Skip to main content
Log in

Topological evolution of coexpression networks by new gene integration maintains the hierarchical and modular structures in human ancestors

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

We analyze the global structure and evolution of human gene coexpression networks driven by new gene integration. When the Pearson correlation coefficient is greater than or equal to 0.5, we find that the coexpression network consists of 334 small components and one “giant” connected subnet comprising of 6317 interacting genes. This network shows the properties of power-law degree distribution and small-world. The average clustering coefficient of younger genes is larger than that of the elderly genes (0.6685 vs. 0.5762). Particularly, we find that the younger genes with a larger degree also show a property of hierarchical architecture. The younger genes play an important role in the overall pivotability of the network and this network contains few redundant duplicate genes. Moreover, we find that gene duplication and orphan genes are two dominant evolutionary forces in shaping this network. Both the duplicate genes and orphan genes develop new links through a “rich-gets-richer” mechanism. With the gradual integration of new genes into the ancestral network, most of the topological structure features of the network would gradually increase. However, the exponent of degree distribution and modularity coefficient of the whole network do not change significantly, which implies that the evolution of coexpression networks maintains the hierarchical and modular structures in human ancestors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albert, R., Jeong, H., and Barabási, A.L. (2000). Error and attack tolerance of complex networks. Nature 406, 378–382.

    Article  CAS  PubMed  Google Scholar 

  • Barkai, N., and Leibler, S. (1997). Robustness in simple biochemical networks. Nature 387, 913–917.

    Article  CAS  PubMed  Google Scholar 

  • Barabási, A.L., and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509–512.

    Article  PubMed  Google Scholar 

  • Barabási, A.L., and Oltvai, Z.N. (2004). Network biology: understanding the cell’s functional organization. Nat Rev Genet 5, 101–113.

    Article  CAS  PubMed  Google Scholar 

  • Chung, F., Lu, L., Dewey, T.G., and Galas, D.J. (2003). Duplication models for biological networks. J Comput Biol 10, 677–687.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, R., and Havlin, S. (2003). Scale-free networks are ultrasmall. Phys Rev Lett 90, 058701.

    Article  CAS  PubMed  Google Scholar 

  • Clauset, A., Newman, M.E.J., and Moore, C. (2004). Finding community structure in very large networks. Phys Rev E 70, 066111.

    Article  CAS  Google Scholar 

  • Chung, W.Y., Albert, R., Albert, I., Nekrutenko, A., and Makova, K.D. (2006). Rapid and asymmetric divergence of duplicate genes in the human gene coexpression network. BMC Bioinformatics 7, 46, 1–14.

    Google Scholar 

  • Crombach, A., and Hogeweg, P. (2008). Evolution of evolvability in gene regulatory networks. PLoS Comput Biol 4, e1000112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Krinsky, B.H., and Long, M. (2013). New genes as drivers of phenotypic evolution. Nat Rev Genet 14, 645–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girvan, M., and Newman, M.E.J. (2002). Community structure in social and biological networks. Proc Natl Acad Sci USA 99, 7821–7826.

    Article  CAS  PubMed  Google Scholar 

  • Horvath, S., and Dong, J. (2008). Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4, e1000117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedges, S.B., Marin, J., Suleski, M., Paymer, M., and Kumar, S. (2015). Tree of life reveals clock-like speciation and diversification. Mol Biol Evol 32, 835–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., and Barabási, A.L. (2000). The large-scale organization of metabolic networks. Nature 407, 651–654.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, I.K., Marino-Ramirez, L., Wolf, Y.I., and Koonin, E.V. (2004). Conservation and coevolution in the scale-free human gene coexpression network. Mol Biol Evol 21, 2058–2070.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H.K., Hsu, A.K., Sajdak, J., Qin, J., and Pavlidis, P. (2004). Coexpression analysis of human genes across many microarray data sets. Genome Res 14, 1085–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Li, Q., Ganegoda, G.U., Wang, J.X., Wu, F.X., and Pan, Y. (2014). Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks. Sci China Life Sci 57, 1064–1071.

    Article  CAS  PubMed  Google Scholar 

  • Maslov, S., and Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science 296, 910–913.

    Article  CAS  PubMed  Google Scholar 

  • Oldham, M.C., Horvath, S., and Geschwind, D.H. (2006). Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 103, 17973–17978.

    Article  CAS  PubMed  Google Scholar 

  • Obayashi, T., Okamura, Y., Ito, S., Tadaka, S., Motoike, I.N., and Kinoshita, K. (2012). COXPRESdb: a database of comparative gene coexpression networks of eleven species for mammals. Nucleic Acids Res 41, D1014–D1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor-Satorras, R., Smith, E., and Solé, R.V. (2003). Evolving protein interaction networks through gene duplication. J Theor Biol 222, 199–210.

    Article  CAS  PubMed  Google Scholar 

  • Prieto, C., Risueño, A., Fontanillo, C., and De las Rivas, J. (2008). Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS ONE 3, e3911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., and Barabási, A.L. (2002). Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555.

    Article  CAS  PubMed  Google Scholar 

  • Shen-Orr, S.S., Milo, R., Mangan, S., and Alon, U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31, 64–68.

    Article  CAS  PubMed  Google Scholar 

  • Sorrells, T.R., and Johnson, A.D. (2015). Making sense of transcription networks. Cell 161, 714–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautz, D., and Domazet-Lošo, T. (2011). The evolutionary origin of orphan genes. Nat Rev Genet 12, 692–702.

    Article  CAS  PubMed  Google Scholar 

  • Watts, D.J., and Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393, 440–442.

    Article  CAS  Google Scholar 

  • Wagner, A. (2001). The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 18, 1283–1292.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, A. (2003). How the global structure of protein interaction networks evolves. Proc R Soc London Ser B-Biol Sci 270, 457–466.

    Article  CAS  Google Scholar 

  • Yu, H., Mitra, R., Yang, J., Li, Y.Y., and Zhao, Z.M. (2014). Algorithms for network-based identification of differential regulators from transcriptome data: a systematic evaluation. Sci China Life Sci 57, 1090–1102.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.F., Zhang, R., and Su, B. (2009). Diversity and evolution of microRNA gene clusters. Sci China Ser C-Life Sci 52, 261–266.

    Article  CAS  Google Scholar 

  • Zhang, Y.E., Vibranovski, M.D., Landback, P., Marais, G.A.B., and Long, M. (2010). Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome. PLoS Biol 8, e1000494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y.E., Landback, P., Vibranovski, M.D., and Long, M. (2011). Accelerated recruitment of new brain development genes into the human genome. PLoS Biol 9, e1001179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., Landback, P., Gschwend, A.R., Shen, B., and Long, M. (2015). New genes drive the evolution of gene interaction networks in the human and mouse genomes. Genome Biol 16, 202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Profs. Yicang Zhou and Yanni Xiao for their valuable discussion. This work was supported by grants from the National Natural Science Foundation of China (11571272, 11201368 and 11631012), the National Science and Technology Major Project of China (2012ZX10002001), the Natural Science Foundation of Shaanxi Province (2015JQ1011) and the China Postdoctoral Science Foundation (2014M560755).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zu or Manyuan Long.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, J., Gu, Y., Li, Y. et al. Topological evolution of coexpression networks by new gene integration maintains the hierarchical and modular structures in human ancestors. Sci. China Life Sci. 62, 594–608 (2019). https://doi.org/10.1007/s11427-019-9483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-9483-6

Keywords

Navigation