Skip to main content
Log in

A targeted sequencing approach to find novel pathogenic genes associated with sporadic aortic dissection

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Aortic dissection (AD) is a heterogeneous genetic disease of the aorta with high mortality and poor prognosis. However, only few genetic causes of AD have been explored till date. After conducting a broad literature review focused on identifying potential pathogenic pathways, we designed a panel containing 152 AD-associated genes to conduct massively parallel targeted next-generation sequencing of 702 sporadic aortic dissection patients and 163 matched healthy controls. After validation by Sanger sequencing, we identified 21 definitely pathogenic and 635 likely pathogenic variants in 61.25% (430/702) of patients. In these patients, 34.88% (150/430) harbored more than one variant that was either definitely or likely to be pathogenic. Among the candidate genes, we identified 546 likely pathogenic variants in 47.72% (335/702) of patients. Importantly, we identified 94 loss-of-function (LOF) variants in 45 genes in AD patients, but only five LOF variants in the controls (P=1.34×10−4). With a burden test, we highlighted RNF213 as an important new gene for AD pathogenesis. We also performed transcriptome sequencing of human aorta tissues to evaluate the expression levels of these newly identified genes. Our study has compiled a comprehensive genetic map of sporadic AD in the Han Chinese population. We believe it will facilitate risk predicting and genetic diagnosis of this severe disease in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbour, J.R., Spinale, F.G., and Ikonomidis, J.S. (2007). Proteinase systems and thoracic aortic aneurysm progression. J Surgical Res 139, 292–307.

    Article  CAS  Google Scholar 

  • Braverman, A.C. (2010). Acute aortic dissection: clinician update. Circulation 122, 184–188.

    Article  PubMed  Google Scholar 

  • Campens, L., Callewaert, B., Muiño Mosquera, L., Renard, M., Symoens, S., De Paepe, A., Coucke, P., and De Backer, J. (2015). Gene panel sequencing in heritable thoracic aortic disorders and related entities— results of comprehensive testing in a cohort of 264 patients. Orphanet J Rare Dis 10, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, Y., Wu, W., Yu, C., Zhong, F., Li, G., Kong, W., and Zheng, J. (2016). A disintegrin and metalloproteinase with thrombospondin motif 1 (ADAMTS1) expression increases in acute aortic dissection. Sci China Life Sci 59, 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Gilad, S., Khosravi, R., Shkedy, D., Uziel, T., Ziv, Y., Savitsky, K., Rotman, G., Smith, S., Chessa, L., Jorgensen, T.J., et al. (1996). Predominance of null mutations in ataxia-telangiectasia. Hum Mol Genet 5, 433–439.

    Article  CAS  PubMed  Google Scholar 

  • Goldfinger, J.Z., Halperin, J.L., Marin, M.L., Stewart, A.S., Eagle, K.A., and Fuster, V. (2014). Thoracic aortic aneurysm and dissection. J Am College Cardiol 64, 1725–1739.

    Article  Google Scholar 

  • Guo, D.C., Pannu, H., Tran-Fadulu, V., Papke, C.L., Yu, R.K., Avidan, N., Bourgeois, S., Estrera, A.L., Safi, H.J., Sparks, E., et al. (2007). Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39, 1488–1493.

    Article  CAS  PubMed  Google Scholar 

  • Hoffjan, S. (2012). Genetic dissection of marfan syndrome and related connective tissue disorders: an update 2012. Mol Syndromol 3, 47–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada, F., Aoki, Y., Narisawa, A., Abe, Y., Komatsuzaki, S., Kikuchi, A., Kanno, J., Niihori, T., Ono, M., Ishii, N., et al. (2011). A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet 56, 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Khau Van Kien, P., Wolf, J.E., Mathieu, F., Zhu, L., Salve, N., Lalande, A., Bonnet, C., Lesca, G., Plauchu, H., Dellinger, A., et al. (2004). Familial thoracic aortic aneurysm/dissection with patent ductus arteriosus: genetic arguments for a particular pathophysiological entity. Eur J Hum Genet 12, 173–180.

    Article  CAS  PubMed  Google Scholar 

  • LeMaire, S.A., McDonald, M.L.N., Guo, D.C., Russell, L., Miller, C.C., Johnson, R.J., Bekheirnia, M.R., Franco, L.M., Nguyen, M., Pyeritz, R. E., et al. (2011). Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet 43, 996–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Huang, J., Zhao, J., Chen, C., Wang, H., Ding, H., Wang, D.W., and Wang, D.W. (2014). Rapid molecular genetic diagnosis of hypertrophic cardiomyopathy by semiconductor sequencing. J Transl Med 12, 173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Zhou, C., Tan, L., Chen, P., Cao, Y., Li, C., Li, X., Yan, J., Zeng, H., Wang, D.W., et al. (2017). Variants of genes encoding collagens and matrix metalloproteinase system increased the risk of aortic dissection. Sci China Life Sci 60, 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Marian, A.J., and Belmont, J. (2011). Strategic approaches to unraveling genetic causes of cardiovascular diseases. Circul Res 108, 1252–1269.

    Article  CAS  Google Scholar 

  • Milewicz, D., Hostetler, E., Wallace, S., Mellor-Crummey, L., Gong, L., Pannu, H., Guo, D.C., and Regalado, E. (2016). Precision medical and surgical management for thoracic aortic aneurysms and acute aortic dissections based on the causative mutant gene. J Cardiovasc Surg (Torino) 57, 172–177.

    Google Scholar 

  • Nitschke, Y., Baujat, G., Botschen, U., Wittkampf, T., Moulin, M., Stella, J., Le Merrer, M., Guest, G., Lambot, K., Tazarourte-Pinturier, M.F., et al. (2012). Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am J Hum Genet 90, 25–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Núñez-Gil, I.J., Bautista, D., Cerrato, E., Salinas, P., Varbella, F., Omedè, P., Ugo, F., Ielasi, A., Giammaria, M., Moreno, R., et al. (2015). Incidence, management, and immediate- and long-term outcomes after iatrogenic aortic dissection during diagnostic or interventional coronary procedures. Circulation 131, 2114–2119.

    Article  PubMed  Google Scholar 

  • Pomianowski, P., and Elefteriades, J.A. (2013). The genetics and genomics of thoracic aortic disease. Ann Cardiothorac Surg 2, 271–279.

    PubMed  PubMed Central  Google Scholar 

  • Renard, M., Callewaert, B., Baetens, M., Campens, L., MacDermot, K., Fryns, J.P., Bonduelle, M., Dietz, H.C., Gaspar, I.M., Cavaco, D., et al. (2013). Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFβ signaling in FTAAD. Int J Cardiol 165, 314–321.

    Article  PubMed  Google Scholar 

  • Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., et al. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17, 405–423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutsch, F., Nitschke, Y., and Terkeltaub, R. (2011). Genetics in arterial calcification: pieces of a puzzle and cogs in a wheel. Circul Res 109, 578–592.

    Article  CAS  Google Scholar 

  • Sakai, H., Suzuki, S., Mizuguchi, T., Imoto, K., Yamashita, Y., Doi, H., Kikuchi, M., Tsurusaki, Y., Saitsu, H., Miyake, N., et al. (2012). Rapid detection of gene mutations responsible for non-syndromic aortic aneurysm and dissection using two different methods: resequencing microarray technology and next-generation sequencing. Hum Genet 131, 591–599.

    Article  CAS  PubMed  Google Scholar 

  • Salomon, M.P., Li, W.L.S., Edlund, C.K., Morrison, J., Fortini, B.K., Win, A.K., Conti, D.V., Thomas, D.C., Duggan, D., Buchanan, D.D., et al. (2016). GWASeq: targeted re-sequencing follow up to GWAS. BMC Genomics 17, 176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, L.B., Hadoke, P.W.F., Dyer, E., Denvir, M.A., Brownstein, D., Miller, E., Nelson, N., Wells, S., Cheeseman, M., and Greenfield, A. (2011). Haploinsufficiency of the murine Col3a1 locus causes aortic dissection: a novel model of the vascular type of Ehlers-Danlos syndrome. Cardiovasc Res 90, 182–190.

    Article  CAS  PubMed  Google Scholar 

  • Theruvath, T.P., Jones, J.A., and Ikonomidis, J.S. (2012). Matrix metalloproteinases and descending aortic aneurysms: parity, disparity, and switch. J Cardiac Surgery 27, 81–90.

    Article  Google Scholar 

  • Tsamis, A., Krawiec, J.T., and Vorp, D.A. (2013). Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface 10, 20121004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D., Shen, Y.H., Russell, L., Coselli, J.S., and LeMaire, S.A. (2013). Molecular mechanisms of thoracic aortic dissection. J Surgical Res 184, 907–924.

    Article  CAS  Google Scholar 

  • Zhang, X., Shen, Y.H., and LeMaire, S.A. (2009). Thoracic aortic dissection: are matrix metalloproteinases involved? Vascular 17, 147–157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, L., Vranckx, R., Khau Van Kien, P., Lalande, A., Boisset, N., Mathieu, F., Wegman, M., Glancy, L., Gasc, J.M., Brunotte, F., et al. (2006). Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 38, 343–349.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81700413) and National Key Basic Research Program of China (2012CB518004, 2012CB517801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Wen Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhou, C., Tan, L. et al. A targeted sequencing approach to find novel pathogenic genes associated with sporadic aortic dissection. Sci. China Life Sci. 61, 1545–1553 (2018). https://doi.org/10.1007/s11427-018-9382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9382-0

Keywords

Navigation