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Calorie restriction (CR) is a dietary regime based on low calorie intake. CR without malnutrition extends lifespan in a wide 
range of organisms from yeast to rodents, and CR can prevent and delay the onset of age-related functional decline and diseas-
es in human and non-human primates. CR is a safe and effective intervention to reduce vascular risk factors in humans. In re-
cent years, studies in rodents have provided mechanistic insights into the beneficial effects of CR on vascular homeostasis, in-
cluding reduced oxidative stress, enhanced nitric oxide (NO) bioactivity, and decreased inflammation. A number of important 
molecules, including sirtuins, AMP-activated protein kinase, mammalian targets of rapamycin, endothelial nitric oxidase and 
their regulatory pathways are involved in the maintenance of vascular homeostasis. Evidence has shown that these pathways 
are responsible for many aspects of CR’s effects, and that they may also mediate the effects of CR on vasculature. 
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Calorie restriction (CR), sometimes referred to as dietary 
restriction (DR), is a dietary regime based on low calorie 
intake. CR is usually defined as decreasing the calorie in-
take about 20%40% of the ad libitum (AL) diet without 
compromising the intake of essential nutrients [1]. Since 
McCay first reported that CR extended lifespan of rats al-
most eight decades ago [2], CR is now believed to be the 
only non-pharmacological intervention to extend lifespan. It 
has been proven that CR prolongs lifespan in diverse organ-
isms, including yeast, worms, flies and rodents [3]. 
Long-term CR also significantly improves age-related and 
all-cause survival in rhesus monkeys implying it also pro-
longs lifespan in higher mammals [4,5]. Furthermore, stud-
ies in humans and monkeys also showed that a reduction in 
calorie intake without malnutrition prevents and delays the 

onset of age-related functional decline and also of diseases 
such as type-2-diabetes, cancer and cardiovascular diseases 
(CVDs) [3,6]. 

Vascular homeostasis is a healthy and balanced state, in 
which endothelial cells (ECs), vascular smooth muscle cells 
(VSMCs), fibroblasts and other bone marrow-derived cells 
in the vascular wall coordinate with environmental cues to 
maintain an appropriate blood pressure and control a proper 
tissue blood perfusion. Vascular diseases result from a loss 
of vascular homeostasis. During the past decade, the leading 
two causes of death worldwide were ischemic heart disease 
and stroke [7], both of which are directly caused by aberrant 
vascular homeostasis. 

CR exerts protective effects on vascular homeostasis. CR 
attenuates atherosclerosis and improves age, obesity and 
diabetes-related vascular dysfunction in rodents [811]. In 
rhesus monkeys, the incidence of CVDs was 50% reduced  
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by CR [4]. Studies also suggest beneficial effects of CR on 
vascular homeostasis in humans. Food restriction during the 
Second World War in Norway caused a sharp decline in 
mortality of CVDs, while the mortality began to increase 
rapidly after the war [12]. In addition, the Japanese Okina-
wan are naturally calorie restricted due to their traditional 
low energy-content diet. Their mortality from coronary ar-
tery diseases is much lower than that of other Japanese and 
Americans [13]. These two epidemiological studies of un-
intentionally induced CR provide evidences that CR may 
also reduce the mortality of CVDs in humans.  

In this review, we introduce the beneficial effects of CR 
on vascular homeostasis in rodents and primates including 
humans, and then discuss the possible molecular pathways 
that mediate its effects on vasculature, which hold a great 
promise as therapeutic targets in treating vascular diseases. 

1  CR preserves vascular homeostasis 

1.1  CR reduces risk factors of vascular diseases 

The risk factors for CVDs include central obesity, high 
blood pressure, elevated fasting plasma glucose level, 
dyslipidemia, and a high level of inflammation. Reducing 
calorie intake is a very effective and reliable way to reduce 
the risk for CVDs. CR improves glucose regulation, de-
creases blood pressure, and reduces circulating inflamma-
tory molecules in rodents [9,1417]. However, due to the 
differences in dietary regimes employed by different groups, 
the effects of CR on blood cholesterol are circumstantial 
[1820]. In the absence of a reduction in cholesterol intake, 
CR does not alter serum cholesterol level in rodents. Nev-
ertheless, an elevated high density lipoprotein-phospho-  
lipids/total phospholipids (HDL-PL/T-PL) ratio is still ob-
served, suggesting an enhanced reverse cholesterol transport 
in calorie-restricted mice [20]. In non-human primates, it 
was observed that CR could decrease body weight, induces 
a better serum lipid profile, and improves insulin sensitivity 
[4,6,2123]. Consistently, CR also reduces the risk of vas-
cular diseases in humans. Clinical trials of the effects of 6 or 
12 months of CR in non-obese humans revealed that 
short-term CR can effectively induce a better blood lipid 
profile, improve insulin sensitivity, and reduce C-reactive 
protein (CRP), a marker of inflammation [2426]. Data 
obtained from eight subjects participated in the two-year 
ecological experiment “Biosphere 2” showed that CR with a 
low-protein diet can reduce various risk factors for vascular 
diseases [27]. The effects of long-term CR were examined 
by studies on 18 members from Calorie Restriction Society 
who had been on CR diet for an average of six years. Com-
pared with age-matched individuals on western diet, the 
members of CR Society showed a remarkable reduction in 
the risk factors for vascular diseases, including lower levels 
of plasma total cholesterol, low-density lipoprotein- 

cholesterol (LDL-cholesterol), fasting glucose, and lower 
blood pressure [28].  

Excessive calorie intake results in insulin resistance and 
an abnormal distribution of lipid, which is characterized by 
adipocyte expansion, lipid accumulation in liver and skele-
tal muscle, and hyperlipidemia [2931]. On the contrary, a 
restriction of calorie intake makes the body to utilize the 
energy more efficiently and leads to a reduction of various 
metabolic factors that are associated with increased CVD 
risk. In adapting to CR, fatty acid β-oxidation in liver and 
skeletal muscle is activated, thereby decreasing triglyceride 
accumulation in these tissues [32,33]. Insulin-stimulated 
glucose uptake in skeletal muscle is also enhanced by CR, 
contributing to an improved glucose regulatory function 
[34,35]. Furthermore, CR reprograms lipid metabolism in 
adipocyte. Lipogenesis and the sensitivity to lipogen-
ic/lipolytic stimuli of adipocytes are enhanced by CR 
[36,37]. CR also improves cardiac function in mice by 
promoting glucose oxidation [38]. These metabolic altera-
tions in the liver, skeletal muscle, adipose tissue, and heart 
under CR condition coordinately lead to a lower body mass, 
improved insulin sensitivity, and a better blood lipid profile, 
which are beneficial for vascular homeostasis. 

1.2  CR improves local vascular function 

CR retards age-related functional decline of various organs, 
including the liver, skeletal muscle, and brain [3], and ac-
cumulating studies have also demonstrated its beneficial 
effects on vasculature. Decreased incidence of CVDs in 
calorie-restricted rhesus monkeys is observed [4]. Results 
from the study on 11 obese patients showed that a 
low-calorie diet is an effective treatment for essential hy-
pertension [39]. Because of the difficulties in conducting 
experiments on humans, most of the studies of CR on vas-
cular function/diseases have been carried out in rodents. 
These animal studies have revealed that CR could improve 
local vascular function via reducing oxidative stress, re-
serving nitric oxide (NO) bioactivity, and inhibiting vascu-
lar inflammation [811,4042]. 

Increased reactive oxygen species (ROS) in vessel wall, 
which eventually culminates with oxidative stress, is 
strongly implicated in the development of many vascular 
diseases such as hypertension, atherosclerosis, and ab-
dominal aortic aneurysm (AAA) [4345]. Oxidative stress 
induces lipid peroxidation, protein oxidation, and mito-
chondrial and nuclear DNA damage, which leads to the ac-
tivation of redox-sensitive transcription factors and the ex-
pression of pro-inflammatory genes [46]. CR attenuates 
vascular NADPH oxidase (NOX)-dependent ROS produc-
tion in vasculature by inhibiting both the activity and the 
expression of NOX [41,42,47]. CR can also reduce mito-
chondrial ROS generation in the aortas of diabetic rats [9]. 
Furthermore, CR enhances the anti-oxidative defenses in the 
vascular system by upregulating the expression and activity 



744 Liu Y, et al.   Sci China Life Sci   August (2014) Vol.57 No.8 

of SOD and catalase [4042]. Increased glutathione and 
ascorbate were also observed in the aortas of CR rats [48]. 

NO is an endogenous vasodilator which can not only 
stimulate VSMC dilation, but also inhibit platelet adherence 
and VSMC proliferation, and decrease the expression    
of pro-inflammatory genes [46]. The reduction of NO bio-
activity is closely related to oxidative stress: NO can be 
inactivated by the ROS superoxide (O2

), and the predomi-
nant NO-generating enzyme in vessels, endothelial NO 
synthase (eNOS), will generate O2

 instead of NO when its 
function is impaired [49]. In rodents, CR can enhance NO 
bioactivity and ameliorate endothelial function through up-
regulating the expression and activity of eNOS, which is 
revealed as an increase in phospho-eNOS/total-eNOS ratio 
[8,4042,47]. 

Inflammation is a common pathophysiological state ob-
served in vascular diseases [50,51]. CR retards vascular 
inflammation not only by decreasing systemic inflammation, 
but also by enhancing the anti-inflammatory function of the 
local vessel. In rats, CR reduces inflammatory markers in 
plasma, such as soluble adhesion molecules and CRP [16]. 
Human coronary arterial endothelial cells (CAECs) treated 
with serum from CR rats present suppressed nuclear factor 
κB (NF-κB) activity [48], suggesting the lower inflamma-
tory status of CR serum. ECs obtained from CR mice 
showed reduced sensitivity to oxidized low-density lipo-
protein (ox-LDL), decreased expression of adhesion mole-
cules and less mononuclear cell adhesion [52], implying 
that local vascular cells have enhanced anti-inflammatory 
capacity under CR conditions. 

In order to maximize the energy obtained from a limited 
food source, the body reprograms energy metabolism, and 

the metabolic alterations in the liver, skeletal muscle, adi-
pose tissue and heart lead to an improved function of these 
organs during CR. But whether CR also reprograms the 
metabolism of the vascular system remains unclear. In-
flammation and oxidative stress are common features of 
vascular diseases, and they are closely related to the con-
version of metabolic state [53]. Aberrant metabolic states of 
vascular lesions were observed in human and experimental 
animals [5457]. Though not thoroughly studied, the pre-
sent evidences strongly suggest that the metabolic switch is 
another key trait of aberrant vascular homeostasis. There-
fore, we deduce that CR may modulate the metabolic state 
of vasculature and subsequently reduce inflammation and 
oxidative stress. 

Taken together, CR guards vascular homeostasis by re-
ducing systemic risk factors and improving local vascular 
functions (Figure 1). CR alters the metabolic state of vari-
ous organs, including the liver, skeletal muscle, adipose 
tissue, and heart, thus reducing vascular risk factors. CR 
also retards the pathological changes of vascular diseases, 
such as oxidative stress and inflammation, but whether 
these effects are achieved through reprogramming the me-
tabolism of the vasculature awaits further investigation.  

2  CR-responsive pathways in the regulation of 
vascular homeostasis 

Coordinated alterations in gene expression involved in en-
ergy metabolism are indicative of metabolic reprogramming 
and have been shown to be a prominent feature of CR 
[58,59]. The contributions of CR to vascular homeostasis,  

 

 

Figure 1 (color online)  Calorie restriction preserves vascular homeostasis. CR alters the metabolic state of various organs, including the liver, skeletal 
muscle, adipose tissue and heart, thereby reducing vascular risk factors. Evidence from various recent studies suggests that CR may also retard the patholog-
ical changes of vascular diseases through reprogramming the metabolism of local vessels. 
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including reduced systemic risk factors and improved local 
vascular functions, are speculated to be achieved by its 
function of metabolic reprogramming. Energy-sensing 
molecules, such as sirtuins, AMP-activated protein kinase 
(AMPK), and mammalian target of rapamycin (mTOR), can 
sense the lower energy state caused by reduced calorie in-
take [60,61]. Therefore, sirtuins, AMPK, mTOR and their 
regulating pathways play essential roles in mediating the 
effects of CR. Recent studies also revealed that eNOS plays 
an important role in modulating whole-body metabolism in 
response to reduced calorie intake besides its well-known 
direct role on vascular function.  

Here, we summarize the evidence that sirtuins, AMPK, 
mTOR and eNOS mediate the effects of CR with particular 
attention paid on their regulatory function on local vascular 
functions. We then deduce their potential roles in mediating 
the effects of CR on vascular homeostasis. 

2.1  Sirtuins 

The mammalian sirtuin family (comprised of seven proteins 
from SIRT1 to SIRT7) is named after the yeast ortholog of 
Sir2 (silent information regulator 2), whose enzymatic ac-
tivity requires NAD+ as a substrate. Calorie restriction in-
creases the intracellular NAD+/NADH ratio, and Sir2 is 
required for CR to extend lifespan in lower organisms 
[6266]. 

2.1.1  SIRT1 

SIRT1 participates in regulating a wide variety of biological  

processes, and many studies have shown that SIRT1 plays a 
critical protective role in modulating vascular functions via 
deacetylating different substrates including histones, tran-
scription factors and other proteins (Table 1). 

As an interface between the circulating blood and the 
vascular wall, ECs confront various stimuli, including dis-
turbed shear stress, cytokines and modified lipoproteins. 
These stimuli can induce oxidative stress, impair NO bioa-
vailability and induce the expression of adhesion molecules 
which further recruit and activate mononuclear cells trans-
migrating into the vascular wall. SIRT1 plays an important 
role in regulating endothelial function, including ROS pro-
duction, NO production, inflammatory molecules expres-
sion, cell senescence and growth. Via suppressing the ex-
pression of p66Shc, a protein participates in the generation 
of mitochondrial ROS, and upregulating the expression of 
antioxidant enzymes, including MnSOD and catalase, the 
activation of SIRT1 reduces ROS production and enhances 
the resistance to oxidative stress in ECs [67,68]. Further-
more, SIRT1 enhances eNOS activity and promotes the 
production of NO by directly deacetylating eNOS and indi-
rectly activating the liver kinase B1 (LKB1)-AMPK-eNOS 
signaling pathway [6971]. Many studies also revealed that 
SIRT1 has anti-inflammatory effects in ECs by suppressing 
the transcriptional activity of NF-κB and nuclear factor of 
activated T cells (NFAT), and subsequently decreasing the 
expression of inflammatory molecules [7275]. Moreover, 
SIRT1 inhibits endothelial cell senescence [76-82], a pro-
cess involved in endothelial dysfunction and atherogenesis  

Table 1  List of described SIRT1 substrates in vascular cells, their downstream molecules, and the result of SIRT1 activationa) 

Cell type Substrate Downstream molecules Result of SIRT1 activation References 

EC 

Histone 
H3 p66Shc Reduces ROS [67] 

H4 PAI-1 Prevents cell senescence [82] 

transcription 
factor 

FoxO3a/PGC-1α MnSOD, Catalase Reduces ROS [68] 

NFAT COX-2 Reduces inflammation [72] 

p65 
ICAM-1, VCAM-1, CD40, 

E-selectin 
Reduces inflammation [7375] 

p53 p21 Prevents cell senescence [7680] 
FOXO1 

 
Prevents cell senescence [79] 

others 

eNOS 
 

Increases NO production [70,71] 

LKB1 
 

Enhances eNOS activity, Prevents cell senescence [69,81] 

NICD 
 

Promotes blood vessel growth [84] 

VSMC 
transcription 

factor 

FoxO1 SIRT1 Promotes SIRT1 expression [85] 

p53 p21 Prevents cell senescence [87,88] 

p65 TGF-β Suppresses vascular remodeling [89] 

AP-1 Cyclin D1, MMP9 Inhibits VSMC migration [90] 

RFX5 COL1A2 Promotes collagen expression [91] 

others NBS-1 
 

Enhances DNA repair [86] 

Macrophage 
transcription 

factor 
AP-1 COX-2 Reduces inflammation [92] 

p65 Lox-1,TNF-α, IL-1β, iNOS Reduces ox-LDL uptake and inflammation [93,94] 

a) PAI-1, plasminogen-activator inhibitor-1; FoxO3a, forkhead box O3a; PGC-1α, peroxisome proliferator-activated receptor γ-coactivator 1α; NFAT, 
nuclear factor of activated T cells; COX-2, cyclooxygenase-2; ICAM-1, intracellular adhesion molecule 1; VCAM-1, vascular adhesion molecule 1; FoxO1, 
forkhead box O1; LKB1, liver kinase B1; NICD, Notch1 intracellular domain; TGF-β, transforming growth factor β; AP-1, activator protein-1; MMP9, 
matrix metalloproteinase 9; RFX5, regulatory factor for X-box 5; COL1A2, collagen type I; NBS-1, Nijmegen Breakage Syndrom-1; Lox-1, lectin-like 
ox-LDL receptor 1; TNF-α, tumor necrosis factor α; IL-1β, interleukin 1β; iNOS, inducible nitric oxide synthase. 
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[83], via deacetylating a variety of substrates. It was also 
found that lacking SIRT1 in ECs causes impaired cell 
growth and vascular branching as a result of the hy-
per-acetylated Notch1 intracellular domain (NICD) and 
enhanced Notch signaling, indicating the importance of 
SIRT1 in regulating endothelial growth [84]. 

Pathological changes of VSMCs, including apoptosis, 
senescence, proliferation and migration, contribute to vas-
cular diseases such as atherosclerosis, post-stent stenosis 
and hypertension. SIRT1 plays an important role in regulat-
ing the function and behavior of VSMCs [8591]. SIRT1 
deacetylates and activates the DNA repair protein Nijmegen 
Breakage Syndrom-1 (NBS-1), enhancing VSMCs’ re-
sistance to apoptosis caused by oxidative stress [86]. Via 
suppressing p53 and p21, the activation and overexpression 
of SIRT1 also prevents the senescence of VSMCs [87,88]. 
In addition, SIRT1 suppresses VSMC migration, prolifera-
tion and vascular remodeling by deacetylating a number of 
transcription factors and modulating the expression of their 
downstream molecules [8991].  

The infiltration of macrophages into the vascular wall is 
a key event of vascular inflammation. By modulating mac-
rophage function, SIRT1 suppresses vascular inflammation. 
Overexpression of SIRT1 in macrophages helps to dampen 
macrophage function via inhibiting activator protein 1 
(AP-1) and NF-κB activity and the expression of inflam-
matory molecules, such as cyclooxygenase-2 (COX-2) and 
tumor necrosis factor α (TNF-α) [92,93]. Moreover, by 
deacetylating RelA/p65, a subunit of NF-κB, SIRT1 dimin-
ishes lectin-like ox-LDL receptor 1 (Lox-1) expression   
in macrophages, thereby reducing ox-LDL uptake and    
preventing foam cell formation and atherosclerosis in   
mice [94].  

Many scientific evidences demonstrated that SIRT1 me-
diates the effects of CR in mammals. First, CR increases the 
expression of SIRT1. In rodents, CR upregulates SIRT1 
protein levels in many tissues, including the liver [95], brain 
[95,96], kidney [95], white and brown adipose tissue 
[95,97], intestine [98], and the aorta [41,42,48,99]. CR also 
increases SIRT1 gene expression in skeletal muscles of 
healthy humans [100]. Reciprocally, a high-fat diet leads to 
the loss of SIRT1 in adipose tissue of mice [101], and 
downregulated expression of SIRT1 in adipose tissue was 
also observed in obese people [102,103]. Second, loss of 
SIRT1 ablated the outputs of CR. Mice deficient in SIRT1 
fail to display some of the responses normally triggered by 
CR [104]. Moreover, the longevity-promoting effect of CR 
is blunted in mice lacking SIRT1 [105]. Third, SIRT1 
transgenic mice exhibit phenotypes resembling CR: they are 
leaner and more active than littermate controls, and they 
have reduced blood cholesterol and improved glucose regu-
latory function [106]. Furthermore, SIRT1 reprograms the 
metabolism of the liver, skeletal muscle, and adipose tissue; 
thereby mitigating diabetes, obesity and hepatic steatosis 
[107110]. These effects of SIRT1 resemble closely the 

effects of CR. Therefore, the activation of SIRT1 by CR 
triggers a metabolic switch contributing to a lower risk for 
vascular diseases. Researches also suggest that the upregu-
lation of SIRT1 in vascular cells contributes to the benefits 
of CR. Treatment of CAECs with serum from CR rats at-
tenuated TNF-α-induced ROS generation and NF-κB activ-
ity, while these effects of CR serum were mitigated by 
knockdown of SIRT1 [48]. CR also leads to deacetylation 
of eNOS and enhances NO production in mouse aorta, 
which is at least in part via the activation of SIRT1 
[41,47,71]. The effects of SIRT1 in ECs, VSMCs and mac-
rophages may also help explaining the protective role of CR 
against atherosclerosis and endothelial dysfunction [11,42]. 

In summary, SIRT1 reprograms whole-body metabolism 
in response to CR, and also mediates the benefits of CR on 
vascular function. However, its role in modulating vascular 
cell metabolism remains unknown and deserves further in-
vestigation. 

2.1.2  SIRT3 

Among the sirtuins, the mitochondrial sirtuin SIRT3 is most 
similar in sequence to SIRT1 [111]. SIRT3 plays a key role 
in regulating systemic metabolism by deacetylating a wide 
range of metabolic enzymes in mitochondria [112,113]. 
However，studies have showed no obvious vascular dys-
function in SIRT3 mice. SIRT3 deletion does not augment 
hypoxia-induced ROS signaling or the development of 
pulmonary artery hypertension in mice [114]. SIRT3 defi-
ciency in LDL receptor(LDLR) mice results in in-
creases in body weight, plasma glucose level and systemic 
oxidative stress, but does not accelerate the vascular oxida-
tive stress or the development of atherosclerosis [115]. 
These findings suggest a potential role of SIRT3 in the de-
velopment of cardiovascular risk factors and a function of 
postponing the onset of distinct metabolic risk factors. 

SIRT3 also functions as a prominent regulator in CR ad-
aptation. CR upregulates SIRT3 expression in many meta-
bolic active tissues such as the liver, skeletal muscle, and 
brown and white adipose tissue [116118]. Moreover, 
SIRT3 mediates many of the CR’s outputs on the regulation 
of metabolism and oxidative stress, which are supported by 
evidences derived from SIRT3 mice. Via deacetylating 
long-chain acyl-CoA dehydrogenase (LCAD), HMGCS2, 
and ornithine transcarbamoylase (OTC), SIRT3 increases 
fatty acid oxidation, amino acid catabolism and ketone body 
production under CR and fasting conditions [118120]. 
Furthermore, in response to CR, SIRT3 deacetylates and 
activates SOD2 and isocitrate dehydrogenase 2 (IDH2), 
leading to reduced oxidative stress [121,122]. Ace-
tyl-proteinomic studies further show that CR dramatically 
alters the mitochondrial protein acetylome, which is partly 
mediated by activation of SIRT3 [59]. 

Altogether, SIRT3 is a key molecule that controls the 
systemic metabolism and oxidative stress, and activation of 
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SIRT3 under CR leads to metabolic reprogramming. SIRT3 
deacetylates and activates SOD in liver and adipose tissue 
of mice under CR [121]. Enhanced activity of SOD in aorta 
was also observed in CR mice [4042]. Therefore, it is pos-
sible that the activation of SOD in aorta under CR is also 
obtained through the activation of SIRT3. Although deletion 
of SIRT3 in LDLR mice does not result in any exacerba-
tion of vascular oxidative stress [115], we should not rule 
out the possibility that SIRT3 could regulate vascular oxi-
dative stress under other circumstances. 

Compared with SIRT1 and SIRT3, other sirtuins, which 
also sense NAD+/NADH levels, are involved in the regula-
tion of metabolism as well [123,124]. Whether they are in-
dispensible for the influence of CR is still unclear [125]. 
Furthermore, little is known about their function in the vas-
cular system. More studies are needed to determine their 
physiology in vascular homeostasis and CR. 

2.2  AMPK 

AMP-activated protein kinase (AMPK) is a heterotrimeric 
kinase composed of a catalytic (α) and two regulatory (β 
and γ) subunits [126]. The activation of AMPK requires 
AMP to bind the γ subunit first, and then the phosphoryla-
tion of Thr172 on the α subunit to fully activate the enzyme 
[126]. Once activated, AMPK turns on catabolic pathways 
to restore ATP levels by promoting glycolysis and fatty acid 
oxidation and by increasing mitochondrial contents [126]. 
AMPK is a key sensor and effector of energy status [126], 
and plays an critical role the regulation of metabolic pro-
cesses [127]. Furthermore, AMPK is also involved in the 
regulation vascular function [128]. 

AMPK plays an essential role in improving endothelial 
function through regulating eNOS activity, redox status, and 
lipid metabolism [129]. AMPK activates eNOS and en-
hances NO bioactivity in ECs by phosphorylating eNOS 
[130132]. Loss of AMPKα1 in HUVECs leads to de-
creased expression of anti-oxidative enzymes, reduced mi-
tochondrial content and increased sensitivity to oxidative 
stress [133]. On the contrary, activation of AMPK in HU-
VECs induces mitochondrial biogenesis and enhances the 
resistance to H2O2 [134]. Furthermore, it has been proven 
that in bovine aortic endothelial cells (BAECs), HAECs and 
HUVECs, activation of AMPK increases fatty acids oxida-
tion and subsequently reduces hyperglycemia- and linoleic 
acid-induced cell apoptosis [135137]. 

AMPK regulates VSMC function and behavior as well, 
but different isoforms of AMPKα function differently. Ac-
tivation of AMPKα1, but not AMPKα2, is able to induce 
endothelium- and eNOS-independent aortic relaxation in 
mice [138]. Deletion of AMPKα2—but not AMPKα1—in 
mice aggravates VSMCs proliferation and neointima for-
mation after mechanical arterial injury [139]. Conversely, in 
Angiotensin II-induced AAAs, AMPKα2 activation in 
VSMCs promotes the degradation of tunica media [140]. 

AMPK also participates in controlling macrophage func-
tion. Both genetic and pharmacological activation of AMPK 
in macrophages results in a decreased inflammatory re-
sponse, whereas suppressing AMPK increases the secretion 
of pro-inflammatory factors by macrophages in vitro 
[141143]. AMPKα1 is crucial for the phenotype transition 
of macrophages in vivo [144]. Moreover, activation of 
AMPKβ1 reduces macrophage inflammation by enhancing 
fatty acid oxidation [145]. 

AMPK is required for many of the adaptations triggered 
by CR in lower eukaryotes, including lifespan extension 
[146148]. In rodents, CR increases the phosphorylation of 
AMPKα in heart and skeletal muscle [14,149151]. In addi-
tion, many beneficial effects of CR will be abrogated  
when using AMPK inhibitor to rodents. These effects in-
clude protecting hearts from ischemia/reperfusion injury 
[150,151], preventing hypertension-induced cardiac hyper-
trophy [14], and promoting revascularization in ischemic 
muscle [149]. Therefore, AMPK is a sensor and an effector 
of CR in mammals as well. 

AMPK activates and coordinates with SIRT1, the key 
mediator of CR. First, upon glucose restriction, AMPK ac-
tivates SIRT1 through the upregulation of nicotinamide 
phosphoribosyltransferase (Nampt) expression and subse-
quent increased NAD+/NADH ratio [152]. SIRT1 also acti-
vates AMPK through deacetylating LKB1, the kinase up-
stream of AMPK [107,153155]. In addition, AMPK and 
SIRT1 function synergistically to activate their common 
substrates. The phosphorylation of peroxisome prolifera-
tor-activated receptor γ-coactivator 1α (PGC-1α) and eNOS 
by AMPK is required for their following deacetylation by 
SIRT1 [70,156]. It is also noted that SIRT3 and AMPK act 
coordinately. AMPK can activate SIRT3 by regulating the 
NAD+/NADH ratio [157], and conversely, SIRT3 can also 
activate AMPK by deacetylating LKB1 [116,158].  

In summary, the activation of AMPK mediates many ef-
fects of CR. The influence of AMPK on the metabolism and 
energy balance at the whole-body level may provide a lower 
risk for vascular diseases, and the function of AMPK in ECs 
and macrophages may help to explain the protective roles of 
CR in atherosclerosis and in endothelial dysfunction. How-
ever, the activation of AMPK in VSMCs can play protective 
or detrimental roles in different diseases [139,140]. Thus far, 
no direct evidence has been observed about the expression 
and activity of AMPK in aortas in response to CR. In-
creased phosphorylation of eNOS has been observed in the 
aortas of CR mice [8], which may be due to the activation 
of AMPK [131,159], while further studies are still required 
to elucidate whether (and how) CR regulates local vascular 
AMPK activity. 

2.3  mTOR 

mTOR is a serine/threonine protein kinase activated by en-
vironmental cues, such as growth factors, nutrients, energy 
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and stress [61,160]. Activation of the mTOR signaling 
pathway promotes cell growth and division by inducing 
anabolic metabolism. mTOR functions in two distinct com-
plexes: mTOR complex 1 (mTORC1), which is rapamy-
cin-sensitive, and mTOR complex 2 (mTORC2), which is 
affected only indirectly by rapamycin [61,160]. 

The mTOR signaling pathway plays an important role in 
the regulation of vascular homeostasis. Inhibition of mTOR 
signaling can attenuate the proliferation and migration of 
VSMCs [161]. In this manner, everolimus-eluting coronary 
stent markedly prevents the development of in-stent reste-
nosis in humans [162]. Similarly, 40-O-(2-hydroxyethyl)- 
rapamycin also attenuates pulmonary artery hypertension in 
rodents [163]. The mTOR signaling pathway is involved in 
the regulation of vascular oxidative stress and inflammation 
as well. Silencing ribosomal S6 protein kinase 1 (S6K1), a 
component of mTOR signaling pathway, reduces oxidative 
stress and enhances NO production in senescent HUVECs 
[164]. In addition, knockdown or pharmacological attenua-
tion of mTOR has been shown to prevent atherogenesis by 
inhibiting macrophage chemotaxis and the expression of 
inflammatory molecules in mice [165169]. 

Attenuated mTOR signaling is thought to play a part in 
mediating longevity and health benefits in response to CR 
[170,171]. CR acts through inhibiting mTOR to regulate 
lifespan of yeast, worms and flies [172176]. Pharmaco-
logical or genetic disruption of mTORC1 or S6K1 is suffi-
cient to extend lifespan of mice as well [177180]. Moreo-
ver, deletion of S6K1 is able to not only activate AMPK, 
but also induce a gene expression pattern similar to that 
seen in CR [180,181]. Inhibition of mTORC1 confers pro-
tection against a growing list of age-related pathologies, 
including obesity, metabolic diseases, neurodegenerative 
diseases, and cancer [170], and these effects are similar to 
the effects of CR. Furthermore, mTOR signaling pathway is 
suppressed by AMPK and SIRT1, which are key molecules 
in response to CR [182184]. 

Increased mTOR signaling has been observed in the aor-
tas of old mice or mice fed with a high-fat diet [41,185]. 
Conversely, CR inhibits mTOR activity in mouse aortas 
[41]. However, there is still no evidence proving that CR 
improves vascular function through inhibiting mTOR activ-
ity. More researches shall be made on the role of mTOR in 
CR and vascular homeostasis. 

2.4  eNOS 

The molecules discussed above, which sense the energy 
state, are widely accepted as molecules mediating CR’s 
effects [186]. Although eNOS is less known for sensing the 
energy state, particular attention is paid to this molecule 
here because of its central role in modulating vascular func-
tion; and also for its emerging importance in the regulation 
of systemic metabolism under CR. 

Endothelial NOS is essential for vascular NO production 

and ROS clearance, and many reviews have been published 
concerning the roles of eNOS in vascular homeostasis 
[46,187,188]. Besides, the importance of eNOS in modulat-
ing whole body metabolism and longevity has become more 
and more prominent. eNOS-knockout mice are hypertensive 
and insulin-resistant, and they have higher levels of blood 
cholesterol and triglyceride than wild type mice [189]. On 
the contrary, eNOS transgenic mice showed lower plasma 
triglyceride and fatty acids, elevated metabolic activity of 
adipose tissue and resistance to diet-induced obesity [190]. 
Furthermore, eNOS also plays an essential role in mediating 
the effects of CR. First, CR upregulates eNOS expression in 
the skeletal muscles of healthy humans [100], and also in 
the brain, liver, heart, and brown adipose tissue of mice [97]. 
Second, CR promotes mitochondrial biogenesis and SIRT1 
expression in male mice, whereas these effects were 
strongly attenuated in eNOS null-mutant mice [97]. Third, 
the product of eNOS, NO, has been proved to be an endog-
enous activator of SIRT1 and AMPK [191194]. 

eNOS is critical not only for regulating systemic meta-
bolic state, but also for modulating local vascular function 
in response to CR. Both life-long and short-term CR en-
hances arterial eNOS expression and improves endotheli-
um-dependent vascular relaxation in rodents [9,41,42,47]. 
In addition, enhanced phospho-eNOS (Ser1177) and re-
duced acetyl-eNOS were also observed in CR mice [8,71], 
implying the modulation of eNOS by AMPK and SIRT1. 
Even though, there is still no direct evidence proving the 
necessity of eNOS in realizing the protective effects of CR 
on vascular homeostasis. 

3  Conclusion and perspectives 

In summary, sirtuins, AMPK, mTOR and eNOS and their 
regulatory pathways are all essential pathways which might 
mediate CR’s effects on vascular homeostasis. CR lowers 
nutrient supplies and raises NAD+/NADH and AMP levels, 
thereby inhibiting mTOR pathway and activating sirtuins 
and AMPK. CR also upregulates eNOS, despite that the 
mechanism is still unknown. AMPK activates SIRT1 and 
SIRT3 through the upregulation of NAD+-to-NADH ratio, 
while SIRT1 and SIRT3 also activates AMPK via deacety-
lating LKB1, the AMPK kinase. SIRT1 and AMPK func-
tions coordinately to activate eNOS, and on the other way 
around, the eNOS product, NO, could activate SIRT1 and 
AMPK. Moreover, SIRT1 and AMPK could also inhibit 
mTOR pathway (Figure 2). These molecules and their reg-
ulatory pathways play essential roles not only in regulating 
the whole-body metabolism, but also in modulating vascular 
function. Evidences from recent studies suggest that by  
fine-tuning the activities of sirtuins, AMPK, eNOS, and 
mTOR, CR contributes to reduced systemic risk factors and 
improved vascular homeostasis. Drugs targeting these mol-
ecules, such as resveratrol, metformin and rapamycin, also  
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Figure 2 (color online)  Molecular pathways which might mediate the 
effects of CR on vascular homeostasis. CR lowers nutrient supplies and 
raises NAD+/NADH and AMP levels, thereby inhibiting the mTOR sig-
naling pathway and activating sirtuins and AMPK. CR also upregulates 
eNOS, but the mechanism is still unkown. AMPK activates SIRT1 and 
SIRT3 through the upregulation of NAD+-to-NADH ratio, while SIRT1 
and SIRT3 also activates AMPK via deacetylating LKB1, the AMPK ki-
nase. SIRT1 and AMPK function coordinately to activate eNOS. Con-
versely, the eNOS product, NO, could activate Sirt1 and AMPK. Moreover, 
SIRT1 and AMPK could also inhibit the mTOR pathway. By fine-tuning 
the activities of sirtuins, AMPK, eNOS and mTOR, CR contributes to 
improved vascular homeostasis. 

showed their promising benefits on vascular homeostasis. 
However, the exact roles of these molecules in local vascu-
lature in response to CR remain unclear and need further 
investigation. As the employment of CR in human would be 
hampered by its harsh criteria and long time, targeting these 
pathways would be more practical for therapeutic uses. 
Thus, studies on CR not only provide us a life style model 
good for vascular health, but also open new avenues for 
searching molecular targets for the treatment of vascular 
diseases. 

CR reprograms metabolism, reduces risk factors for 
CVDs and maintains vascular homeostasis in experimental 
animals as well as in humans. Studies in rodents have fur-
ther yielded with concrete results that CR improves vascular 
homeostasis via modulating a broad spectrum of patho-
physiological processes. However, larger, well-controlled 
clinical studies are required to determine the efficacy of CR 
in patients in preventing and treating vascular diseases. 
Moreover, the effects of CR on vascular metabolism are still 
an open question.  
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