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The concept advanced by Berridge and colleagues that intracellular Ca2+-stores can be mobilized in an agonist-dependent and 
messenger (IP3)-mediated manner has put Ca2+-mobilization at the center stage of signal transduction mechanisms. During the 
late 1980s, we showed that Ca2+-stores can be mobilized by two other messengers unrelated to inositol trisphosphate (IP3) and 
identified them as cyclic ADP-ribose (cADPR), a novel cyclic nucleotide from NAD, and nicotinic acid adenine dinucleotide 
phosphate (NAADP), a linear metabolite of NADP. Their messenger functions have now been documented in a wide range of 
systems spanning three biological kingdoms. Accumulated evidence indicates that the target of cADPR is the ryanodine re-
ceptor in the sarco/endoplasmic reticulum, while that of NAADP is the two pore channel in endolysosomes.  

As cADPR and NAADP are structurally and functionally distinct, it is remarkable that they are synthesized by the same 
enzyme. They are thus fraternal twin messengers. We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and, 
through homology, found its mammalian homolog, CD38. Gene knockout in mice confirms the important roles of CD38 in di-
verse physiological functions from insulin secretion, susceptibility to bacterial infection, to social behavior of mice through 
modulating neuronal oxytocin secretion. We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to 
atomic resolution by crystallography and site-directed mutagenesis. This article gives a historical account of the 
cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its compo-
nents. 
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In 1983, Berridge and colleagues published a study showing 
that agonists, such as carbachol, can activate Ca2+   
release from non-mitochondrial Ca2+ stores and the effect is 
mediated by a Ca2+ messenger, inositol 1,4,5-trisphosphate 
(IP3) [1]. The targeted Ca2+ stores were later identified as 
the endoplasmic reticulum (ER), which has since been 
shown to be the major intracellular Ca2+ stores. This semi-
nal study ushered in the current field of Ca2+ signaling as we 
know it and has made the field center stage. IP3 is derived 
from a phospholipid, phosphatidyl inositol 4,5-bisphosphate, 

present on the cytoplasmic side of the plasma membrane. 
Agonist binding to its specific receptor leads to activation of 
phospholipase C and the hydrolysis of the phospholipid, 
releasing the head group that is IP3. The structure of IP3 is 
shown in Figure 1. It has three phosphates on the inositol 
ring. Both the number of phosphates and the position of the 
phosphates are critical to the binding of IP3 to its receptor in 
the ER. The space-filling model of IP3 shown in Figure 1  
is based on the crystal coordinates of IP3 bound to its re- 
ceptor [2].  

With the IP3-pathway elucidated, two obvious questions 
follow; namely, whether there are other Ca2+ signaling- 
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Figure 1  Structures of messenger molecules for Ca2+ signaling. The space-filling models of cyclic ADP-ribose (cADPR), nicotinic acid adenine dinucleo-
tide phosphate (NAADP) and inositol 1,4,5-trisphosphate (IP3) are based on crystal structures. The color coding is carbon: green, nitrogen: blue, oxygen: red,  

hydrogen: white, phosphorus: yellow. 
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pathways present in cells and whether there are Ca2+ stores 
other than the ER. The answers to both questions are af-
firmative and are the focus of this article. As will be de-
scribed below, the other Ca2+ signaling pathways are medi-
ated by two novel Ca2+ mobilizing messengers, cyclic 
ADP-ribose (cADPR) and nicotinic acid adenine dinucleo-
tide phosphate (NAADP). Neither their structures nor the 
substrates they derive from have any similarity with those of 
IP3, however. Both these new messengers are nucleotides. 
Cyclic ADP-ribose is derived from NAD, while NAADP is 
from NADP. The Ca2+ stores they target are also different; 
cADPR acts on the ER, similar to IP3, but NAADP targets 
the lysosome-like acidic stores. Nevertheless, both these 
nucleotide messengers are synthesized by the same mul-
ti-functional signaling enzyme, CD38. They are thus frater-
nal twin messengers for Ca2+ signaling. 

1  Discovery of cADPR and NAADP 

The discovery of the nucleotide messengers was made in 
the late 1980s [3,4], a few years after the elucidation of the 
IP3-pathway. The strategy devised was to isolate the endo-
plasmic Ca2+ stores and use them as an in vitro assay for 
Ca2+ release activators [5]. The cell selected was sea urchin 
egg because it has an abundant and elaborate ER system, 
and had been a well studied system for the release of inter-
nal Ca2+ on fertilization [6]. The endoplasmic preparations 
made from the eggs are remarkably stable and responded 
well to IP3 as expected. What was unanticipated was that 
both NAD and NADP were equally effective in releasing 
Ca2+ from the preparations [3]. Both NAD and NADP are 
coenzymes of oxidative reactions in cells and neither had 
ever been suspected to be involved in Ca2+ signaling. The 
Ca2+ release induced by NAD showed a characteristic delay 
distinctly different from the immediate release induced by 
IP3, as can be seen from Figure 2. This was shown to be due 
to enzymatic conversion of NAD to an active metabolite 
that was later identified as cADPR, a novel cyclic nucleo-
tide hitherto unknown [4,7]. Its structure is shown in Figure 
1. During the enzymatic conversion, the nicotinamide group 
of NAD is cleaved and the N1 of the adenine is linked back 
to the terminal ribose, forming a head to tail circle. The 
space-filling model in the figure is rendered using the crys-
tal coordinates of cADPR [7]. Based on the structure, a total 
chemical synthesis of cADPR, a tour de force, has been 
achieved [8] and a large number of analogs have since been 
produced (reviewed in [9]). That cADPR is in fact a natural 
metabolite endogenously present in tissues was first shown 
in rats, using sea urchin egg microsomes as a bioassay for 
cADPR (Figure 2) [10]. 

Unlike NAD, NADP induced Ca2+ release without a  
delay as shown in Figure 2. The release was not, however, 
due to NADP, but a minute contaminant in the commercial 
preparations of NADP that was later identified as  

 

Figure 2  Discovery of cADPR and NAADP. The ability of NAD(P) to 
release Ca2+ was first demonstrated using microsomes isolated from sea 
urchin eggs. The release of Ca2+ was detected by the Ca2+ indicator, Fluo 3, 
as increase in fluorescence. The amounts of Ca2+ release were comparable 
with that released by IP3, a known Ca2+ mobilizing messenger. The initial 
delay in Ca2+ release induced by NAD was shown to be due to its enzy-
matic conversion to cADPR, while the response to NADP was due to a  

contaminant in NADP that was later identified as NAADP. 

NAADP [11]. It is a derivative of NADP and the only 
structural change is the conversion of the amide group of 
the nicotinamide in NADP to a carboxyl group. It is a linear 
molecule like NADP, and not a cyclic nucleotide like 
cADPR. As will be described later, NAADP is a natural 
metabolite of NADP. Remarkably, even though cADPR and 
NAADP are derived from different substrates with totally 
distinct structures and they target separate Ca2+ stores (see 
below), both are synthesized by the same enzyme, CD38. 
We have recently obtained the crystal coordinates of 
NAADP bound to CD38 (unpublished data by Zhang, Lee 
and Hao), which definitively confirm the chemical structure 
of NAADP shown in Figure 1.  

2  cADPR and NAADP are second messengers 

Since the discovery in sea urchin eggs, cADPR and 
NAADP have been shown to be active in mobilizing Ca2+ in 
a wide range of cells spanning three biological kingdoms, 
from protozoa [12], plant [13,14] to animal, including hu-
man [15,16] (reviewed in [17]).  

That cADPR serves as a second messenger for Ca2+ mo-
bilization has been documented in many cell systems, in-
cluding sea urchin eggs. Thus, fertilization activates cADPR 
synthesis, which temporally correlates with the occurrence 
of the Ca2+ wave [18,19]. Injection of cADPR into the eggs 
elicits a similar Ca2+ increase, formation of the fertilization 
membrane and activation of DNA synthesis [20]. Inhibition 
of the Ca2+-release mechanism of cADPR, likewise, alters 
the characteristic of the Ca2+ wave at fertilization 
[19,21,22].  

Similar evidence shows that NAADP is also a second 
messenger (reviewed in [23,24]). For example, in pancreatic 
acinar cells (reviewed in [25]), the first mammalian cell 
shown to be responsive to NAADP, physiological concen-
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trations of cholecystokinin (CCK) activate Ca2+ changes 
that can be blocked by desensitizing the NAADP-mecha- 
nism [26]. Introduction of NAADP into the cells induces 
similar Ca2+ changes. Both the endogenous NAADP and 
cADPR levels are rapidly elevated by CCK, with NAADP 
preceding that of cADPR [27]. This has led to the proposal 
that NAADP may function as a Ca2+ trigger, whose signal is 
then amplified by the cADPR and IP3 -pathways [26,28].  

Similar messenger functions of NAADP have also been 
shown in pancreatic beta cells (reviewed in [29]). Thus, 
treatment with glucose induces Ca2+ changes and increases 
the endogenous NAADP levels [30]. Experimental eleva-
tion of NAADP in the cells activates similar Ca2+ changes, 
while desensitizing the NAADP-mechanism blocks the 
glucose-induced Ca2+ changes [30,31].  

3  cADPR targets the ryanodine receptors in ER 

That cADPR is targeting a Ca2+ release mechanism different 
from that of IP3 was clearly indicated by the differences in 
pharmacology [3,20]. Another major Ca2+ release mecha-
nism in the ER known even before the discovery of the 
IP3-pathway is the Ca2+-induced Ca2+ release (CICR) 
mechanism mediated by the ryanodine receptor (RyR). This 
mechanism is responsible for regulating muscle contraction 
in cardiac myocytes. The pharmacology of the CICR mecha-
nism is very similar to that of the cADPR-mechanism [32]. 
Indeed, nanomolar concentrations of cADPR can greatly 
increase the sensitivity of the CICR mechanism to Ca2+ 
[32,33]. The activity of the isolated RyR incorporated into 
lipid bilayers is stimulated by cADPR and so is the binding 
of ryanodine to cardiac sarcroplasmic microsomes, particu-
larly at low Ca2+ conditions [34]. Several subsequent studies 
report negative results [35–37]. A series of more recent arti-
cles from independent groups, however, convincingly con-
firms the original observations using the reconstituted RyR 
[38–40]. Moreover, in cardiac myocytes, cADPR is shown 
to increase the frequency of Ca2+ sparks, a manifestation of 
local opening of the RyR channels [41–44]. Most recently, 
HEK293 cells are shown to be responsive to cADPR if and 
only if they are expressing RyR [45].  

The discrepancy between these recent studies and the 
earlier negative results could be attributed to the require-
ment of associate protein factors for the action of cADPR 
on RyR. These factors include calmodulin [46–50] and 
FK506 Binding Protein [40,43,44,51–53]. Care must thus 
be exercised to prevent disruption of the association of these 
factors with the RyR.  

4  cADPR can activate Ca2+-influx 

Paradoxically, cADPR can also activate Ca2+ influx in some 
cell types, including lymphocytes [54], neutrophils [55] and 

pancreatic β-cells [56]. An increasing number of studies 
indicate that the Ca2+ influx occurs via the stimulation of the 
TRPM2 channel in the plasma membrane. Accordingly, 
when TRPM2 is transfected and expressed in HEK293 cells, 
delivery of cADPR into the cells via patch-clamping acti-
vates the TRPM2 current [56–58]. Similar activation of the 
TRPM2 channel is seen in primary cells, such as neutro- 
phils [55] and pancreatic β-cells [56].  

TRPM2 is a member of the M-family of transient recep-
tor potential channels (reviewed in [59]). These channels 
are widely expressed in many tissues and are best recog-
nized for their contributions to sensory transduction, in-
cluding response to temperature. The first identified acti-
vating ligand for TRPM2 is ADP-ribose (ADPR), a hydrol-
ysis product of cADPR [60–63]. Indeed, cADPR also can 
activate the TRPM2 channel and the action of both mole-
cules is synergistic, such that in the presence of low con-
centrations of ADPR, the EC50 value of cADPR for activat-
ing the channel is greatly reduced [57,58]. 

Studies in insulinoma cells and pancreatic islets show 
that the physiological consequence of the cADPR-depend- 
ent Ca2+ influx via TRPM2 is stimulation of insulin secre-
tion [56,64]. Evidence also points to TRPM2 being a tem-
perature sensor in the cells, whose activity is modulated by 
cADPR [56]. In neuronal cells, cADPR activates TRPM2 in 
a temperature dependent manner similar to that observed in 
the islet cells and is responsible for signaling oxytocin re-
lease [65,66]. In human bone marrow mesenchymal stem 
cells, modulation of TRPM2 by cADPR increases the fre-
quency of Ca2+ oscillation, resulting in enhanced cell prolif-
eration [67,68]. 

5  NAADP targets the two-pore channels in ly-
sosomes 

That NAADP targets a novel Ca2+-release mechanism distinct 
from all known mechanisms was clear from the vary start. 
This is because the NAADP-mechanism is insensitive to all 
known inhibitors of the IP3-, cADPR- and RyR-mechanisms 
[3,11]. The only way to block the mechanism is to self-de- 
sensitize it using high concentrations of NAADP [69,70]. 
That NAADP targets a specific and novel receptor was also 
clear, because any structural modifications on either the 
2′-phosphate, the N6-amino group, or the carboxyl group on 
the nicotinic acid moiety, render it inactive [71]. Even the 
Ca2+ stores it targets are separate from the ER. This was 
first shown by fractionation of the sea urchin egg homoge-
nates. The NAADP-responsive organelles were found at the 
bottom of the Percoll density gradients, well separated from 
the cADPR-sensitive ER that were on the top of the gra- 
dient [72]. More convincingly, in situ stratification of the 
organelles in live sea urchin eggs using centrifugation com-
bined with Ca2+-imaging, showed that the NAADP-sensitive 
stores were located at a pole of the stratified eggs that was 
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separate and opposite to that of the cADPR- and IP3- sensi-
tive stores [73]. The distinctive organelles were subse-
quently identified as the reserve granules, a lyso-
some-related organelle in the eggs [74]. The finding was 
confirmed in mammalian cells as well [31,75] (reviewed  
in [76]).  

Searches were thus directed at ion channels localized in 
the lysosomes as possible candidate targets for NAADP. 
The two-pore channels (TPC 1–3) are members of a super-
family of voltage-gated ion channels and are localized in the 
lysosomes. In plant, TPC1 is found to mediate Ca2+ release 
from vacuoles [77]. Transfection of TPC into HEK293 cells 
resulted in its expression in the lysosomes. Specific 
NAADP binding to lysosomes increased and the cells be-
came responsive to NAADP, indicating TPC is the target of 
NAADP [78]. A similar conclusion was reached by two 
other independent groups [79,80].  

Further support came from direct measurements of the 
NAADP-dependent currents through the TPC, using isolat-
ed lysosomes that were enlarged by vacuolin treatment and 
patched using a glass chip-based technique. The permeabil-
ity of the TPC was found to be at least 1000-fold more se-
lective for Ca2+ than for K+ and was activatable by NAADP 
only when the intralysosomal pH was acidic [81]. The ami-
no acid Glu643 in the putative pore region was identified as 
critical for the Ca2+ selectivity and its mutation to alanine 
reduced the permeability ratio of Ca2+ to K+ by more than 
120 times [81]. Similar results were obtained using im-
munopurified TPCs that were reconstituted into lipid bi-
layers. The single channel Ca2+ conductance of about 15 pS 
was measured, which is 4 or 8 times less than that of the 
IP3-recpetor or RyR, respectively. The purified TPC also 
showed enriched specific binding to NAADP [82,83]. Col-
lectively, these results leave little doubt that the TPCs are 
the endogenous targets of NAADP (reviewed in [84]). 

6  Enzymatic synthesis of cADPR by CD38 

As described above, it was the presence of the enzymatic 
activity in sea urchin egg homogenates converting NAD to 
cADPR that had led to its discovery (Figure 2). This enzy-
matic activity was not limited to sea urchin egg homoge-
nates but was wide spread among mammalian tissue ex-
tracts as well [85]. The first purified enzyme that catalyzes 
the cyclization of NAD to cADPR was a soluble protein of 
30 kD from Aplysia [86,87]. The enzyme was previously 
thought to be a common NADase that hydrolyzes NAD to 
ADPR [86], as cADPR was a hitherto unknown molecule. 
The enzymatic product was eventually shown to be, in fact, 
cADPR and not ADPR. The Aplysia enzyme was thus 
named ADP-ribosyl cyclase (Cyclase) to distinguish it from 
common NADases [87]. A very convenient assay was later 
developed for measuring the cyclization of NAD by using 
nicotinamide guanine dinucleotide (NGD), an analog of 

NAD, as substrate. The cADPR synthesizing enzymes, like 
the Cyclase, cyclize NGD to cyclic GDP-ribose, a fluores-
cent product, while conventional NADase hydrolyzes it to 
non-fluorescent GDP-ribose [88]. 

Based on the amino acid sequence of the Cyclase, CD38, 
an antigen expressed in lymphocytes, was found to be ho-
mologous [89]. CD38 was later shown to be able to, indeed, 
cyclize NAD to cADPR [90–93]. Unlike the Cyclase, CD38 
catalyzes not only cADPR production but also the hydroly-
sis of cADPR to ADPR. In fact, when NAD is used as a 
substrate, the vast majority of the product is ADPR and not 
cADPR [90–93]. This again had raised confusion about 
whether CD38 was a Cyclase or a NADase. The issue was 
fortunately resolved by the newly available NGD-     
assay [88,94,95]. The lack of a specific and sensitive assay 
for cADPR that had led to all the confusion has finally been 
overcome by the development of a fluorimetric assay for 
cADPR with nanomolar sensitivity and based on a coupled 
enzyme technique [96]. 

That CD38 is indeed responsible for synthesizing  
cADPR in tissues was shown by using CD38 knockout mice, 
whose endogenous cADPR in many tissues was greatly re-
duced [55]. The mice also manifest multiple defects relating 
to Ca2+ signaling, including that of insulin secretion [97], 
hormonal signaling in pancreatic acinar cells [98], migration 
of dendritic cell precursors [99], bone resorption [100], air-
way responsiveness [101], α-adrenoceptor signaling in aorta 
[102], cardiac hypertrophy [103], susceptibility to bacterial 
infection [55], as well as social behavior in mice through 
modulation of oxytocin secretion [66]. In humans, the dele-
tion of the CD38 gene may well be lethal since no 
CD38-negative individual has yet been identified in a large 
screen [104]. These results thus document the importance of 
the CD38/cADPR-pathway in regulating diverse physiolog-
ical functions. 

7  Enzymatic synthesis of NAADP by CD38 

As described above, NAADP was discovered as a contami-
nant. That it is indeed naturally occurring was first shown in 
sea urchin sperm [105] and eggs [106], and later in cells 
from other species as well, including mammals [107]. That 
NAADP is derived from NADP, instead of NAD, and tar-
gets the lysosomal Ca2+-stores instead of the ER, would 
suggest that it should be synthesized by an enzyme different 
from CD38. Surprisingly, this is not the case. CD38, in fact, 
is multi-functional and can catalyze yet a base-exchange 
reaction, exchanging the nicotinamide group in NADP with 
nicotinic acid [108]. The product is NAADP. This reaction 
occurs only in acidic pH, while the cyclization and hydroly-
sis of NAD(P) occur optimally at physiological pH. This 
remarkable property of CD38 has now been elucidated by 
using X-ray crystallography, as will be described below.  

That CD38 is responsible for the endogenous synthesis 
of NAADP was shown using knockout mice, whose hepatic 
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stellate cells exhibited altered angiotensin-signaling that is 
attributable to their inability to elevate the cellular levels of 
NAADP in response to angiotensin [109]. Similar results 
were found in lymphokine-activated killer cells. Cells from 
the knockout mice no longer could elevate NAADP levels 
in response to IL8 [110]. Likewise, wild type pancreatic 
acinar cells responded to physiological concentrations of 
CCK with elevation of intracellular NAADP and Ca2+, but 
both were blocked in the acinar cells from the knockout 
mice [111].    

8  Structure and catalytic mechanism of CD38 

CD38 is thus a highly unusual enzyme that can use either 
NAD or NADP (with nicotinic acid) as substrates and con-
vert it to cADPR or NAADP, respectively. How this can be 
accomplished by CD38 has now been elucidated to atomic 
resolution using X-ray crystallography and site-directed 
mutagenesis. Human CD38 is a membrane protein consist-
ing of a short amino tail of 21 residues, a transmembrane 
segment of 23 hydrophobic residues and a large carboxyl 
domain (C-domain) of 256 residues [112]. There are also 
four glycosylation sites in the C-domain. These features 
make CD38 a difficult candidate for crystallography.  

The effort had thus directed first toward its homolog, the 
Aplysia Cyclase, which is a soluble protein of 258 residues 
and without glycosylation. The crystal structure shows that 
it is a bean-shaped molecule with a central cleft. The amino 
portion consists mainly of helices, while all the β-structures 
are in the carboxyl portion [113]. Confirming the cross- 
linking studies in solution [114], the Cyclase is also crystal-
lized as a homo-dimer. The ten cysteines that are conserved 
with CD38 are all paired as disulfides. The active site was 
then identified by co-crystallization with nicotinamide [115], 
a co-substrate for the base-exchange reaction. Residues at 
the site were systematically mutated to identify the catalytic 
residue as Glu179.  

The crystal structure of the C-domain of CD38 reveals a 
high degree of structural homology with the Aplysia 
Cyclase [116]. The removal of the amino tail and the trans-
membrane segment, together with the mutation of the gly-
cosylation sites, makes the domain crystallizable and pro-
duce structures with resolution as high as 1.5 Å [117,118]. 
Glu226, which is equivalent to Glu179 in the Aplysia 
Cyclase, is identified as the catalytic residue as well [119]. 
Two other residues, Glu146 and Thr221, are shown to be 
the determinants that regulate the cyclization and hydrolysis 
reactions catalyzed by CD38. Thus, mutating Glu146 to 
alanine and Thr221 to phenylalanine converts CD38 to a 
Cyclase that produces mainly cADPR, instead of ADPR, 
from NAD. In fact, the catalytic properties of human CD38 
and the Aplysia Cyclase can be inter-converted by mutating 
the equivalent residues respectively [120,121].  

Glu146 in CD38, together with Asp155, also controls the 

base-exchange reaction, particularly its acidic pH depend-
ency described above [122]. The negative charges of these 
residues electrostatically repel the similarly charged nico-
tinic acid at physiological pH and prevent its entry into the 
active site. Mutating the residues to uncharged amino acids 
eliminated the acidic dependency of the base-exchange re-
action [122]. All the equivalent residues in the Cyclase also 
function similarly, showing the high degree of structural 
and functional conservation between human CD38 and the 
Aplysia Cyclase, even though the two species had diverged 
for hundreds of millions of years.  

The entry of the substrate into the active site of CD38, 
the formation of the enzyme intermediates and the substrate 
cyclization process have all been captured by crystallog-
raphy. Mutating the catalytic residue inactivates CD38 and 
allows its substrate complexes to be visualized by crystal-
lography [117,123]. NAD enters the active site pocket of 
CD38 with the nicotinamide end first. The catalytic Glu226 
then forms hydrogen bonding with the hydroxyl groups of 
the terminal ribose, leading to the cleavage of the glycosidic 
bond and the release of the nicotinamide. An intermediate is 
formed. Both covalent [124] and non-covalent [123,124] 
intermediates of CD38 have been observed, depending on 
the substrate. With arabinosyl-2′-fluoro-deoxy-nicotinamide 
adenine dinucleotide (ara-2′F-NAD) as substrate, an analog 
of NAD, Glu226 forms a covalent linkage with the anomer-
ic carbon (C1R) of the terminal ribose [125], as shown in 
Figures 3 and 4. This anchors one end of the substrate to the 
active site and allows the folding of the adenine end during 
the cyclization to be observed. 

Dynamic states of the cyclization of NAD have been 
captured in a single crystal of either CD38 or the Aplysia 
Cyclase [120,125]. CD38 generally crystallizes with two 
molecules in each asymmetric crystal unit. However, when 
the covalent intermediate is formed with ara-2′F-NAD, 
CD38 crystallizes in the orthorhombic form, in the P212121 

space group, with six molecules in the crystal unit, as shown 
in Figure 3 [125]. Each molecule has a covalent intermedi-
ate at the active site and all of them have different confor-
mations that can be grouped into two classes. The N1-  
intermediates have the N1 of the adenine pointing toward 
C1R of the terminal ribose, the cyclization site (left side in 
Figure 3), while the N7-intermediates have the N7 of the 
adenine pointing toward C1R instead. The CD38 molecules 
in the crystal unit that have the N1-intermediates are all 
adjacent and are colored with different shades of blue in 
Figure 3, while those have the N7- intermediates are colored 
with shades of yellow. When the N1-molecules are aligned 
and all the N1-intermediates superimposed, it can be seen 
that their conformations represent states of folding of the 
adenine toward the site of cyclization (Figure 4A). In the 
closest approach, the distance between N1 and C1R is 3.2 Å, 
close enough for cyclization to occur. In the N7-confor- 
mation (Figure 4B), the distance becomes 9.6 Å (Figure 3), 
too far for linkage and thus representing a nonproductive 
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Figure 3  Conformers of CD38. Human CD38 can be crystallized with six molecules in a crystal asymmetric unit. The surface views of these molecules are 
shown. Three of them contain the covalent substrate intermediate that is in the N1-configuration as shown in the inset on the left. In this configuration, the 
N1 of adenine in the intermediate is anomeric carbon (C1R) of the ribose, the cyclization site. These conformers of CD38 are colored in different shades of 
blue. The other three conformers are colored in shades of yellow and contain the intermediates in the N7-configuration, as shown in the inset in the right. In 
this configuration the N7 of the adenine is pointing toward the C1R instead of the N1. All the intermediates form a covalent linkage with Glu226, which is  

shown as sticks and colored magenta. The color code for the intermediate is nitrogen: blue, carbon: green, oxygen: red, and fluorine: cyan. 

 

Figure 4  Dynamic states of the cyclization of the NAD analog captured in the conformers in a single crystal. The conformers of CD38 in the asymmetric 
crystal unit are aligned and superimposed. The three intermediates at the active site, which are in the N1-configuration, are superimposed and shown in A. 
The intermediate that has the N1 of the adenine closest (3.2 Å) to the cyclization site (C1R) is colored by its elements. The color coding is the same as in 
Figure 3. The other two are colored white and grey, respectively, and the N1 is farther away from the C1R, representing dynamic states of cyclization. The  

other three conformers that have the intermediates in the N7-configuration are shown superimposed and shown in B. 

state.  
Similar observation has previously been made in the Ap-

lysia Cyclase [120]. The conformation of the covalent in-
termediate in each of the two molecules in the crystal unit 
corresponds, respectively, to the N1- and N7- conformation, 
seen in CD38. The two conformations are actually equiva-
lent because they can be mapped to each other by sin-

gle-bond rotations [120]. Using NMR, it has been shown 
that the conformational features of the multiple molecules 
or ‘conformers’ in the crystal asymmetric unit correspond to 
those observed in solution for the ensemble of NMR con-
formers [126]. They are thus not artifactual, due to crystal 
packing, but may actually represent the true dynamic states 
of the cyclization of NAD by CD38 and the Cyclase.  
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9  Membrane topology and regulation of CD38 

Elucidation of how the endogenous synthesis of cADPR and 
NAADP is regulated represents the next frontier of the field. 
The first indication obtained in sea urchin eggs is that the 
cADPR-production is stimulated by a cGMP-dependent 
process, most likely through phosphorylation of the enzyme 
[127,128]. It has been proposed that cADPR and NAADP 
production may be differentially regulated by recep-
tor-coupled second messengers, cGMP and cAMP, respec-
tively [129]. However, cGMP-independent cADPR synthe-
sis had also been found in the eggs [130]. In mammalian 
cells, both cGMP- [110,131–133] and cAMP-dependent 
[134–137] cADPR-synthesis have been reported. Likewise, 
in lymphokine-activated killer cells, NAADP synthesis is 
stimulated by both cAMP and cGMP [110]. 

In granulocytes, treatments with 8Br-cAMP, a cell-  
permeant analog of cAMP, can increase serine phosphory-
lation of CD38 [135]. What is not known is which part of 
CD38 is phosphorylated, whether it is the catalytic 
C-domain or the amino tail. Intuitively, one would expect 
the phosphorylation site should be in the catalytic domain 
and may even be close to the active site, such that the en-
zymatic activity can be effectively modulated. This would 
necessitate the catalytic domain of CD38 to be facing the 
cytosol, in other words, a type-III membrane protein. This is, 

however, contrary to the general belief that CD38 is a 
type-II membrane protein, at least in the lymphocytes, with 
its C-domain on the outside [112].  

The type-II membrane topology also raises other prob-
lems of functionality, namely, substrate access and product 
targeting. Both NAD and the Ca2+ stores that the products, 
cADPR and NAADP, target are located in the cytosol. This 
“topological paradox” has been addressed [138,139]. It is 
shown that NAD can leak out of the cell via connexin 
hemi-channels [140,141] and made available to the type-II 
CD38, while the product, cADPR, produced is transported 
back into the cell by nucleoside transporters present in the 
plasma membrane [142,143]. This pathway is depicted in 
Figure 5. Both connexin and nucleoside transporters are 
also present in the organellar membranes and can perform 
similar functions for the type-II CD38 that is intracellular 
(reviewed in [138,139]). Indeed, it is well documented that 
CD38 is, by no means, a purely surface protein, but is ex-
pressed also in organelles [144–146], including the nucleus 
[147–149]. 

Another alternative solution to this topological conun-
drum is the possible co-existence of two forms of CD38, 
type-II and III in cells, as depicted in Figure 5. This possi-
bility is novel but may offer a more straightforward resolu- 
tion to the conundrum. It is generally believed that the po-
larity of membrane proteins is determined predominantly by 

 

 

Figure 5  Schematic of the cADPR/NAADP/CD38-signaling pathway. The target of cADPR is the ryanodine receptor (RyR), a Ca2+ release channel in the 
sarco/endoplasmic reticulum (ER), while that of NAADP is the two-pore channel (TPC) in the endolysosomes. Both cADPR and NAADP are synthesized by 
the membrane enzyme, CD38, which cyclizes NAD in a head-to-tail fashion to produce cADPR and can also catalyze a base-exchange reaction, exchanging 
the nicotinamide group in NADP with nicotinic acid (NA) to produce NAADP. In some cells, particularly lymphocytes, CD38 is expressed as a type-II 
membrane protein with the catalytic domain facing outside. The substrate NAD needs to exit the cell via connexin hemi-channels (CNX) to access CD38 and 
the product, cADPR, is transported back into the cell via nucleoside transporters (NuT) in the plasma membrane to exercise its Ca2+ signaling function. An 
alternative scheme also depicted is the existence of the putative type III-CD38 with its catalytic domain facing the cytosol. In this scheme, the substrates in  

the cytosol have direct access to CD38 and the catalytic domain is also amenable to regulation from the cytosol, such as by protein phosphorylation. 
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charged residues flanking the hydrophobic core of the 
trans-membrane segment (reviewed in [150]). The side with 
the most net positive charge is generally cytosolic, the “pos-
itive inside rule”. For CD38, there are four positive charges 
on each side of the trans-membrane segment, suggesting the 
possibility that both polarities can be expressed. Indeed, 
studies using a protease digestion technique [147] and im-
muno-gold electron-microscopy [148], have provided evi-
dence that the nuclear CD38 may, in fact, be expressed as a 
type-III membrane protein.  

That a membrane protein can adopt two opposite orienta-
tions has precedence. The bacterial multidrug transporter, 
EmrR, is a protein with four transmembrane helixes. As a 
functional transporter, it is a homo-dimer. The two identical 
monomers, however, are in opposite orientation, with the 
N-terminus of one monomer faces the cytoplasm, while the 
other faces outside [151]. Another example is the prion 
protein, a type-II protein similar to CD38, which not only 
can be synthesized in two opposite trans-membrane orienta-
tions, but also in a glycosyl-phosphatidylinositol-linked 
form. Trans-acting protein factors have been described that 
can direct prion proteins toward different topologic fates 
[152–155]. 

One other important consideration for the putative 
type-III CD38 is the disulfides. CD38 has twelve cysteines 
in the catalytic domain that are all paired as disulfides [116]. 
It is a common belief that disulfides are formed only inside 
the ER, and not in the reductive environment of the cytosol. 
It is unclear that the type-III CD38, with its catalytic do-
main facing the cytosol, can form the disulfides. It should 
be noted that, although rare, a wide range of cytosolic pro-
teins, including those involved in chaperone function, signal 
transduction, cell growth, etc., have been found to contain 
inter- as well as intra-molecular disulfide bonds in both 
mammalian cells and bacteria [156–158].  

The critical question of disulfide in CD38 has recently 
been directly addressed. A novel form of CD38 was engi-
neered that expressed efficiently in the cytosol [159]. It was 
shown that it not only forms intact disulfides but is also 
fully active in elevating the cytosolic cADPR levels. This 
engineered cytosolic form of CD38 is thus a novel example 
challenging the general belief that cytosolic proteins do not 
possess disulfides and suggests that the information for di-
sulfide formation may be encoded in the primary sequence 
of CD38. CD38 thus appears to be a novel membrane pro-
tein specifically designed to function in both the reductive 
cytosol as well as the oxidative external environment. 

10  Conclusion 

NAD(P) was discovered in 1906 [160] and subsequent work 
by Warburg and others in the 1930s, established that its 
primary function is serving as co-enzyme(s) for the redox 
reactions in cells [161]. Half a century had since passed 

before the emergence of evidence indicating that NAD(P) 
also has important Ca2+ signaling functions, through serving 
as substrates for cADPR and NAADP. This unexpected 
discovery had been greeted with healthy doses of skepticism 
and trivialization. The field has, however, persevered and 
advanced. Thousands of articles on the subject have been 
published and the topics of cyclic ADP-ribose or NAADP, 
have received progressive increase in citation from 1989 to 
2010, totaling over 76000 times. In the past two decades, 
we have seen the identification of the targets of cADPR and 
NAADP, the elucidation of the enzymatic mechanism of 
their synthesis to atomic resolution, the documentation of 
the physiological importance of the signaling pathway 
through CD38 gene ablation, and the emerging of lyso-
some-related acidic organelles as fully functional, regulated 
and relevant, Ca2+ stores. The progress of the field has 
brought forth many unanticipated findings and, in some 
cases, they often challenge the conventional wisdom and 
dogma. In the immediate future, the regulation of CD38 and 
the ADP-ribosyl Cyclase represents a new frontier that is 
likely to usher in new results in membrane protein topology 
and its relationship with signaling function.  
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