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Microbial synthesis of functional polymers has become increasingly important for industrial biotechnology. For the first time, 
it became possible to synthesize controllable composition of poly(3-hydroxyalkanoate) (P3HA) consisting of 3-hydroxydodec- 
anoate (3HDD) and phenyl group on the side-chain when chromosome of Pseudomonas entomophila was edited to weaken its 
β-oxidation. Cultured in the presence of 5-phenylvaleric acid (PVA), the edited P. entomophila produced only homopolymer 
poly(3-hydroxy-5-phenylvalerate) or P(3HPhV). While copolyesters P(3HPhV-co-3HDD) of 3-hydroxy-5-phenylvalerate 
(3HPhV) and 3-hydroxydodecanoate (3HDD) were synthesized when the strain was grown on mixtures of PVA and dodeca-
noic acid (DDA). Compositions of 3HPhV in P(3HPhV-co-3HDD) were controllable ranging from 3% to 32% depending on 
DDDA/PVA ratios. Nuclear magnetic resonance (NMR) spectra clearly indicated that the polymers were homopolymer of 
P(3HPhV) and random copolymers of 3HPhV and 3HDD. Their mechanical and thermal properties varied dramatically de-
pending on the monomer ratios. Our results demonstrated the possibility to produce tailor-made, novel functional PHA using 
the chromosome edited P. entomophila. 
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Polyhydroxyalkanoates (PHAs) are biodegradable and bio-
compatible polyesters synthesized by many microorganisms 
[14]. Although PHA has been developed as a type of en-
vironmentally friendly materials with low cost, it is im-
portant to introduce functionalities to PHA to improve its 
application [5,6]. Therefore, metabolic engineering ap-
proaches are exploited both for improving PHA production 

and for widening the PHA diversity [79]. Over 150 chiral 
hydroxyalkanoic acids are reported as monomers for PHA 
in previous investigation [5,10,11]. Generally, PHAs pre-
pared from monomers with 35 (C3 to C5) carbon atoms 
are named as short-chain-length (SCL) PHAs, while those 
from monomers of C6 to C14 as medium-chain-length 
(MCL) PHAs [12,13]. Normally, the property of a polymer 
is decided by its structure [14]. Therefore, to increase the 
diversity of PHA structures has become a hot topic, espe-
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cially by introducing functional groups such as phenyl, hal-
ogen and unsaturated groups into PHA side chains [1518]. 

Although many different organisms can utilize aromatic 
hydrocarbons as a carbon and energy source, only a limited 
number of bacteria such as Pseudomonas putida U, P. 
putida BM01 and P. oleovorans, have the ability to produce 
PHA-containing aromatic monomers [1921]. P. entomoph-
ila L48, an entomopathogenic Gram-negative bacterium 
[22], shows a close relationship with the well-known MCL 
PHA producer P. putida. 70.2% of P. entomophila genes 
share orthologs in P. putida genome, of which >96% are 
found in synteny. The P. entomophila genome harbors most 
of the central catabolic genes found in P. putida KT2440, 
indicating the possibility of MCL PHA production [23]. 
Furthermore, P. entomophila was found to contain genes 
encoding enzymes for the catabolism of long-chain carbo-
hydrates. Therefore, P. entomophila was explored as a MCL 
PHA producer [24]. A P. entomophila strain LAC23, in 
which its putative chromosomal β-oxidation related genes 
are edited (deleted) to reduce its β-oxidation ability, is able 
to produce MCL PHA homopolymer of 3-hydroxydodeca- 
noate (P3HDD) when grown in the presence of dodecanoic 
acid (DDA) [2527].  

In this study, we aimed to investigate the possibility of 
synthesizing benzene-containing PHA (homo- and random 
copolymers) using the genome edited P. entomophila strain 
LAC23. The benzene ring is expected to add functionality 
to PHA, thus allowing new possible applications. 

1  Materials and methods 

1.1  Bacterial strains 

P. entomophila LAC23, a mutant of P. entomophila L48, 
was used in this study. Its genome was edited by removing 
β-oxidation related genes fadBA and PSEEN 0664 [22]. 
This mutated strain shows normal growth in the presence of 
DDA, and it is able to produce MCL PHA homopolymers 
and monomers [2831]. Due to the weakened β-oxidation 
cycle, more carbon fluxes from fatty acids were directed 
into PHA synthesis without changing the fatty acid struc-
tures [32]. It is therefore possible that a fatty acid containing 
functional group(s) can be incorporated into PHA polymer 
chains.  

1.2  Culture media and cultivation conditions 

Seed cultures were incubated at 30°C in LB medium con-
taining 5 g L1 yeast extract, 10 g L1 tryptone and 10 g L1 

NaCl for 12 h at 200 r min1 on a rotary shaker (HNY- 
2112B, Honor, China). They were used for a 48 h shake 
flask study carried out on the same rotary shaker at 200 r 
min1 placed with 500 mL conical flasks, which contained 
50 mL 4YLB medium supplemented with 12 g L1 tryptone 

and 24 g L1  yeast extract. Relevant fatty acids for PHA 
generation including DDA and PVA were added into the 
medium [33]. Figure 1 illustrates how the relevant PHA is 
produced via the engineered pathway. 

To produce adequate amount of PHA for thermal and 
mechanical property characterization, we used 500 mL 
conical flasks containing 100 mL 4YLB medium supple-
mented with relevant fatty acids, and we also used more 
flasks. 

1.3  PHA extraction and purification 

Cells were harvested by centrifugation (CR21 GIII, 
HITACHI, Japan) at 9600 r min1 for 10 min, and were 
directly lyophilized. Cell dry weights (CDW) were meas-
ured after lyophilization. PHA content and PHA type were  
 

 

Figure 1  Major metabolic pathway for microbial synthesis of 
P(3HPhV-co-3HDD). 1: FadD, fatty acid CoA ligase; 2: FadE, acyl-coA 
dehydrogenase; 3: FadBA, S-enoyl-coA hydratase; 4: FadB, 3-hydroxyacyl- 
coA dehydrogenase; 5: FadA, 3-ketothiolase, PSEEN 0664, acetyl-coA 
acetyltransferase; 6: PhaJ, R-enoyl-coA hydratase; 7: PhaC,  PHA syn-
thase. 
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both analyzed using gas chromatography (GC-2014, 
SHIMADZU, Japan) after methyl esterification in chloro-
form [34]. The lyophilized cells were treated with chloro-
form at 100°C for 4 h. The intracellular PHA was obtained 
by Soxhlet extractor (Soxtec 2050, Foss, Denmark), and 
PHA was dissolved in chloroform and precipitated in an 
excess of 10 volumes of ethanol. The solution containing 
PHA precipitates was centrifuged at 8000 r min1 for 10 
min. After the supernatant was discarded, the purified PHA 
was dissolved in chloroform for film casting, and all sol-
vents were evaporated for 7 d at room temperature to con-
solidate the crystallization [26]. 

1.4  NMR analysis of PHA 

The 1H and 13C spectra were performed with a JEOL JNM- 
ECA 600 NMR spectrometer to determine the polymer 
composition, the chemical microstructure and the monomer 
sequences. Tetramethylsilane was used as the internal 
standard [35]. 

1.5  Characterization of PHA physical properties  

Molecular weights were studied using gel permeation 
chromatography equipped with a refractive index detector 
(RID-10A, SHIMADZU, Japan). The measurements were 
carried out at 40°C with a SHIMADZU GPC-804C column. 
Differential scanning calorimetry data were recorded in the 
temperature range of 80°C to 200°C under a nitrogen flow 
rate of 50 mL min1 on a TA instruments (DSC-Q20, TA, 
USA) [12]. PHA samples were casted into films by the 
conventional solvent-casting method for mechanical proper-
ties studies [36]. Subsequently, the PHA films were cut into 
dumbbell-shaped specimens with a width of 4 mm and a 
thickness of approximately 100 mm [36]. The stress-strain 
measurements of films were carried out using servo control 
system universal testing machine (AI-7000s, GOTECH, 
Taiwan, China) at room temperature. 

2  Results 

2.1  Production of P3HPhV homopolymer by P. ento-
mophila LAC23 

P. entomophila LAC23 was able to produce P(3-hydroxy- 
5-phenylvalerate) or P3HPhV homopolymer when PVA 
was added into culture medium. P3HPhV was accumulated 
to around 4.86wt% of the cell dry weight (Table 1). How-
ever, the P3HPhV content was very low. P3HPhV turned 
out to be a highly amorphous and sticky material after ex-
traction, which limits its application. Therefore, it was nec-
essary to enhance its rigid properties via copolymerization 
with another monomer. Since P(3-hydroxydodecanoate) or 
P3HDD produced by P. entomophila has strong mechanical 
properties [25], 3-hydroxydodecanoate (3HDD) was chosen 
as a copolymer monomer with 3-hydroxy-5-phenylvalerate 
(3HPhV) to make a mechanically useful material. 

2.2  Production of P(3HPhV-co-3HDD) by P. ento-
mophila LAC23 

A mixture of PVA and DDA in cultures of the P. ento-
mophila LAC23 led to the formation of copolyester 
P(3HPhV-co-3HDD) consisting of 3HPhV and 3HDD. 
Composition of the monomers can be adjusted by changing 
the ratio of DDA to PVA. For example, 17wt% P (21mol% 
3HPhV-co-79mol% 3HDD) was accumulated when 
DDA/PVA ratio was 2/3, while a ratio of 0.5/3 (or 1/6) re-
sulted in the formation of 15wt% P (63mol% 3HPhV-co- 
37mol% 3HDD) (Table 1). Interestingly, the transparency 
of P(3HPhV-co-3HDD) was dependent on monomer com-
positions, as increasing 3HPhV percentage in the copoly-
mers softened the copolymer and reduced its transparency 
(Figure 2). The highest transparency was found to be with 
P(3HPhV-co-97mol% 3HDD). 

2.3  NMR microstructure analysis 

The chemical structure of this novel PHA homopolymer  

Table 1  P(3HPhV-co-3HDD) production by P. entomophila LAC23 grown in shake flasks containing PVA and/or DDAa) 

PVA (g L1) DDA (g L1) CDW (g L1) PHA (g L1) PHA/CDW (wt%) 3HPhV (mol%) 3HDD (mol%) 

3 0 4.34±0.31 0.21±0.06 4.86±1.13 100 0 

3 0.5 4.84±0.40 0.65±0.05 13.44±0.20 63.37±0.96 36.63±0.96 

3 1 5.26±0.45 0.97±0.07 18.55±0.49 39.84±0.72 60.16±0.72 

3 2 5.94±0.68 1.10±0.02 17.09±0.14 21.49±0.60 78.51±0.60 

3 5 5.57±0.55 1.96±0.09 35.05±2.56 1.86±0.91 98.14±0.91 

a) P. entomophila LAC23 was cultivated in 4YLB medium supplemented with different concentrations of PVA and/or DDA for 48 h. Data shown are the 
averages and standard deviations of three parallel experiments. Abbreviations: PVA, 5-phenylvaleric acid; DDA, dodecanoic acid; CDW, cell dry weight. 
3HPhV, 3-hydroxy-5-phenylvalerate; 3HDD, 3-hydroxydodecanoate. 
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Figue 2  Transparencies of P(3HPhV-co-3HDD) films consisting of dif-
ferent monomer compositions. The films were placed 1.5 cm above white 
papers printed with polymer names. A, P3HDD. B, P(3HPhV-co-97mol% 
3HDD). C, P(3HPhV-co-81mol% 3HDD). D, P(3HPhV-co-68mol% 
3HDD). E, P3HPhV. F, PHBHHx (3HHX: 12 mol%, control group) of 
3-hydroxybutyrate and 3-hydroxyhexanoate (3HHx). 

containing aromatic side chain is shown in Figure 3. The 
structure of homopolymer poly(3-hydroxy-5-phenylvalerate) 
(P(3HPhV)) was confirmed by NMR studies (Figure 4). 
From the 1H NMR and 13C NMR spectra, P(3HPhV) has the 
following characteristics: 1H NMR (CDCl3): δ=1.94 (m; 2H, 
H-4), 2.522.59 (m; 2H, H-2), 2.62 (m; 2H, H-5), 5.28 (m; 
1H, H-3), 7.18 (m; 3H, H-7 and H-9), 7.28 (m; 2H, H-8) 
(Figure 4A); 13C NMR (CDCl3): δ=31.56 (C-5), 35.52 (C-4), 
39.15 (C-2), 70.63 (C-3), 126.22 (C-9), 128.47 (C-7), 
128.63 (C-8), 141.09 (C-6),169.43 (C-1) (Figure 4B). This 
result was similar to previous study [37], allowing us to 
conclude that the monomer of this PHA was indeed HPhV. 

The microstructures of copolyester P(3HPhV-co-3HDD) 
were also studied using NMR (Figures 4 and 5). 1H NMR 
and 13C NMR spectra of P(3HPhV-co-3HDD) containing 
32mol% 3HPhV were collected. Based on the chemical 
shift assignment for each proton (Figure 6A) and for carbon 
resonance (Figure 6B), the polymer was confirmed to be a 
random copolymer. Together with the well-characterized 
proton resonances in 3HDD units, two proton resonance 
peaks (PhV(7,8), PhV(9)) appeared with identical intensities 
which are assigned to the hydrogen on the benzene ring of 
3HPhV units [37]. The expanded spectra of individual split-
ting resonance of each carbon in random copolymer 
P(3HDD-co-3HPhV) were clearly revealed (Figure 6B). 
The detailed assignment was referred to previous studies on 
mcl-PHA [38] and biodegradable aromatic plastics from a 
bacterial source [37]. All carbon resonances were split into 
several peaks because of the strong interaction of 3HDD 
and 3HPhV units in the copolymer. This phenomenon can 
boil down to center on triad co-monomer sequences of two  

 
Figure 3  Chemical structure of poly(3-hydroxy-5-phenylvaleric acid) or 
P(3HPhV). 

 

Figure 4  1H NMR (A) and 13C NMR (B) spectra of homopolymer 
poly(3-hydroxy-5-phenylvaleric acid). Chemical shifts are in ppm and 
tetramethylsilane (TMS) is used as an internal chemical shift standard. 
Numbering scheme refers to Figure 3. 

monomers 3HDD and 3HPhV, which is quite common in 
random PHA copolymer [3,12,39]. These analyses provided 
solid evidence that this PHA polymer is a random 
P(3HDD-co-3HPhV) copolymer. 

2.4  Physical characterization of P(3HPhV-co-3HDD) 
copolymers 

A series of P(3HPhV-co-3HDD) synthesized by P. ento- 
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Figure 5  Chemical structure of poly(3-hydroxydodecanoate-co-3- hy-
droxy-5-phenylvaleric acid) or P(3HDD-co-3HPhV). 

 

Figure 6  1H NMR (A) and 13C NMR (B) spectra of random copolymer 
P(3HDD-co-3HPhV). DD and PhV refer to 3HDD and 3HPhV. The molar 
ratio of 3HDD and 3HPhV is 68.03% and 31.97%, respectively. Chemical 
shifts are in ppm and tetramethylsilane (TMS) is used as an internal chem-
ical shift standard. Numbering scheme refers to Figure 5. 

mophila LAC23 as described above (Table 1) were extract-
ed, purified, and cut into dumbbell-shaped specimens for the 
following thermal and mechanical property studies. At the 
same time, gel permeation chromatography study showed 
that homopolymer P3HPhV has the lowest weight-average 
molecular weights (Mw) and number average-molecular 
weights (Mn) among all P(3HPhV-co-3HDD) and homo-
polymer P3HDD. Additionally, P3HPhV had the widest 
molecular weight distribution Mw/Mn, and P3HDD homo-
polymer had the highest Mw and Mn (Table 2).  

The addition of 3HDD into P3HPhV resulted in an ap-
parent decrease on the glass transition temperature (Tg) from 
6°C to around 35°C and clearly increased the melting 
temperature (Tm) from 50°C to around 80°C when 3HDD 
ratio rose from 0mol% to 6897mol% (Table 3). The Tm 
and Tg values were estimated by the result of the first and 
second heating scan, respectively. Therefore, the thermal 
property of copolyester containing phenyl group can be eas-
ily modified by changing the monomer composition, which 
leads to a moderate property between the two homopoly-
mers. 

P3HPhV homopolymer is a sticky material even at room 
temperature. Its random copolymerization with 3HDD resu- 

lted in a lower yield strength (σy), maximum tension 
strength (σt) and elongation at break (εb) than P3HDD ho-
mopolymer (Table 3). Interestingly, P(3HPhV-co-3HDD) 
with 18.70mol% 3HPhV presented a higher εb than P3HDD, 
indicating a non-linear relationship between 3HPhV content 
and properties. On the other hand, the Young’s modulus (E) 
of the copolyester became higher than that of P3HDD, ex-
cept P(3HPhV-co-3HDD) with 31.97mol% 3HPhV.  

3  Discussion 

Phenyl group was introduced for the first time into the PHA 
homopolymer P3HDD by genome edited P. entomophila, 
bringing changes to the thermal and mechanical properties 
of P3HDD. This strain is a mutant of P. entomophila L48, 
in which the key -oxidation genes fadA, fadB and PSEEN 
0664 were deleted (Figure 1). Deletion of these acetyl- 
tranferase encoding genes results in weakened β-oxidation,  

Table 2  Molecular weights of P3HPhV, P3HDD and P(3HPhV-co- 
3HDD)a) 

P(3HDD-co-3HPhV) 
3HPhV (mol%) 

Mn (104 Da) Mw (104 Da) Mw/Mn 

0 5.2 10.4 2.0 

2.91 4.1 6.56 1.6 

18.70 4.3 7.31 1.7 

31.97 3.4 6.12 1.8 

100 2.1 4.41 2.1 

a) Molecular weights were studied using gel permeation chromatog-
raphy. Abbreviations: Mw, weight-average molecular weight; Mn, num-
ber-average molecular weight. 
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Table 3  Physical characterization of the microbial P(3HPhV-co-3HDD)a) 

P(3HDD-co-3HPhV) 3HPhV 
(mol%) 

Thermal properties  Mechanical properties 

Tm (
oC) Tg (

oC)  σy (MPa) σt (MPa) εb (%) E (MPa) 

0 82.4 49.3  5.5±0.8   5.5±0.9  60±34   61.1±6.4    

2.91 81.00 33.35  1.53±0.65 2.05±0.51 37.38±6.28 93.91±20.52 

18.70 80.13 35.81  3.63±0.68 4.36±0.94 86.03±39.80 94.79±34.95 

31.97 75.84 35.15  2.84±1.05 3.15±1.21 32.02±15.94 48.72±24.04 

100 50.40 5.90  - - - - 

a) Tm, melting temperature; Tg, glass transition temperature; σy, yield strength; σt, maximum tension strength; εb, elongation at break; E, Young’s modulus. 

thus allowing more carbon fluxes being directed into PHA 
synthesis [25].  

The successful synthesis of P(3HPhV-co-3HDD) indi-
cates that genome edited P. entomophila is able to add func-
tionalities to PHA. Functionalities provided by the phenyl 
group in the copolymer are expected to add value to PHA, 
as shown in this study, transparency of PHA was decreased 
by the increasing presence of 3HPhV in the copolymers. 
More novel properties are to be expected from this new 
material. 

PHA commercialization began from early 1980s, alt-
hough it has been a slow and painful process. PHA with 
their biodegradability and sustainability has suffered from 
high production cost, making it difficult to compete with 
petrochemical based plastics [1]. Various applications in-
cluding chiral drug intermediates, biomedicines and tissue 
engineering, have been exploited [5], yet bureaucratic ap-
proval processes for medical usages slowed down the de-
velopment. Biofuel application of PHA will also be re-
stricted by its high cost of handling [40]. 

Therefore, it becomes increasingly important to add val-
ues to the expensive PHA. We think that high-value-added 
properties including ultra strength, shape memory, gas or 
liquid permeable selectivity, self healing, light wave length 
absorption selectivity and controllable degradation, are de-
sirable properties for high-value-added applications. To 
synthesize materials with these properties, people have to 
introduce functional groups into the materials without being 
damaged during the synthesis processes.  

Since most of the chemical processes including the 
polymerization are conducted at a high temperature, func-
tional groups have to be protected and de-protected, which 
requires complete organic processing and harsh conditions. 
In contrast, microbial processes are carried out under gentle 
aqueous conditions, and functional groups survive more 
easily without protection. Thus, microbial processing will 
be a favorable approach for introducing active groups into a 
polymer chain, as also evidenced in this study. 

However, due to the β-oxidation process of microorgan-
isms, functional groups containing fatty acids as precursors 
for PHA synthesis will be mostly removed or destructed, 
leading to failure on functional groups incorporation into 
the polymer chains. 

Now that β-oxidation ability in P. sp is weakened 

[25,29,30,36], fatty acids with or without functional groups 
can be polymerized in their original structures to become a 
PHA with structures precisely the same as the fatty acids we 
added, we are entering an era of functional PHA production 
with high-value-added properties. 

A new functional PHA research high tide is about to 
come.  
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