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Hyperspectral reflectance (350–2500 nm) measurements were made over two experimental rice fields containing two cultivars 
treated with three levels of nitrogen application. Four different transformations of the reflectance data were analyzed for their 
capability to predict rice biophysical parameters, comprising leaf area index (LAI; m2 green leaf area m−2 soil) and green leaf 
chlorophyll density (GLCD; mg chlorophyll m−2 soil), using stepwise multiple regression (SMR) models and support vector 
machines (SVMs). Four transformations of the rice canopy data were made, comprising reflectances (R), first-order derivative 
reflectances (D1), second-order derivative reflectances (D2), and logarithm transformation of reflectances (LOG). The poly-
nomial kernel (POLY) of the SVM using R was the best model to predict rice LAI, with a root mean square error (RMSE) of 
1.0496 LAI units. The analysis of variance kernel of SVM using LOG was the best model to predict rice GLCD, with an 
RMSE of 523.0741 mg m−2. The SVM approach was not only superior to SMR models for predicting the rice biophysical pa-
rameters, but also provided a useful exploratory and predictive tool for analyzing different transformations of reflectance data. 
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The assessment of biophysical vegetation properties, such 
as leaf area index (LAI) and green leaf chlorophyll density 
(GLCD), is a major goal of remote sensing in agriculture. 
Remote-sensing-based assessments of these variables are 
made possible as a result of the strong contrast between 
spectral reflectances of vegetation and the soil background 
and the dramatic reflectance changes associated with 
changing vegetative cover. Based on this contrast, numer-
ous vegetation indices (VIs) have been developed during the 
past few decades, which are highly correlated with the 
amount of vegetation. The most common of these indices 
use the red and near-infrared (NIR) canopy reflectances in 

the form of ratios, such as the ratio VI [1] and the normal-
ized difference vegetation index [2], and as linear combina-
tions of red and NIR reflectances [3,4]. These indices gen-
erally use averaged spectral information over broad band-
widths [5], resulting in the loss of critical information 
available in specific narrow bands [6], and potentially lim-
iting the accurate estimates of agricultural crop and natural 
vegetation biophysical and biochemical variables [7,8]. In 
addition, many of these vegetation indices are strongly in-
fluenced by the soil background, resulting in soil-dependent 
VI-biophysical relationships [9,10].  

Further improvements in quantifying vegetation are pos-
sible using spectral data from distinct narrow bands, as in-
dicated by numerous hyperspectral studies using field spec-
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troradiometers [11–14]. These studies have shown nar-
row-band data to provide additional information over 
broadband data, enabling significant improvements in quan-
tifying biophysical and biochemical variables of agricultural 
crops. A number of investigators have studied the relation-
ship between canopy hyperspectral reflectance and canopy 
properties for major crops [15–17]. Hyperspectral studies 
have been successfully used in assessments of rice yield [13] 
and chlorophyll content of plants [6,7]. 

Among spectroscopic techniques, derivative analysis of 
reflectances is particularly promising for use with remote 
sensing data. Second-order derivatives and higher-order 
derivatives are relatively insensitive to variations in illumi-
nation intensity caused by changes in sun angle, cloud cover, 
or topography. Nonetheless, relatively few researchers have 
addressed applications of spectral derivatives in remote 
sensing [18,19]. Although some of these studies have used 
higher-order derivatives [20], first-order and second-order 
derivatives are most commonly used. 

More recently, Filella and Peñuelas [21] and Mauser and 
Bach [22] concluded that derivative spectral indices are 
very sensitive to LAI and GLCD. Yoder and Petti-
grew-Crosby [23] found first-order derivative spectra were 
the best predictors of nitrogen and chlorophyll for big-leaf 
maple grown under different fertilization treatments. The 
log(1/R) (also called pseudoabsorbance) is often used be-
cause it provides a curve similar to an absorption curve, 
with peaks occurring at the corresponding absorption wave-
lengths. Johnson and Billow [24] examined Douglas fir 
needles that were grown under various fertilization treat-
ments and also found that the first-order derivative and 
log(1/R) of the fresh leaf spectra were strongly correlated 
with total nitrogen concentration. 

The relationships found between biophysical parameters 
and specific narrow spectral bands have promoted the de-
velopment of models to estimate biophysical parameters 
both at the leaf and canopy scales [25–28]. Most of the 
models, thus far, have been developed using regression 
analyses and assumptions of linearity between the depend-
ent and independent variables. Some researchers have 
shown that stepwise multiple regression (SMR) models 
performed on discrete narrow bands provide flexibility in 
choosing the bands that provide maximum information at a 
given period of crop growth [29,30]. As crop conditions vary 
due to factors such as management conditions, soil character-
istics, climatic conditions, and cultural practices, different 
band combinations can be used [13,30]. Recent studies have 
also successfully used SMR to select the optimal wavelengths 
that correlate best with leaf biochemistry [31]. 

Although linearity in a dataset may be achieved through 
mathematical transformations, data with complex non-linear 
properties are difficult or may never be approximated. In 
such situations, the use of non-linear regression requires a 
priori knowledge of the nature of the non-linear behavior, 
something that is not usually known and, furthermore, 

non-linear regressions are cumbersome to implement [32]. 
Support vector machines (SVMs) were first introduced for 
classification and non-linear function estimations [33,34]. A 
SVM for regression analysis is accomplished by solving a 
convex optimization problem, more specifically a quadratic 
programming (QP) problem. This is obtained by employing 
Vapnik’s c-insensitive loss function [34], solving the ap-
proximation problem as an inequality constrained optimiza-
tion problem, and exploiting the Mercer condition to relate 
the non-linear feature space mapping to the chosen kernel 
function. As for Mercer’s condition, any kernel which can 

be expressed as 
0

( , ) ( ) ,p
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∞

=
= ⋅∑  where cp are 

positive real coefficients and the series is uniformly con-
vergent, satisfies Mercer’s condition, a fact noted previ-
ously [35]. 

Moreover, the model complexity follows from solving 
this convex optimization problem. SVM models also scale to 
higher-dimensional input spaces very well [36]. However, 
less is known about the application of SVMs to estimate 
biophysical parameters using remote sensing data. 

In this study, reflectances (R), first-order derivative reflec-
tances (D1), second-order derivative reflectances (D2) and 
logarithm transformation of reflectances (log(1/R)) were se-
lected as independent variables with field-measured LAI and 
GLCD as dependent variables to apply and test SMR and 
SVM prediction capabilities for these two variables. The 
main objective of this study was to assess and compare the 
predictive ability of the SVM models in estimating LAI and 
GLCD in rice with that of the more traditional SMR models. 

1  Study area and methods 

1.1  Study area 

The study area was located at the Zhejiang University ex-
perimental field, Hangzhou, Zhejiang Province, China, lo-
cated at 120°10′05″E, 30°14′03″N. To acquire a large dy-
namic range in rice LAI and GLCD, two experiments were 
designed in 2004 with different rates of nitrogen fertiliza-
tion and two rice cultivars. The first experiment began 15 
days earlier than the second experiment. Winter wheat and 
rice were included in the crop rotations of the two experi-
mental fields with straw residue removed from the fields 
between plantings. The study area is characterized by a 
monsoon climate with a hot summer and a cool winter. The 
average annual rainfall is 1374.7 mm and the average an-
nual temperature is 17.8°C. The soil is a sandy loam paddy 
soil with pH 5.7, organic matter content 16.5 g kg−1 and 
total N content of 1.02 g kg−1. 

1.2  Field experimental design 

The experimental field was divided into 48 subplots of size 
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4.6 m×5.46 m. Half of the plots were used for the first ex-
periment and the remaining plots were used for the second 
experiment. Each experiment involved four replicates of 
two rice cultivars (‘Xiushui 110’ and ‘Xieyou 9308’), three 
nitrogen levels (0, 120, and 240 kg N hm−2), and with a 
plant density of 45 plants m−2. The first experiment was 
seeded on 30 May 2004 and the second experiment was 
seeded on 15 June 2004. Both sets of seedlings were trans-
planted to the field one month later. Nitrogen treatment lev-
els included no nitrogen fertilizer, a normal application, and a 
superabundant dose of urea, applied as 45% base fertilizer, 
35% tillering fertilizer, and 20% heading fertilizer. In addi-
tion, 225 kg hm−2 Ca(H2PO4)2 was applied as a base fertil-
izer with 150 kg hm−2 KCl as a tillering fertilizer and 150 
kg hm−2 KCl as a heading fertilizer. 

1.3  Spectral measurements 

Field canopy reflectance measurements were made with a 
full spectral range (350–2500 nm) Analytical Spectral De-
vices™ spectroradiometer. The spectroradiometer has a 
spectral resolution of 3 nm between 400 and 1000 nm, and 
approximately 10 nm between 1000 and 2500 nm. Due to 
severe noise in the water absorption spectrum from 1330 to 
1480 nm and from 1780 to 1990 nm, only data from 350 to 
1330 nm, 1480 to 1780 nm, and 1990 to 2300 nm were used 
in this study. The measurements of rice spectra were per-
formed between 10:00 and 14:00 local time (GMT+8) on 20 
July, 8 August, 28 August, 22 September, 5 October and 27 
October, 2004 for the first experiment, and on 8 August, 28 
August, 22 September, 5 October and 27 October, 2004 for 
the second experiment. 

All rice fields were in flooded condition except on 27 
October. At each plot, 10 reflectance measurements were 
consistently taken, with a nadir view from a height of 1 m 
above the canopy, using a 25° field of view lens. The meas-
urement sites were selected randomly at each plot. The 
spectroradiometer data over rice were analyzed using 
PORTSPEC™ and VNIR™ software, supplied by the 
manufacturer of the instrument (Analytical Spectral De-
vices™), and SPSS version 11.5. The target reflectance was 
computed as the ratio of energy reflected off the rice canopy 
to the energy incident on a BaSO4 white reference plate. 
Dark current values varied slightly with ambient tempera-
ture and were recorded for each integration time. The solar 
zenith angle was less than 45° for all measurements and no 
disturbing clouds were observed. Reflectances were then 
computed: 

 
(target dark current)

Reflectance (%)= .
(reference dark current)

−
−

 (1) 

Figure 1 shows the reflectance curves of a few typical rice 
canopies. 

 

Figure 1  Reflectance curves of a few typical rice canopies. 

1.4  Plant sampling and harvest procedure  

Samples of green leaves were collected throughout the 
vegetative growth stages from early stem elongation until 
heading, coinciding with the same dates as the canopy re-
flectance measurements. A representative area of 0.088 m2 
(one hill of plants under nadir view) was cut and brought to 
the laboratory for measurement of rice biophysical parame-
ters, comprising leaf length (LL; cm), leaf width (LW; cm), 
and green leaf fresh weight (GLFW) per square meter (g 
m−2). 

From these measurements, LAI (cm2 cm−2) was calcu-
lated: 

 
0.83

,
0.088 10000

LL LW
LAI

× ×
=

×
∑   (2) 

where 0.83 is the rice leaf calibration coefficient. 
Leaves and stems were separated by excision at the leaf 

base. One leaf was randomly selected among the youngest 
fully developed leaves for organic extraction of leaf chlo-
rophyll. For leaf chlorophyll analysis, the leaf samples were 
chipped, weighed and then dipped in a 20 mL mixed solu-
tion of acetone, ethanol, and distilled water (4.5:4.5:1 pro-
portions, respectively), for 24 h. The concentrations (mg L−1) 
of Chl a, Chl b and total chlorophyll (Chlt=Chl a+Chl b) in 
the extract were calculated using eqs. (3)–(5) and the con-
tents (mg g−1) of chlorophyll were calculated using eq. (6):  

 1
663 645Chl a (mg L ) 12.7 2.69 ,A A− = −  (3) 

 1
645 663Chl b (mg L ) 22.9 4.68 ,A A− = −  (4) 

 1
t 663 645Chl  (mg L ) 8.02 20.2 ,A A− = +  (5) 

 GLCC 1000 / ,Pc V Ma= × ×  (6) 

where A is the optical density, GLCC is the green leaf chlo-
rophyll content (mg g−1), Pc is the pigment concentration 
(mg L−1), V is volume (mL) of the extracting solution, and 
Ma is the mass (g) of the sample. 

The GLCD (mg chlt m
−2 soil) was calculated with eq. (7): 
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 2GLCD(mg m ) .
0.088

GLCC GLFW− ×
=  (7) 

1.5  Stepwise multiple regression model 

Stepwise multivariable regression (SMR) models are most 
commonly used to predict crop biophysical variables in 
plants [37,38]. Using SPSS version 11.5, SMR selectively 
and stepwisely includes those most significant variables 
(various narrow bands in the forms of R, D1, D2 or LOG) 
into the model of dependents (LAI or GLCD). For LAI and 
GLCD, the first four narrow band variables explained 75% 
or above variability (Figure 2). This is nearly the same per-
centage of variability explained when the ratio of the num-
ber of independent variables or number of bands (M) to that 
of the total number of field samples (N, 100 in this case) for 
that variable is between 0.04 and 0.05 in different rice vari-
ables based on different spectral transformations. As M ap-
proaches N, the coefficient of determination value ap-
proaches 1. When M/N is higher than 0.05 (Figure 2), there 
were only small increases (often statistically insignificant) 
with the addition of another variable. Therefore, four-varia-     
ble models were considered the best in this study. 

 

 

Figure 2  Plot of the ratio M/N versus the coefficient of determination 

value. 

Various transformations of reflectance in 1590 discrete 
narrow bands are independent variables and biophysical 
parameters are dependent variables. The coefficients and 
bands of the regression equations are shown in Table 1. 

1.6  Support vector machines 

Support vector machines (SVMs) are based on the structural 
risk minimization principle from computational learning 
theory [34]. The idea of structural risk minimization is to 
find a hypothesis hyperplane to represent the data and for 
which the lowest true error of the data can be guaranteed. 
The true error is the probability that the hyperplane will 
make an error classification on an unseen and randomly 
selected test sample in the process of building the model. 
An upper bound can be used to relate the true error of a hy-
pothesis hyperplane with the training data set error of the 
hyperplane. The complexity of the hypothesis space con-
taining the hyperplane is measured by the Vapnik-Cher-     
vonenkis (VC) dimension that depicts the capacity of a hy-
pothesis space. Capacity is a measure of complexity or expre-    
ssive power, richness or flexibility of a set of functions [34]. 
SVMs find the hypothesis hyperplane which, approximately, 
minimizes this bound on the true error by effectively and 
efficiently controlling the VC-dimension of hypothesis 
space. 

SVMs are universal learners, and in their basic form 
learn linear threshold functions. Nevertheless, by a simple 
‘plug-in’ of an appropriate kernel function, they can be used 
to learn polynomial classifiers, radial basic function (RBF) 
networks, and three-layer sigmoid neural nets, for example. 
One remarkable property of SVMs is that their ability to 
learn is largely independent of the dimensionality of the 
feature space. SVMs measure the complexity of hypotheses 
space, based on the margin with which they separate the 
data, not the number of features. This means that we can 
generalize, even in the presence of many features, if our 
data is separable with a sufficiently wide margin using 
functions from the hypothesis space. The same margin ar- 

Table 1  Stepwise multiple regression equations built in this study 

Best four-variable models 
Variable 

Cg) Constant Beta1h) RBand1 Beta2 RBand2 Beta3 RBand3 Beta4 RBand4 

Rc) 0.738 1.966 31.729 R1124
i) −17.073 R731 −260.216 R1720 221.385 R1710 

D1d) 0.781 0.823 7098.553 R768
j) 831.342 R1757 964.859 R1087 1745.257 R1282 

D2e) 0.746 2.431 17122.780 R718
k) −5805.780 R1625 2921.679 R2131 −649.927 R1132 

LAIa) 

LOGf) 0.705 −0.507 5.386 R353
l) −32.227 R807 30.974 R751 −4.810 R370 

R 0.708 95.714 9140.299 R1125 −49560.600 R2261 14152.200 R2007 14899.680 R2285 

D1 0.745 −172.433 1910057.000 R768 −447241.000 R1068 1415155.000 R1620 570679.000 R1625 

D2 0.741 392.873 6159555.000 R718 −515438.000 R2265 −2.9×107 R861 −3.6×107 R452 
GLCDb) 

LOG 0.686 −176.370 3834.464 R354 −8972.510 R807 8309.175 R751 −3531.270 R370 

a) Leaf area index; b) green leaf chlorophyll density; c) the reflectances; d) first derivative of reflectances; e) second derivative of reflectances; f) loga-
rithm-transformed reflectances; g) determination coefficient of the SMR models; h) constants of the SMR models; i) reflectances of band 1124; j) first de-
rivative of reflectances at band 768; k) second derivative of reflectances at band 718; l) logarithm-transformed reflectances at band 353.  
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guments also suggest a heuristic for selecting good parame-
ter settings for the learner [34]. Jaakkola’s heuristic uses the 
median separation of negative points to their nearest posi-
tive neighbor. The best parameter setting is the one that 
produces the hypothesis with the lowest VC-dimension. 
This allows fully automatic parameter tuning without ex-
pensive cross-validation. 

In this study, three different kernel functions of SVMs, 
comprising a polynomial kernel (POLY), an RBF kernel, 
and an ANOVA kernel were employed. The POLY kernel 
was defined by eq. (8): 

 ( ,  ) ( 1) ,dk x y x y= ⋅ +  (8) 

the RBF kernel was defined by eq. (9): 

 2( , ) exp( || || ),k x y x yγ= − −  (9) 

and the ANOVA kernel was defined by eq. (10): 

 ( , ) exp( ( )) .
d

i i
i

k x y x yγ⎛ ⎞= − −⎜ ⎟
⎝ ⎠
∑  (10) 

In order to compare the predictive power of SVMs and 
SMR, the SVMs were developed and tested with the same 
data sets as those for the corresponding SMR. The four re-
flectance transformations of the four bands that were previ-
ously selected by the SMR analysis were used as net inputs 
to the SVM, with the biophysical parameters as net outputs 
in the SVM. Because the results from the basic SVMs with  

POLY kernel using different reflectance transformations for 
GLCD were too poor to accept (not all SVM kernel algo-
rithms are appropriate for the same data set, as long as the 
best one can be selected), it was removed until later. The 
specific structures and training parameters of the SVMs 
used in this study are listed in Table 2. 

1.7  Measurement of model performance 

In most studies model performance analysis is usually con-
ducted through comparisons of the correlation coefficient 
(r), average absolute error (ABSE), and root mean squared 
error (RMSE) between the predicted sets and the corre-
sponding observed sets [39,40]. The calculated statistic r is 
defined as the proportion of variance of the response that 
can be explained by the regressing variable(s). However, the 
r statistic can be misleading when comparing results of ex-
periments on the same variable but with different ranges 
[41], such as in the experiment reported herein. In such 
cases, one should calculate ABSE and RMSE rather than r, 
and for these reasons we decided to base the analysis of our 
results on RMSE and ABSE, defined as follows:  

 
2( )

,
1

P P
RMSE

N

′−
=

−
∑  (11) 

 
( ( ))

,
ABS P P

ABSE
N

′−
= ∑  (12) 

Table 2  Specific structures and training parameters of different SVM models built in this study 

Variables Spectral transformations Kernelg) Ch) Epsiloni) nuj) γk) dl) 

POLYm) 1 0.1 − − 3 

RBFn) 1000 0.8 − 0.01 − Rc) 

ANOVAo) 1 0.0001 − 0.3 1 

POLY 0.1 1.5 − − 1 

RBF 1 0.1 − 0.1 − D1d) 

ANOVA 0.1 0.01 − 0.2 2 

POLY 0.01 0.01 − − 1 

RBF 0.1 0.00001 − 0.02 − D2e) 

ANOVA 100000 0.001 − 0.1 1 

POLY 100 − 0.8 − 1 

RBF 100 0.01 − 1.2 − 

LAIa) 

LOGf) 

ANOVA 100 − 0.5 0.5 1 

RBF 100 − 0.6 0.8 − 
R 

ANOVA 0.01 0.001 − 0.1 4 

RBF 1 0.0001 − 0.3 − 
D1 

ANOVA 0.1 0.01 − 0.7 1 

RBF 1 0.01 − 0.1 − 
D2 

ANOVA 0.1 0.001 − 0.4 1 

RBF 1000 0.001 − 0.05 − 

GLCDb) 

LOG 
ANOVA 1000 0.001 − 0.3 1 

a) Leaf area index; b) green leaf chlorophyll density; c) reflectances; d) first derivative of reflectances; e) second-derivative of reflectances; f) loga-
rithm-transformed reflectances; g) different kernel functions; h) SVM capacity parameters; i) and j) different SVM algorithms; k) and l) SVM kernel pa-
rameters; m) POLY kernel SVM; n) RBF kernel SVM; o) ANOVA kernel SVM. 
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where P′ is the simulated value of LAI and GLCD of rice, P 
is the measured value of LAI and GLCD of rice, and N is 
the number of test samples. 

2  Results  

The 182 samples from the two experiments in our study 
were combined into one dataset, and then randomly divided 
into two subsets. The first subset (100 samples) was used to 
construct the models and the second subset (82 samples) 
was used to measure the effectiveness of the models.  

2.1  Basic statistical properties of the measured data 

The experimental treatments, comprising two rice cultivars 
and three nitrogen application strategies together with the 
temporal timing of plant sampling, resulted in a wide dy-
namic range of variation in the investigated crop variables. 
There was an almost 20-fold variation in LAI and 100-fold 
variation in GLCD (Table 3). The wide range in the inves-
tigated crop variables was planned in order to make the re-
lationship between plant performance and reflectance 
measurements as realistic and universal as possible. 

2.2  Training results of SVMs and SMR models for LAI 

The transformed data from the four discrete narrow-band 
reflectances and LAI were trained by SVM and SMR mod-
els. The assessment results are presented in Figure 3 and 
Table 4.  

From Figure 3, it can be seen that the predicted LAI val-
ues from the SVM-POLY model using R (Figure 3B) in-
creases with increasing amounts of measured LAI, with data 
points more tightly located along the line y=x than those 
from the SMR model (Figure 3A) or from the other two 
SVM models (Figure 3C and D). At measured LAI values 
greater than 5, the predicted LAI in the RBF model with D1 
(Figure 3G) was slightly underestimated, but resulted in the 
lowest RMSE (1.2124, Table 4) among the other prediction 
models. The SVM-RBF model using D2 (Figure 3K) also 
underestimated LAI for measured LAI values greater than 5, 
while the other three models resulted in predicted LAI val-
ues (Figure 3I–L) more centralized along the line y=x. 
However, the SVM-ANOVA model using D2 (Figure 3L) 
performed the best in the LAI prediction of all the models  

Table 3  Selected properties of the investigated rice leaf area index (LAI) 
and green leaf chlorophyll density (GLCD) 

Variable Mean Minimumc) Maximumd) Rangee) 

LAIa) (m2 m−2) 3.5859 0.4652 8.2703 7.8051 

GLCDb) (mg m−2) 1162.4108 31.8338 2970.0627 2938.2289 

a) Leaf area index; b) green leaf chlorophyll density; c) minimum value 
in the preprocessed data set; d) maximum value in the preprocessed data 
set; e) difference between the maximum and minimum values. 

and had the lowest RMSE (1.0858), lowest ABSE (0.8676), 
and the highest r (0.7941) (Table 4). All predictive LAI 
relationships in the four models using LOG were well cen-
tralized along the line y=x (Figure 3M–P), with the 
SVM-POLY model the best for predicting LAI, based on 
the RMSE (1.1256), ABSE (0.8980), and r (0.7637) values 
(Table 4). This suggests that SVMs have a stronger poten-
tial to take into account non-linear characteristics in pre-
dicting LAI compared with SMR. 

Comparing the RMSE between SVMs and SMR for pre-
dicting LAI (Table 4), the SVM-POLY model had the low-
est RMSE (1.0496) compared with the other models when 
using R. In the case of D1, the SVM-RBF model had the 
lowest RMSE (1.2124) compared with the other models. 
With D2, the SVM-ANOVA had the lowest RMSE (1.0858), 
while the use of LOG resulted in the SVM-POLY model 
having the lowest RMSE (1.1256). From the ABSE results 
(Table 4), there was also much improvement in the rela-
tionship between predicted LAI and measured LAI, with the 
SVM-POLY model using R providing the lowest ABSE 
(0.8051) relative to the other models using R. The 
SVM-ANOVA model using D1 had the lowest ABSE 
(0.9194) compared with the other models using D1. The 
SVM-ANOVA model using D2 also showed the lowest 
ABSE (0.8676), and the SVM-POLY model using LOG had 
the lowest ABSE (0.8980). All results showed that SVMs 
have high potential for learning with overall good robust-
ness, indicating that SVMs could further improve the rela-
tionships and accuracies between various transformations of 
reflectance and LAI. 

2.3  Training results of SVM and SMR models for 
GLCD 

The four transformed data sets using the four discrete nar-
row bands and GLCD were trained by SVMs and SMR, and 
the results of the regression and error analyses are presented 
in Figure 4 and summarized in Table 5. 

The predictions of GLCD with the SVM-ANOVA model 
using R (Figure 4C) were well centralized along the line y=x, 
compared with results from the SMR and SVM-RBF mod-
els (Figure 4A and B). When measured GLCD values ex-
ceeded 1800 mg m−2, the prediction of GLCD from the 
SVM-ANOVA model using D1 was underestimated (Figure 
4F), and the predicted GLCD values from the SVM-RBF 
model using D1 (Figure 4E) were closer to the line y=x than 
those from the SMR model (Figure 4D), hence the SVM-     
RBF model with D1 had the lowest RMSE (575.3 mg m−2, 
Table 5). 

There was also a trend for underestimation of GLCD 
values in the SVM-RBF and SVM-ANOVA model results 
using D2 (Figure 4H and I), with the SVM-RBF model 
having the lowest RMSE (553.2974 mg m−2, Table 5). The 
points of the predicted GLCD values from the SVM-     
ANOVA model using LOG (Figure 4L) were well central- 
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Figure 3  Scatter plots of predicted leaf area index (LAI) and measured LAI for the stepwise multivariable regression (SMR), the POLY kernel SVM 
(SVM-POLY), the RBF kernel SVM (SVM-RBF) and the ANOVA kernel SVM (SVM-ANOVA), using reflectance (R), the first derivative of reflectance 
(D1), the second derivative of reflectance (D2), and the logarithm-transformed reflectance (LOG). A–D, E–H, I–L and M–P represent SMR, SVM-POLY,  

SVM-RBF and SVM-ANOVA using R, D1, D2 and LOG, respectively. The line in each graph represents the line y=x. 

Table 4  Test results of various support vector machines (SVMs) and stepwise multivariable regression models (SMRs) for the leaf area index (LAI) 

SMRf) SVM-POLYg) SVM-RBFh) SVM-ANOVAi) 
Variable 

Spectral 
transformation RMSEj) 

(m2 m−2) 
rk) 

ABSEl) 

(m2 m−2) 

 
RMSE 

(m2 m−2) 
r 

ABSE 
(m2 m−2) 

 
RMSE 

(m2 m−2) 
r 

ABSE 
(m2 m−2) 

 
RMSE 

(m2 m−2) 
r 

ABSE 
(m2 m−2) 

Rb) 1.1198 0.7651 0.8905 1.0496m) 0.8024 0.8051 1.0776 0.7844 0.8550 1.0797 0.7838 0.8465 

D1c) 1.3349 0.6891 1.0066 1.2299 0.7090 0.9869 1.2124 0.7185 0.9559 1.2159 0.7534 0.9194 

D2d) 1.2505 0.7084 0.9872 1.4713 0.6794 1.1968 1.3385 0.6633 1.1359 1.0858 0.7941 0.8676 
LAIa) 

LOGe) 1.2136 0.7572 0.9629 1.1256 0.7637 0.8980 1.2287 0.7067 0.9811 1.1582 0.7448 0.9406 

a) Leaf area index; b) reflectances; c) first derivative of reflectances; d) second derivative of reflectances; e) logarithm-transformed reflectances; f) step-
wise multivariable regression model; g) POLY kernel SVM; h) RBF kernel SVM; i) ANOVA kernel SVM; j) root mean squared error; k) correlation coeffi-
cients; l) average absolute error; m) data in bold show the best results for the prediction of LAI. 

 
ized along the line y=x compared with the other two models 
using LOG (Figure 4J and K), and were also well correlated 
with the measured GLCD (0.7299, Table 5). This demon-
strated that SVMs have better capability for non-linear 
mapping and estimation of GLCD compared with SMR 

approaches. 
Comparing the overall SVM and SMR results for pre-

dicting GLCD, the SVM-ANOVA model based on LOG 
resulted in the lowest overall RMSE (523.0741 mg m−2) of 
all models and data transformations. The SVM-ANOVA  
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Figure 4  Scatter plots of predicted green leaf chlorophyll density (GLCD) and measured GLCD for the stepwise multivariable regression (SMR), the RBF 
kernel SVM (SVM-RBF) and the ANOVA kernel SVM (SVM-ANOVA), using reflectance (R), the first derivative of reflectance (D1), the second derivative 
of reflectance (D2), and the logarithm-transformed reflectance (LOG). A–C, D–F, G–I and J–L represent SMR, SVM-RBF and SVM-ANOVA using R, D1,  

D2 and LOG, respectively. The line represents the line of y=x. 

Table 5  Test results of different SVM and SMR models for predicted GLCD  

SMRf) SVM-POLY SVM-RBFg) SVM-ANOVAh) 
Variable 

Spectral 
transformation 

RMSEi) 

(mg m−2)
 

rj) 
ABSEk) 

(mg m−2)
 

 RMSE 
(mg m−2) 

r 
ABSE 

(mg m−2) 

 RMSE 
(mg m−2)

 
r 

ABSE 
(mg m−2)

 

 
RMSE 

(mg m−2)
 

r 
ABSE 

(mg m−2)
 

Rb) 574.5243 0.6550 454.6556 − − − 571.2719 0.6789 432.8516 570.7760l) 0.6851 430.9946 

D1c) 613.5800 0.6282 459.2451 − − − 575.2666 0.6755 444.4299 578.9491 0.7027 440.0834 

D2d) 571.5815 0.6683 463.7467 − − − 553.2974 0.6866 442.2441 554.1760 0.7160 418.1450 
GLCDa) 

LOGe) 551.3314 0.6930 436.6221 − − − 549.6904 0.7081 415.6934 523.0741 0.7299 394.7962 

a) Green leaf chlorophyll density; b) reflectances; c) first derivative of reflectances; d) second derivative of reflectances; e) logarithm-transformed reflec-
tances; f) stepwise multivariable regression model; g) RBF kernel SVM; h) ANOVA kernel SVM; i) root mean squared error; j) correlation coefficients; 
k)average absolute error; l) data in bold show the best results for the prediction of GLCD. 

 
model based on R also had the lowest RMSE (570.7760) 
among all the other models (Table 5). For the case of D1 
and D2, the SVM-RBF model had the lowest RMSE 
(575.2666 and 553.2794 mg m−2, respectively), relative to 
the other models.  

From the ABSE results (Table 5), significant improve-
ments in the predictive GLCD relationships were achieved 
with the SVM models. The SVM-ANOVA models using R, 
D1, D2 and LOG datasets resulted in the lowest ABSE val-
ues (430.9946, 440.0834, 418.1450, and 394.7962 mg m−2, 
respectively), relative to the other models using R, D1, D2 
and LOG. All of the results showed that SVMs have higher 
accuracies for learning with good robustness, and further 

improve the relationships between different transformations 
of reflectance and GLCD. 

2.4  Comparisons of SVM and SMR performance 

The SVM and SMR methods for predicting LAI and GLCD 
resulted in significantly different r, RMSE, and ABSE val-
ues for the same datasets (Table 6). In the case of LAI, the 
SVM-POLY model using R improved the relationship be-
tween R and LAI with a lower RMSE 0.0702 and lower 
ABSE 0.0854. The SVM-RBF model using D1 improved 
the relationship between D1 and LAI with a lower RMSE 
0.1225 and ABSE 0.0507, and the SVM-ANOVA model  
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Table 6  Improvement of different SVM models over the SMR models based on RMSE, r, and ABSE values 

SVM-POLYg) SVM-RBFh) SVM-ANOVAi) 
Variable ΔRMSEj) 

(m2 m−2) 
Δrk) 

ΔABSEl) 

(m2 m−2) 

 
ΔRMSE 
(m2 m−2) 

Δr 
ΔABSE 
(m2 m−2) 

 
ΔRMSE 
(m2 m−2) 

Δr 
ΔABSE 
(m2 m−2) 

Rc) −0.0702m) 0.0373 −0.0854  −0.0422 0.0193 −0.0355  −0.0401 0.0187 −0.0440 
D1d) −0.1050 0.0199 −0.0197  −0.1225 0.0294 −0.0507  −0.1190 0.0643 −0.0872 
D2e) 0.2208 −0.0290 0.2096  0.0880 −0.0451 0.1487  −0.1647 0.0857 −0.1196 

LAIa) 

LOGf) −0.0880 0.0065 −0.0649  0.0151 −0.0505 0.0182  −0.0554 −0.0124 −0.0223 

SVM-POLY SVM-RBF SVM-ANOVA 
Variable ΔRMSE 

(mg m−2) 
Δr 

ΔABSE 
(mg m−2) 

 
ΔRMSE 
(mg m−2) 

Δr 
ΔABSE 
(mg m−2) 

 
ΔRMSE 
(mg m−2) 

Δr 
ΔABSE 
(mg m−2) 

R − − −  −3.2524 0.0239 −21.8040  −3.7483 0.0301 −23.6610 
D1 − − −  −38.3134 0.0473 −14.8152  −34.6309 0.0745 −19.1617 
D2 − − −  −18.2841 0.0183 −21.5026  −17.4055 0.0477 −45.6017 

GLCDb) 

LOG − − −  −1.6410 0.0151 −20.9287  −28.2573 0.0369 −41.8259 

a) Leaf area index; b) green leaf chlorophyll density; c) reflectances; d) first derivative of reflectances; e) second derivative of reflectances; f) loga-
rithm-transformed reflectances; g) POLY kernel SVM; h) RBF kernel SVM; i) ANOVA kernel SVM; j) increase of SVM over SMR on the root mean 
squared error; k) increase of SVM over SMR on the correlation coefficients; l) increase of SVM over SMR on the average absolute error; m) data in bold 
show the best results for the prediction of LAI and GLCD. 

 
using D2 also improved the relationship between D2 and 
LAI with a lower RMSE 0.1647 and ABSE 0.1196. The 
SVM-POLY model using LOG also improved the relation-
ship between LOG and LAI with lower RMSE 0.0880 and 
ABSE 0.0649.  

Regarding GLCD, the relationship between R and GLCD 
was improved in the SVM-ANOVA model using R with a 
lower RMSE 3.7483 mg m−2 and ABSE 23.6610 mg m−2. 
The relationship between D1 and GLCD was improved in 
the SVM-RBF model using D1 with a lower RMSE  
38.3134 mg m−2 and ABSE 14.8152 mg m−2. The relation-
ship between D2 and GLCD was also improved by the 
SVM-RBF model with a lower RMSE 18.2841 mg m−2 and 
ABSE 21.5026 mg m−2, as were the relationships by the 
SVM-ANOVA model using LOG with a lower RMSE 
28.2573 mg m−2 and ABSE 41.8259 mg m−2. Based on all 
these results, it can be concluded that SVMs improved the 
relationships between the four transformed reflectance 
datasets and the two biophysical parameters and, in all cases, 
the results using SVMs had higher accuracies than those 
using SMR. 

3  Conclusion 

In the present work, two different model approaches (SVM 
and SMR) using four different transformations of reflec-
tance (R, D1, D2 and LOG), were used to compare their 
prediction capability to estimate rice LAI and rice GLCD 
(Tables 4 and 5). The SVM-POLY model using the four 
reflectance bands (R) was the best model to predict rice LAI, 
and the SVM-ANOVA model using LOG was the best model 
to predict rice GLCD. 

At present, SVMs have only been used in a few agricul-
ture studies with remote sensing. The present work repre-
sents an initial step in evaluating the merits of SVMs com-

pared with the more traditional SMR models. We found 
SVMs performed better than SMR models, based on the 
four different reflectance transformations analyzed in this 
study, demonstrating that SVMs are a potentially useful 
method to understand and predict optical interactions over a 
wide range of rice canopy LAI and GLCD conditions. The 
large improvements observed in the SVM models over 
SMR also suggest that important non-linear processes exist 
in the relationships between remote sensing data and rice 
biophysical (e.g., LAI) and biochemical (e.g., chlorophyll) 
variables. 

We found that selecting the appropriate kernel function 
and parameters of the kernel is critical to avoid 
‘over-fitting’. In the present work, three different kernel 
functions were selected, and many kernel parameters were 
tested for LAI and GLCD training. These two variables 
were optimized simultaneously when the highest improve-
ments were observed. Consequently, SVMs provide a useful 
exploratory tool for improvement of the relationships be-
tween different transformations of reflectance and crop 
variables. Much work remains to be done to scale these 
greenness estimation relationships across a variety of cano-
pies, so that this approach may become more robust and be 
applied in larger-scale remote sensing applications in agri-
culture. 
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