-A, 1997, 239–240: 378–385

    Google Scholar 

  125. Zeng Z, Li X, Lu L, et al. Fracture in a thin film of nanotwinned copper. Acta Mater, 2015, 98: 313–317

    Google Scholar 

  126. Shan Z W, Lu L, Minor A M, et al. The effect of twin plane spacing on the deformation of copper containing a high density of growth twins. J Miner Metal Mater Soc, 2008, 60: 71–74

    Google Scholar 

  127. Krupp U, Kane W, Pfaendtner J A, et al. Oxygen-induced intergranular fracture of the nickel-base alloy IN718 during mechanical loading at high temperatures. Mat Res, 2004, 7: 35–41

    Google Scholar 

  128. Krupp U. Dynamic embrittlement—time-dependent quasi-brittle intergranular fracture at high temperatures. Int Mater Rev, 2005, 50: 83–97

    Google Scholar 

  129. Krupp U, McMahon Jr C J. Dynamic embrittlement-time-dependent brittle fracture. J Alloys Compd, 2004, 378: 79–84

    Google Scholar 

  130. Evans H E, Li H Y, Bowen P. A mechanism for stress-aided grain boundary oxidation ahead of cracks. Scripta Mater, 2013, 69: 179–182

    Google Scholar 

  131. Chan K S. A grain boundary fracture model for predicting dynamic embrittlement and oxidation-induced cracking in superalloys. Metall Mat Trans A, 2015, 46: 2491–2505

    Google Scholar 

  132. Ma L, Chang K M. Identification of SAGBO-induced damage zone ahead of crack tip to characterize sustained loading crack growth in alloy 783. Scripta Mater, 2003, 48: 1271–1276

    Google Scholar 

  133. Fang X, Dong X, Jiang D, et al. Modification of the mechanism for stress-aided grain boundary oxidation ahead of cracks. Oxid Met, 2017, 89: 331–338

    Google Scholar 

  134. Shi S Q, Puls M P. Criteria for fracture initiation at hydrides in zirconium alloys I. Sharp crack tip. J Nucl Mater, 1994, 208: 232–242

    Google Scholar 

  135. Anderson T L. Fracture Mechanics: Fundamentals and Applications. CRC Press, 1995

  136. Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A, 1957, 241: 376–396

    MathSciNet  MATH  Google Scholar 

  137. Mura T. Micromechanics of Defects in Solids. Leiden: Martinus Nijhoff Publishers, 1987

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Li, Y., Yue, M. et al. Chemo-mechanical coupling effect on high temperature oxidation: A review. Sci. China Technol. Sci. 62, 1297–1321 (2019). https://doi.org/10.1007/s11431-019-9527-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-9527-0

Keywords

Navigation