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Hematopoietic stem cells (HSCs) are specified and generated during the embryonic development and have remarkable poten-
tial to replenish the full set of blood cell lineages. Researchers have long been interested in clarifying the molecular events in-
volved in HSC specification. Many studies have reported the development of methods for generating functional hematopoietic 
cells from pluripotent stem cells (PSCs-embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)) for decades. 
However, the generation of HSCs with robust long-term repopulation potential remains a swingeing challenge, of which a ma-
jor factor contributing to this failure is the difficulty to define the intraembryonic signals related to the specification of HSCs. 
Since HSCs directly derive from hemogenic endothelium, in this review, we summarize both in vivo and in vitro studies on 
conserved signaling pathways that control the specification of HSCs from hemogenic endothelial cells.  
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Hematopoietic stem cells (HSCs) emerge in the definitive 
hematopoiesis of early embryos. Definitive hematopoiesis 
initiates through the formation of transient erythromyeloid 
progenitors (EMPs), then the HSCs arise. EMPs and HSCs 
not only share many phenotypic traits, but also both have 
multilineage potential. Typically, they can be distinguished 
by their lymphoid potential or self-renewal capacity, as well 
as the Notch signal profile [1]. From the anatomy level, ev-
idences provided by in vitro studies have demonstrated that 
HSCs specification can be detected in various embryonic 
sites, including umbilical and vitelline arteries [2], the pla-
centa [3], the fetal head [4] and the yolk sac [5]. From cell 
level, HSCs fate has been determined from formation of the 
primitive steak as the beginning, then followed by initiation 
of hemangioblasts, hemogenic endothelium and HSCs in the 
end [6,7]. Along the passage of embryonic definitive hema-
topoiesis, the signaling environment plays a major role in 

governing HSCs fate.  

1  The general route of developmental events of 
HSCs 

In early embryos, HSCs develop from the ventro-posterior 
floor of the lateral plate mesoderm and the first definitive 
HSCs are detected in the aorta-gonad-mesonephros (AGM) 
region in mouse E10.5 embryos [8]. The earliest hemato-
poietic mesoderm cells, which display both hematopoietic 
and vascular potential, were first identified in the de novo 
embryoid body (EB) forming system [9]. Signaling path-
ways that control posterior mesoderm specification are  
distinctive and include bone morphogenetic protein  
(BMP) [10], fibroblast growth factor (FGF) [11], Nodal [12] 
and Wnt [13].  

The second step of HSCs development is the formation 
of hemogenic endothelium, which control HSCs fate via an  
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endothelial-hematopoietic transition process confirmed in 
mouse studies [14]. The concept of hemogenic endothelium 
was initially developed based on AGM studies, and later it 
was proved to exist in varied embryonic and extraembryon-
ic sites, including umbilical arteries [15], the placenta [3], 
the head [4] and nascent yolk sac capillaries [16]. A mouse 
study found that hemogenic endothelial cells are retinoic 
acid (RA) responsive, and defined several critical signals 
downstream RA, including c-Kit, Notch and p27 that are 
required for hemogenic endothelium specification [17]. 

The final step is the specification of HSCs from hemo-
genic endothelium. It seems to exist transiently and is char-
acterized by changes in gene expression and shape of ven-
tral aortic endothelial cells [1]. In order to clarify the trigger 
signals of this process, the identification of direct precursors 
of HSCs is crucial. Recent studies on HSCs fate determina-
tion demonstrate that the transition of both primitive and 
definitive program are from CD34+CD43 hemogenic en-
dothelial cells, while the difference is that only KDR+ 
CD235a mesodermal cells derived CD34+CD43 popula-
tion give rise to definitive HSCs compared to the 
KDR+CD235a+ mesodermal cells [18,19]. Thus, it is chal-
lenging to distinguish definitive hemogenic endothelium 
from the differentiated clusters only on the basis of cell sur-
face markers, therefore more molecular details are required 
to unveil the emergence of direct precursors of HSCs. Clas-
sical signaling pathways related to the commitment of HSCs 
from hemogenic endothelium include Sonic hedgehog  
(Shh) [20], Notch [21],VEGF [22], and Wnt [23].  

2  The accumulating data of different signaling 
patterns of HSCs fate determination from 
hemogenic endothelium 

Studies have provided direct evidence that the formation of 
HSCs from hemogenic endothelium involved endotheli-
al-hematopoietic transition (EHT) [24]. This process de-
pends strictly on the balance of intrinsic and extrinsic mo-
lecular signals [25]. Here, we list current knowledge of in-
traembryonic signaling pathways that control HSCs fate 
determination from hemogenic endothelium.  

2.1  Notch signaling 

Notch signaling is highly conserved across the meta- 
zoan [26]. In mammals, there are at least 5 Notch ligands 
(Jagged1, Jagged3, Delta1, Delta3 and Delta4) interacting 
with transmembrane receptors (Notch1, Notch2, Notch3, 
and Notch4 in mice; Notch1a, Notch1b, Notch2, and 
Notch3 in zebrafish) on adjacent cells, leading to activation 
of Notch signaling by liberation of the Notch intracellular 
domain (NICD). Released NCID translocates into the nu-
cleus and modulates target gene expression [27]. 

Notch signaling is required for vascular patterning, HSC 
specification and cell fate determination of blood cells. The 

endothelial-hematopoietic transition also displays a 
Notch-dependent manner. Both in vivo and in vitro studies 
have manifested that the requirement for Notch1 is vital and 
cell-autonomous in the establishment of HSCs, moreover 
disturb of notch signaling pathway in vivo directly led to 
loss or decrease of HSCs [28,29]. The Notch1 embryo 
displayed a severely impaired hematopoietic cell develop-
ment but had no cell number decrease in hemogenic endo-
thelial cells [30], and the Notch1 mouse embryonic stem 
cells kept the capacity to differentiate into flk1 mesodermal 
cells but failed in produce HSCs [31]. Inactivated Notch 
signaling in zebrafish had no effects on vascular function, 
meanwhile dose-dependent activation of Notch signal led to 
considerable expansion of HSCs without any change of 
some arterial markers, which manifested that Notch signal-
ing acts through independent pathways to regulate induction 
of each cells fate [28]. Notch1a and Notch1b, two 
orthologues of Notch1, are both required autonomously in 
hemogenic endothelium for HSC generation, meanwhile, 
Notch3 is proved to function in a non-cell-autonomous 
manner [32]. Jagged1 knockout mice had decreased number 
of Gata2 and Runx1 expressing HSCs in the E10.5 embryo 
compared with the normal ones, but it remained normal 
arterial formation, suggesting unique Notch requirements 
between HSCs and arterial fate [33]. Notch1 activates 
downstream Runx1 gene expression indirectly through Ga-
ta2, which is required in definitive hematopoiesis from en-
dothelial cells [30]. Meanwhile Notch1 acts via Foxc2 in 
hemogenic endothelium to promote definitive hematopoie-
sis [21]. However, more Notch-regulated elements control-
ling HSC generation need to be discovered, such as the 
unique targets downstream of each required Notch receptors 
that dominates specification of HSCs.  

2.2  Wnt/-catenin signaling 

The signaling contains Wnt proteins, which involves at least 
19 highly conserved secreted glycoproteins function as lig-
ands, 10 G protein-coupled Frizzled (Fzd) receptors and 2 
low-density lipoprotein receptor-related proteins (LRP) co-
receptors [34]. The canonical Wnt pathway involves two 
core components, which are -catenin and members of the 
T cell factor (TCF)/lymphocyte enhancer binding factor 
(LEF) transcriptional factor family [35]. Wnt ligands bind 
to the receptor complex, activate the pathway by elevating 
cytoplasmic level of -catenin, then migrate to the nucleus 
and bind to TCF/LEF transcription factor, thereby activating 
the transcription of target genes [36,37].  

Wnt/-catenin controls many biological processes, in-
cluding cell fate determination, cell proliferation and 
self-renew. The role of certaining Wnt proteins in HSC 
specification has remained elusive. Wnt3-knockout mice 
had decreased numbers of HSCs and an impaired recon-
struction ability in the secondary transplantation assay [38]. 
Another mouse study shown that Wnt3 deficiency  
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did not significantly influence the expression of the other 
Wnt genes, and Wnt3/ LSKs displayed a complete abol-
ishment of canonical Wnt signaling, based on which we can 
speculate that Wnt3 might be the only Wnt protein able to 
activate canonical Wnt signaling in the HSCs [39]. Howev-
er, direct effects of Wnt3a on the specification of HSCs 
from hemogenic endothelium have not been reported. Acti-
vation of -catenin was shown to be vital for HSC specifi-
cation in the zebrafish AGM through a cyclic AMP 
(cAMP)/protein kinase A (PKA)-dependent mechanism 
downstream of prostaglandin E2 (PGE2) [40]. The same 
result were found in mice that Wnt/-catenin activity was 
restricted to a very small number of endothelial cells in the 
E10.5 AGM, and was required in a dose- and time-    
dependent manner to produce functional HSCs [41]. All 
those data indicate that Wnt signaling maybe not be deci-
sive in direct control of HSCs fate, but it is crucial for the 
initial specification of HSCs.  

2.3  Bmp4 signaling 

Bone morphogenetic proteins (BMPs) acts as multi-   
functional growth factors and belongs to the transforming 
growth factor beta (TGF) superfamily, which regulate many 
cellular processes including cell fate determination during 
early embryonic development. The activation of signaling 
pathways begins with the heterodimerization of Type I and 
II receptors upon binding to Bmp ligands, which are fol-
lowed by cytoplasmic R-Smads phosphorylation and in turn 
regulates multiple genes expression [42]. Signal transduc-
tion studies have revealed that Smad1, 5 and 8 are the im-
mediate downstream proteins of Bmp receptors, and they 
play central roles in the pathway [43]. 

Bmp4 is a key determinant for the Runx1-mediated 
emergence of HSCs from hemogenic endothelium, as con-
firmed by a conditional knockdown assay in zebrafish that 
resulted in a loss of HSCs in the ventral wall of the dorsal 
aorta, while the arterial program was unaffected [44]. Re-
cently, a novel PKA-cAMP response element-binding pro-
tein (CREB)-Bmp signaling pathway downstream of shear 
stress was proved to function in HSC emergence in the 
AGM through the endothelial-hematopoietic transition [45]. 
Knowing the regulation of downstream signals of the path-
way is relatively more crucial. For years, studies conducted 
on cytoplasmic like Smad1, Smad5 and Smad9 confirmed 
that Bmp4 signal only functioned in HSC formation instead 
of later lineage commitment [46–48]. Interaction between 
Smad1/5 and extracellular signal-regulated kinase (ERK) 
signaling is essential for endothelial-hematopoietic transi-
tion, shown by the defects in HSC formation induced by 
ERK activation via knockdown of Smad1/5 [47]. These 
findings manifest the different requirements in Bmp signal-
ing during hematopoietic commitment from endothelium. 

2.4  Other signals 

Multiple additional signals also influence the specification  

of HSCs from hemogenic endothelium. Studies in zebrafish 
have proved that Notch regulated HSC specification was 
directly controlled by Shh-VEGF signaling (vascular endo-
thelial growth factor acts downstream of sonic hedgehog) 
during arterial endothelial differentiation [20,22]. A 
zebrafish study menifests that the FGF signaling regulates 
HSC fate through repressing BMP activity and this negative 
regulation is independent from arterial specification during 
the convergence of vascular precursor cells to the  
midline [49]. Meanwhile, it has been proved that Wnt16 
acts upstream of FGF signaling pathway through FGF re-
ceptor 4 (Fgfr4) to relay signals to Notch ligand deltaC (dlc) 
in fate HSCs during the endothelial-hematopoietic transition 
process [50]. Recent works have uncovered several previ-
ously unknown signals required for HSC specification in-
cluding the PGE2-cAMP/PKA signaling axis [51–53] which 
was activated by biomechanical forces, and the inflamma-
tory signaling toll-like receptor 4 (TLR4)/nuclear fac-
tor-kappa B (NF-B) which regulates HSC determination 
via promoting Notch activity [54]. Advances in new signal-
ing pathways that relates to the fate determination of HSCs 
may help improve the whole molecular patterns of certain 
precursor cells. Collectively, these findings indicate that the 
precursors of HSCs must emergence in time in the dorsal 
aorta to accept specified signals to fulfill the final specifica-
tion step. 

2.5  Interactions of different signaling pathways 

The expression pattern of these required signals is dynamic 
in location and timing, which is closely related to their bio-
logical roles. As to HSC specification, direct cell-to-cell 
contact through Notch receptors and ligands in proper time 
is needed, so does those signals such as Bmp4 that function 
in somites. The interaction models of key signaling path-
ways that dominant HSC emergence from hemogenic en-
dothelium both in vivo and in vitro can be concluded below 
(Figure 1). Canonical Wnt signaling also interact with other 
pathways, such as the PGE2, in a -catenin-dependent 
manner [40]. Shh signaling induces vascular endothelial 
growth factor A (VegfA) expression in somites, which in 
turn activates the expression of Notch receptors in endothe-
lial cells, thus promoting the possibility to activate Notch 
signaling in HSC specification [22]. FGF signaling function 
as an intermediate role in somites between Wnt16 and 
Notch signaling pathway in HSC specification from hemo-
genic endothelium. In conclusion, coordination between 
multiple signaling pathways leads to the inflexible time- and 
dose-dependent requirement of molecular signals during 
HSC specification. 

3  Summary  

Hematopoietic regulation is a complex dynamic network 
controlled by both intrinsic and extrinsic factors in a three  
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Figure 1  Major cell signaling pathways involved in HSC specification 
from hemogenic endothelium. In the dorsal aorta, hemogenic endothelium 
(Red) receives specified signals from adjacent cells (Green) and somites 
(Grey) to gain HSCs fate. Key molecular signals involved in this process 
include Notch; non-canonical/canonical Wnt; Shh; Bmp4. Solid lines indi-
cate there are genetic evidence of interacting proteins, while dotted lines 
represent unproved but plausible interactions.  

dimensional condition [55]. In recent years, efforts have 
been made in developing methods for producing specialized 
blood cells from hPSCs [56]. However, the clinical applica-
tion of hPSCs derived blood cells such as the most  
promising red blood cells (RBCs) requires further develop-
ment [57]. And when it comes to in vitro generation of 
HSCs, the most hopeful process is to define the direct pre-
cursors of HSCs in de novo systems. The fact that the em-
bryonic vascular development is closely associated with 
HSC generation, which makes it vital to clarify the me-
chanical differences within these two processes. A recent 
study shown that genetic loss of Sox17 and Notch1 (arterial 
genes) during EHT result in increased number of hemato-
poietic cells suggested that EHT is actively repressed in a 
sub set of endothelial cells [58].  

As to hematopoietic differentiation of pluripotent stem 
cells (PSCs), signals such as Bmp4, VEGF, and Wnt have 
been used in combination with other factors in well-defined 
conditions in vitro to induce function hematopoietic progen-
itors. However, these approaches have not yet led to the 
formation of functional HSCs. The accumulating data have 
proved that not all of the hemogenic endothelial cells of in 
vitro systems can turn on definitive program [59,60]. The 
erythrocytes derived from hESC firstly show the primitive 
properties, then turn to obtain definitive properties in a 
clonal tracing assay, implying that there may be a definitive 
switching mechanism within hESC-derived hematop- 
oiesis [61]. And a recent study also showed that hPSCs de-
rived hemogenic endothelial cells are distinctive to in vivo 
studied hemogenic endothelium [62]. The existence of het-
erogeneous cell groups within HE cells, which cannot be 
identified simply by known cell surface markers, implys 
that more molecular mechanisms like the regulation of 

transcriptional and epigenetic factors (like Gata2 [63],  
Gata3 [64] and AML1 [65]) need to be re-discovered, so do 
the conserved signaling pathways which need to be re-
viewed. In this review, we have discussed a subset of 
known signaling pathways related to HSC specification 
from hemogenic endothelium. Upon combining with an 
efficient induction system as well as certain reporter hPSCs 
cell lines, the signaling pathways confirmed in animal stud-
ies need to be further tested in vitro, thus prompting the 
generation of HSCs in vitro. In summary, operating molec-
ular networks such as signaling pathways will be the most 
promising method to explore the normal HSC development 
and finally to find ways to recapitulate it in vitro.  
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