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Nasopharyngeal carcinoma (NPC) is a squamous-cell car-
cinoma that arises in the epithelial lining of the nasopharynx 
[1]. This neoplasm has a notable ethnic and geographic dis-
tribution, being of high prevalence in southern China but 
rare in other parts of the world [2]. Familial clustering of 
NPC has been observed in diverse populations [3]. Elevated 
levels of circulating free Epstein-Barr virus (EBV) DNA 
and EBV-related antibodies in sera, as well as EBV DNA in 
tumor cells, have been consistently detected in individuals 
with NPC [4,5]. These studies have revealed that the risk 
factors of NPC are both environmental and genetic. How 
the risk factors interact, and the genes that are involved in 
the development of NPC, are not well understood [6]. 

1  Genetic factors and GWAS analysis 

Early linkage analysis on Chinese sib-pairs with NPC sug-
gested an association of particular human leukocyte antigen 
(HLA) haplotypes on chromosome 6p21 with susceptibility 
to NPC [7]. Supported by affected sib-pair haplotype shar-
ing analysis and association studies on HLA regions, an 

NPC susceptibility locus was proposed, which was closely 
linked to the major histocompatibility complex but distinct 
from the HLA genes [8]. In addition, we and others have 
reported additional susceptibility loci on chromosomes 3p21 
[9,10], 4p15.1–q12 [11], and 5p13 [12] through linkage 
studies on NPC families from southern China. Many other 
candidate genes have also been implicated in NPC suscepti-
bility [1320]. 

Genome-wide association studies (GWAS) using 
state-of-the-art research tools are a rapid and cost-effective 
way to analyze the genetic differences between people with 
a specific illness and healthy individuals [21]. The purpose 
of these studies is to identify the genetic risk factors for the 
development or progression of disease. Recently, three 
groups have conducted GWAS for NPC in Taiwan, China 
[22], Malaysia [23], and Guangdong and Guangxi in South-
ern China [24], respectively. Consistent with previous re-
ports, multiple independent associations within the HLA 
region, including HLA-A, HLA-F, HLA-B/C, and HLA- 
DQ/DR, were revealed. The investigators hypothesized that 
some HLA antigens have reduced efficiency in activating 
the host immune response to EBV infection, which plays a 
critical role in the pathogenesis of NPC. These studies also 
suggested that certain genetic variations in GABBR1 [22], 
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ITGA9 [23], TNFRSF19, MDS1-EVI1, and CDKN2A [24] 
may influence susceptibility to NPC. Surprisingly, most of 
the single nucleotide polymorphisms associated with NPC 
are not in protein-coding regions of DNA. Instead, they are 
usually in the large intergenic regions, or in the introns that 
are edited out of the DNA sequence when mRNAs are pro-
cessed. These are presumably motifs that control other 
genes or are in linkage disequilibrium with functional ge-
nomic regions, but in general, their function is not known. 

2  Transcriptomics 

Transcriptomics, also referred to as gene expression profil-
ing, examines the variety, structure, function, and regulation 
of all transcripts in a given cell at a given time. It can illu-
minate the molecular mechanisms and regulatory networks 
involved in the various stages of NPC. Though suppression 
subtractive hybridization [25] has been successful in isolat-
ing tissue-specific genes in nasopharyngeal epithelial tissue 
[26,27] and candidate molecular markers of NPC [28], 
high-throughput techniques based on DNA microarrays are 
the most effective and convenient means to profile gene 
expression in NPC [29]. RNA-Seq is a recently developed 
approach to transcriptome profiling that uses deep-     
sequencing technology; it is expected to provide useful in-
formation in NPC transcriptomics [30]. 

NPC tissue is heterogeneous and consists of cancer cells, 
numerous infiltrating inflammatory cells, and non-neo- 
plastic nasopharyngeal epithelium and stroma. Therefore, 
obtaining specific groups of cells from tissue slides by mi-
crodissection is very important. Because the samples mi-
crodissected from NPC tissue are usually very small, RNA 
amplification is necessary for the subsequent experiments 
[31]. We [3235] and others [3638] have performed ge-
nome-wide transcriptome analysis by probing cDNA or 
oligonucleotide microarrays with fluorescently-labeled am-
plified RNA derived from laser-capture microdissected cells 
obtained from normal nasopharyngeal epithelium and areas 
of metaplasia-dysplasia and carcinoma from NPC. This ap-
proach enabled the identification of genes differentially 
expressed in each cell population, as well as numerous 
genes whose expression patterns helped to explain the ag-
gressive clinical nature of this tumor type. For example, 
genes involved in the cell cycle [35] and those controlling 
invasive-metastatic potential were highly expressed in tu-
mor cells. In contrast, genes under-expressed in these tu-
mors included those involved in apoptosis, cell structure, 
and putative tumor suppressors [32]. The gene expression 
patterns also suggested alterations in the Wnt/beta-catenin 
and transforming growth factor beta pathways in NPC [33]. 
These results were further verified by a custom 
high-throughput tissue array platform [39,40]. Thus, ex-
pression profiling has indicated that the aberrant expression 
of growth, survival, and invasion-promoting genes may 

contribute to the molecular pathogenesis of NPC. One anal-
ysis method, known as Gene Set Enrichment Analysis, 
identifies co-regulated gene networks rather than individual 
genes that are up- or down-regulated in different cell popu-
lations [35,41]. This approach may help to identify useful 
markers of disease progression and novel potential thera-
peutic targets for NPC [42]. 

3  Proteomics 

The transcriptome can be seen as a precursor for the prote-
ome: that is, the entire set of proteins expressed by a tran-
scriptome [43,44]. However, the levels of mRNA are not 
directly proportional to the levels of the proteins they en-
code. The number of protein molecules synthesized using a 
given template mRNA is highly dependent on the transla-
tion-initiation features of the mRNA sequence. There are 
two major strategies used for protein separation in prote-
omics: gel-dependent and gel-independent strategies [45]. 
In the gel-dependent strategy, two-dimensional gel electro-
phoresis (2-DE) coupled with mass spectrometry (MS) is 
commonly used to screen the “differential display” of pro-
teins to compare their levels. In the gel-independent strategy, 
liquid chromatography (LC) or multi-dimensional LC re-
places 2-DE to separate proteins or peptides, and these pro-
teins or peptides are identified by MS [46,47]. LC-tandem 
MS (MS/MS) allows more definitive identification and 
quantitative determination of protein compounds [48,49]; 
this method complements the gel-dependent strategy. Sur-
face-enhanced laser desorption/ionization time-of-flight MS 
(SELDI-TOF-MS) or SELDI ProteinChip technology [50] 
is a hybrid technology of retentate chromatography and ma-
trix-assisted laser desorption/ionization (MALDI) TOF-MS, 
which allows protein capture, purification, and analysis on 
the ProteinChip surface and generates peaks in a mass spec-
trum (SELDI peaks) with unique mass-to-charge ratios de-
tected by TOF-MS. Besides these “traditional” proteomics 
technologies, there has been much effort to develop new 
proteomics technologies to provide systematic proteomic 
data [51], including quantitative expression profiles [5255], 
activity profiles, modification profiles, and interaction maps 
[5661]. More advanced fragmentation methods in MS, 
such as electron capture dissociation and electron transfer 
dissociation [62], and chip-based proteomics strategies [63], 
including forward or reverse protein microarrays, have been 
used in proteomic modification profiles [64]. 

To understand NPC globally at the protein level, Li et al. 
[65] established a 2-DE reference map of NPC tissues and 
identified 216 landmark spots using MALDI-TOF-MS and 
electrospray ionization (ESI-Q)-TOF-MS. These authors 
constructed an NPC 2-DE/MS repository based on a Human 
Proteome Markup Language model with an open source 
XML database, Xindice. 

An early diagnosis is one of the promises that proteomics 
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hopes to fulfill. Recently, Cheng et al. analyzed the proteo-
mes of NPC and normal nasopharyngeal epithelial tissues, 
and identified three potential biomarkers: stathmin, 14-3-3 
sigma, and annexin I. Significant up-regulation of stathmin, 
and down-regulation of 14-3-3 sigma and annexin I, were 
observed in NPC and were significantly correlated with 
poor histologic differentiation, advanced clinical stage, re-
currence, and poor prognosis [66,67]. Radiotherapy is the 
primary treatment for NPC, but radioresistance remains a 
serious obstacle to successful treatment in many cases. By 
comparing the protein profiles of radioresistant and radio-
sensitive cell lines, Feng et al. found that the 
down-regulation of 14-3-3 sigma and maspin and the 
up-regulation of GRP78 and Mn-SOD were significantly 
correlated with NPC radioresistance. Therefore, 14-3-3 
sigma, maspin, GRP78, and Mn-SOD are potential bi-
omarkers for predicting NPC response to radiotherapy [68]. 
Using proteomics, we analyzed the profile of serum pep-
tides, also referred to as peptidome (the low molecular 
weight proteome) of NPC patients compared with normal 
control cases, and constructed diagnosis patterns for the 
early diagnosis of NPC [69]. 

Proteomics has also been used to explore the biological 
functions of novel NPC-associated genes in cellular signal-
ing networks [70]. NGX6 [71,72], NAG7 [73,74], and BRD7 
[75,76] are novel genes cloned in our lab. To investigate 
their function, 2-DE was used to compare the protein ex-
pression profiles of NPC and control cell lines transfected 
with these genes. After staining and image analysis, differ-
entially expressed protein spots were isolated and subjected 
to MS. We identified several proteins of interest that are 
regulated by these genes. 

4  Epigenetics 

Epigenetics is an important component of functional ge-
nomics. It can be defined as the study of the interplay be-
tween the environment and genetics, and the study of herit-
able changes that are not strictly dependent on the DNA 
sequence [77]. Epigenetic alterations, including DNA 
methylation [78,79], histone modification [80], chromatin 
remodeling [81,82], and non-coding RNA regulation [83], 
resulting in the loss of tumor suppressor gene function, are 
frequently involved in tumor development and progression 
[84]. Aberrant methylation of CpG islands on tumor sup-
pressor genes such as NME1 [85], RASSF1A [86,87], 
UCHL1 [88], ANXA1 [89], and SFN [90] is a characteristic 
epigenetic feature of NPC genomic DNA. MicroRNAs 
(miRNAs) constitute a family of small non-coding RNA 
molecules that are 22–25 nucleotides long [9193]. Recent 
studies have demonstrated that miRNAs are intimately in-
volved in the processes leading to NPC, such as gene regu-
lation [94], cell growth [95], mitosis, tumor angiogenesis, 
invasion, and migration [96]. Exploring the relationship 

between miRNAs and the development of NPC will further 
the understanding of this cancer and provide new avenues 
for diagnosis and treatment [97]. 

5  EBV and nanobacteria 

The human nasopharyngeal epithelium is directly exposed 
to all the toxic dusts and pathogens of the outside environ-
ment. Chronic inflammation of the nasopharynx caused by 
these pathogens is one important cause of NPC. EBV is an 
oncogenic human herpesvirus [98] that contains a DNA 
genome of 172 kb. Latent membrane protein 1 (LMP1) is 
considered a viral oncogene [99], since it shows transform-
ing activity in various cell types in vitro. Expression of 
LMP1 in immortalized nasopharyngeal epithelial cells in-
duces an array of genes involved in growth stimulation, 
enhanced survival, and increased invasive potential 
[100102]. The large EBV genome restricted previous 
studies to the study of a single oncogene. For the first time, 
we set up cell and animal models that allowed stable infec-
tion by the entire EBV genome [103]. This method provided 
the basis for whole-genome level investigations into the 
mechanism by which EBV contributes to NPC development 
[104]. We found that infection with the whole genome of 
EBV significantly promoted the growth and malignancy of 
epithelial cells [105] and activated NF-κB and MAPK sig-
naling [106]. 

We first demonstrated the existence of nanobacteria (NB) 
by electron microscopy of a biopsy from an NPC patient, 
and then isolated NB for culture to verify our hypothesis 
[107]. NB are a new class of Gram-negative bacteria with 
sizes ranging from 50 to 400 nm diameter. We observed the 
co-existence of NB and EBV in NPC tissue, which resulted 
in the swelling of infected cells and inflammation in the 
relevant tissues. Electron micrographs of NPC tissue and in 
vitro culture studies showed that NB recruit calcium salts, 
and promote integration of the EBV genome into nasopha-
ryngeal epithelial cells. EBV-infected cells then express 
oncogenes such as LMP1 to promote their transformation 
into malignant tumor cells [108]. This is considered a direct 
early-stage pathway of NPC caused by NB and EBV. Be-
sides promoting EBV infection, we showed that NB could 
secrete lipopolysaccharide, which stimulates the expression 
and release of cytokines such as TNF-α, the expression of 
cytokine receptors such as CD14, TLR4 [109], and MD2, 
and the activation of p65, ERK1/2, and JNK1/2 that leads to 
NF-κB and MAPK signaling [110]. Over-activation of these 
two pathways leads to cell proliferation and finally tumor-
igenesis. These data provided evidence that NB could in-
duce NPC by mediating inflammation or the inflamma-
tion–cancer chain in the early phase of NPC. Taken together, 
we identified NB as a causative pathogen of NPC. From an 
etiological perspective, we showed that NB promoted infec-
tion by EBV and the inflammatory response of epithelial 
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cells that induces NPC. The roles played by NB account for 
the major molecular events in the early phase of NPC. 

6  Important genes in NPC carcinogenesis 

SPLUNC1 is important in the early phase of NPC because it 
encodes a protein that inhibits NB and EBV activity. 
SPLUNC1 controls signaling through a gene-environment- 
miRNA-target gene transduction pathway consisting of 
SPLUNC1-EBV/NB-miR141-PTEN, mediating the interac-
tion between genes and the environment. The SPLUNC1 
gene was isolated by suppression subtractive hybridization 
from a cDNA pool of adult nasopharyngeal epithelial cells 
and NPC cells [25,26], and it is uniquely expressed in na-
sopharyngeal epithelium [111]. Repeated gene-chip exami-
nation has demonstrated significant down-regulation of this 
gene in NPC [28,32,34]. We found that SPLUNC1 encodes 
a secreted protein that covers the surface of epithelial cells 
of the respiratory tracts. This protein could bind to the lipo-
polysaccharide of NB through its bactericidal/permeability- 
increasing domain to inhibit the growth of NB and other 
bacteria [107]. It could also inhibit tumorigenesis caused by 
EBV by promoting the lysis of EBV-infected cells, inhibit-
ing the expression of oncogenes such as LMP1, promoting 
the expression of the gp350 viral protein that would en-
hance the immune response, and compromising the integrity 
of EBV [108]. These features suggest that SPLUNC1 is a 
part of the innate immune system [112], important in the 
defense against NB and EBV as well as being involved in 
the subsequent chronic inflammation they cause. In the case 
of EBV infection, the expression of LMP1 inhibited the 
expression of SPLUNC1 in nasopharyngeal epithelial cells, 
leading to loss of innate immunity. In addition, SPLUNC1 
may regulate miR141 [94] and the downstream PTEN–AKT 
signaling [113,114], and also the MAPK, NF-κB [115], 
Bcl-2/Bax [116], and toll-like receptor [109,117119] in-
flammatory response pathways [120], and ultimately the 
control of the cell cycle [121]. This pathway regulates the 
apoptotic cellular defense mechanism against cancer. 

BRD7 is a tumor suppressor transcription factor that reg-
ulates the cell cycle in the progressive phase of NPC. The 
transcription factor and target genes, MYC-BRD7-BRD2/ 
BRD3, play important roles in NPC cell proliferation and 
the control of apoptosis. BRD7 was cloned by cDNA repre-
sentational difference analysis combined with library 
screening [122,123]. BRD7 was found to inhibit the pro-
gress NPC cells from G1 to S phase, to induce apoptosis, 
slow cell growth, and reverse the malignancy of NPC cells 
[75]. Hybridization of a cell cycle-specific chip and a tu-
mor-associated gene chip, and kinase activity analysis, 
showed that BRD7 could inhibit NPC development through 
regulation of the RAS/MEK/ERK, Rb/E2F [124,125], and 
WNT signaling pathways [126] during the progressive 
phase of NPC. BRD7 belongs to the bromodomain family 

and binds to acetylated histone H3, regulating the phos-
phorylation of the 10th lysine to transmit the transcription 
signal. BRD7 localizes in the nucleus, and contains a nucle-
ar localization signal (amino acids 65–96) [127]. BRD2 and 
BRD3 belong to the same bromodomain family [128], and 
interact with BRD7 to inhibit the cell cycle and trigger 
apoptosis. BRD7 enhances the transcription of BRD2 and 
BRD3, suggesting that these two factors are downstream of 
BRD7 in anti-NPC signaling. Upstream of BRD7 signaling, 
the 5′ end of BRD7 (–293 to –186 bp) is a functional pro-
moter containing binding sites for c-Myc and E2F6. c-Myc 
negatively regulates promoter activity and mRNA expres-
sion of BRD7 [129]. Moreover, the promoter region of 
BRD7 is GC-rich and is regulated by methylation [130]; 
aberrant methylation is an important mechanism of BRD7 
dysfunction in NPC. 

NAG7 is another important regulator in the progressive 
phase of NPC, playing important roles in NPC cell prolifer-
ation and metastasis. NAG7 was cloned from chromosome 
3p25.3–26.3, the minimal common region of allelic loss 
among NPC patients [131]. NAG7 was found to be 
down-regulated in or absent from NPC biopsy tissues and 
cell lines. It functions by inhibiting cell cycle progression 
and promoting apoptosis [132]. We introduced gene chip 
[133] and proteomic [73] techniques when we studied this 
gene. We constructed differential gene and protein expres-
sion profiles induced by overexpression NAG7 in NPC cells, 
and found that our identified differentially expressed genes 
mainly participated in transcriptional regulation, cell growth, 
the cell cycle, cell metabolism, and apoptosis signaling 
transduction pathways. We also found that GAS1 was 
up-regulated at both the mRNA and protein levels upon 
NAG7 overexpression, suggesting that NAG7 signaling 
might be mediated by GAS1. Our methodology combined 
the study of a single gene with both genomic and proteomic 
approaches, and we obtained the same results with both 
methods, providing an important basis for functional ge-
nomic studies of NPC. In further studies, we found that 
NAG7 could inhibit estrogen receptor alpha (ER-α) [134] 
expression in NPC cells, activate the H-ras/p-c-raf, 
JNK/AP-1, and AKT/p70s6k signaling pathways, and regu-
late genes such as CAV1, MMP1 and EZR, thus promoting 
the metastatic ability of NPC cells [135]. 

NOR1 encodes a mitochondria-reactive tumor suppressor 
protein (MiTS-NOR1) [136] with an antioxidant function, 
which was able to inhibit the Warburg effect in NPC cells to 
inhibit tumor growth [137,138]. Intracellular reactive oxy-
gen species can cause damage to cellular proteins, DNA, 
and organelles, leading to genomic instability and cancer. 
Therefore antioxidation is an important cellular defense 
mechanism against cancer-inducing stimuli. MiTS-NOR1 is 
almost specifically expressed in the nasopharynx and tra-
cheal epithelial cells [139], and was found to be regulated 
by the oxidative stress-related transcription factors heat 
shock transcription factor 1 (HSF1) and nuclear respiratory  
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factor 1 (NRF1). We proved that oxidative stress, induced 
by treatment with hydrogen peroxide, could increase the 
expression of MiTS-NOR1 in normal nasopharyngeal epi-
thelial cells through activation of HSF1 and NRF1, pre-
venting further cellular damage [140]. Further studies with 
immunofluorescence, immuno-electron microscopy, and 
Western blotting confirmed that MiTS-NOR1 interacts with 
the ATP5O/OSCP subunit of mitochondrial ATP synthase 
to inhibit the expression of mitochondrial PDHK1 [141]. 
This inhibition would increase the efficiency of aerobic 
metabolism, increase the cellular ATP level, lower glucose 
consumption, and reduce the generation of lactic acid and 
glycolysis, all of which could reverse the Warburg effect in 
cancer cells. Additionally, MiTS-NOR1 could regulate the 
ratio of Bax/Bcl-2 in mitochondria, leading to the release of 
cytochrome C, activating the mitochondrial apoptosis path-
way through caspase 9 and 3, and therefore leading to the 
apoptosis of NPC cells. 

The AP1-miR214-LTF regulatory axis is critical in NPC 
invasion and metastatic processes. Based on genetic linkage 
analysis of 18 human families at high-risk of NPC, we iden-
tified a 13.6-cM region on chromosome 3p21 that was 
tightly linked to the development of NPC [9,10]. We de-
signed a gene chip containing all 288 genes in this region, 
and found that LTF was significantly down-regulated in 
NPC tissues; this was further confirmed using a custom 
tissue chip containing 976 NPC tissue samples [142]. The 
down-regulation of LTF was tightly associated with metas-
tasis of NPC. Yi et al. [143] reported that heterozygous loss 
of the LTF gene was found in 25% of NPC patients. Besides 
this, one or more point mutations, single nucleotide poly-
morphisms, or methylation of the promoter region of LTF 
could contribute to NPC susceptibility. The lactoferrin pro-
tein encoded by LTF is widely distributed in mammalian 
tissues, milk, and other exocrine fluids such as tears, nasal 
secretions, and saliva, and it has antibacterial, antiviral, an-
ti-inflammatory, and immune-regulatory functions as well 
as inhibition of tumor growth. We found that LTF could 
inhibit NPC cell growth, arrest the cell cycle in stage G0–G1, 
down-regulate JNK2 and ERK in MAPK signaling, 
down-regulate cyclin D1 and phos-RB, and up-regulate p21 
and p27. These findings suggest that LTF inhibits NPC 
growth by regulating both the cell cycle and the MAPK 
signaling pathway [142]. We also showed that LTF could 
inhibit the invasion and metastasis of NPC. An NPC cell 
line with re-expression of LTF showed reduced metastatic 
ability in vitro, and reduced tumorigenesis and lung metas-
tasis in vivo when transplanted into nude mice [142]. The 
underlying mechanism is the inhibition of PDPK1 by LTF; 
PDPK1 controls the phosphorylation of AKT. LTF could 
also inhibit the membrane localization of AKT. PDPK1/AKT 
signaling plays important roles in tumor cell proliferation 
and metastasis. In a large-scale clinical investigation, we 
found that LTF expression levels were negatively correlated 
with NPC metastasis, suggesting its potential as a prognos-
tic marker [142]. We also demonstrated that LTF is a target 

gene of miR-214. The examination of normal nasopharyn-
geal tissue, nasopharyngeal primary tumor tissue, and NPC 
metastases showed that the expression level of LTF was 
negatively correlated with that of miR-214, and miR-214 
expression levels were significantly higher in metastatic 
NPC than in primary NPC [142]. The promoter region of 
miR-214 contains a binding site for the transcription factor 
AP-1, which is highly active in NPC tissue. AP-1 promoted 
the expression of miR-214 and inhibited LTF expression, 
forming the AP1-miR214-LTF axis that underlies LTF 
down-regulation in NPC tissues [142]. The inhibition of 
miR-214 expression significantly decreased the metastasis 
and invasion of NPC, suggesting a role for this axis in NPC 
development. Besides these findings, LTF inhibited the sur-
face protein gp350 of EBV, and competed for the CD21 
receptor on lymphocytes to inhibit the entry of EBV into the 
cells. LTF also inhibited the activity of intracellular EBV. 
We further found that LTF inhibited the migration of B cells, 
blocking B cell-mediated viral transmission from epithelial 
cells. The roles played by LTF in preventing viral infection 
as well as in innate immunity are therefore critical in NPC 
development [142]. 

NGX6 is another important protein in the anti-metastasis 
of NPC. NGX6 is a cellular surface glycoprotein containing 
an epidermal growth factor-like structural domain 
[144150], which was found to be down-regulated in or 
absent from NPC biopsy tissues and cell lines [151154]. 
NGX6 has two transcripts of different sizes; NGX6a, the 
longer transcript, is involved in NPC development and is 
negatively correlated with lymph metastasis [155,156]. Re-
storing the expression of NGX6 significantly decreased the 
invasion and metastasis of NPC, improved the gap junction 
communication between cells, and reversed the malignancy 
of NPC cells [157]. Further studies showed that NGX6 reg-
ulated K-RAS [158], MEK1, and JUN expression, inhibited 
the phosphorylation of EGFR and MAPK kinase activity, 
up-regulated the expression of adhesion molecules such as 
nm23 and cadherin α2, and interacted with the cytoskeletal 
protein ezrin [151,159]. NGX6 inhibited the cell cycle and 
cell proliferation through the EGFR/ras/MEK/MAPK path-
way [144,160,161], and interacted with adhesion molecules 
to regulate the adhesion and migration of cells, altering the 
invasion and metastasis of the tumor [162]. 

Besides the above-mentioned genes, we and others have 
identified other genes involved in NPC carcinogenesis, in-
cluding BMI1 [163,164], CCND1 [165], UBAP1 [166169], 
STGC3 [170173], NPCEDRG [174], RKIP [175], and 
ABCB1 [176]. Some potential drugs [177], for example, an 
N-sugar-substituted thalidomide analog [178] and 
3,5-hydroxy-6,7,3′,4′-tetramethoxyflavone [179] have been 
evaluated. 

7  Gene regulation networks in NPC 

We have reconstructed the activity spectrum of transcription 
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factors and miRNAs in the different phases of NPC. We 
demonstrated dynamic changes in the activities of 26 tran-
scription factors: for instance, the activities of AP2, ATF1, 
and ATF2 positively correlated with NPC severity 
[180,181]. Whereas the miRNAs miR34b/c, miR18a/b, and 
miR99a/b functioned as inhibitors of NPC, miR141 and 
miR200C were oncogenes for NPC [94]. Our combined 
analyses of the activity spectra and proteomics data showed 
that, although there was considerable inter-phase variability, 
the primary signaling pathways were MAPK, WNT, AKT, 
and NF-κB. These findings led to a “transcription factor→
critical genes→miRNAs→target genes” regulatory network 
and a multistep model of NPC development, which com-
prises “environmental factors→SPLUC1→BRD7/NAG7/ 
NOR1→LTF/NAX6→tumor invasion and metastasis”. We 
proposed the hypothesis that NPC is a disease of dysfunc-
tion in signal transduction and network regulation, and that 
the NPC susceptibility genes direct these multiple steps in 
sequence [182]. We believe that these susceptibility genes 
inform the progression of both the restrictive and suscepti-
ble checkpoints of NPC development, with one or more 
susceptibility genes being involved at each checkpoint. 
Several susceptible stages in this progression would consti-
tute a chain in which all the susceptibility genes formed a 
highly interactive susceptibility gene group. 
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