Skip to main content
Log in

Recent advances in Ni−Al bimetallic catalysis for unreactive bond transformation

  • Feature Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ni−Al bimetallic catalysis proves to be an efficient catalytic strategy for unreactive bond transformations. Recently, chiral bifunctional ligands, especially amphoteric secondary phosphine oxide (SPO) ligand, are used for a more powerful synergistic effect in the bimetal-catalyzed reactions, providing not only milder reaction conditions and higher reactivity but also excellent reaction selectivity. Herein, we give a brief review on the development of Ni−Al bimetallic catalytic system and highlight recent advances in enantioselective Ni−Al bimetallic catalysis for unreactive bond transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) D’Souza DM, Müller TJJ. Chem Soc Rev. 2007, 36: 1095–1108

    Article  PubMed  Google Scholar 

  2. Das S, Brudvig GW, Crabtree RH. Chem Commun. 2008, 127: 413–424

    Article  Google Scholar 

  3. Diez-Gonzalez S, Marion N, Nolan SP. Chem Rev. 2009, 109: 3612–3676

    Article  CAS  PubMed  Google Scholar 

  4. Zhong C, Shi X. Eur J Org Chem. 2010, 2010: 2999–3025

    Article  CAS  Google Scholar 

  5. Du Z, Shao Z. Chem Soc Rev. 2013, 42: 1337–1378

    Article  CAS  PubMed  Google Scholar 

  6. Hu Y, Wang C. Sci China Chem. 2016, 59: 1301–1305

    Article  CAS  Google Scholar 

  7. Li X, He X, Liu X, He LN. Sci China Chem. 2017, 60: 841–852

    Article  CAS  Google Scholar 

  8. (a) Goossen LJ, Goossen K, Stanciu C. Angew Chem Int Ed. 2009, 48: 3569–3571

    Article  CAS  Google Scholar 

  9. Su B, Cao ZC, Shi ZJ. Acc Chem Res. 2015, 48: 886–896

    Article  CAS  PubMed  Google Scholar 

  10. Wang Q, Su Y, Li L, Huang H. Chem Soc Rev. 2016, 45: 1257–1272

    Article  CAS  PubMed  Google Scholar 

  11. Tobisu M, Chatani N. Acc Chem Res. 2015, 48: 1717–1726

    Article  CAS  PubMed  Google Scholar 

  12. Gao Y, Ji CL, Hong X. Sci China Chem. 2017, 60: 1413–1424

    Article  CAS  Google Scholar 

  13. Colby DA, Bergman RG, Ellman JA. Chem Rev. 2010, 110: 624–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Labinger JA, Bercaw JE. Nature. 2002, 417: 507–514

    Article  CAS  PubMed  Google Scholar 

  15. Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem Soc Rev. 2011, 40: 4740–4761

    Article  CAS  PubMed  Google Scholar 

  16. (a) Rousseau G, Breit B. Angew Chem Int Ed. 2011, 50: 2450–2494

    Article  CAS  Google Scholar 

  17. Rouquet G, Chatani N. Angew Chem Int Ed. 2013, 52: 11726–11743

    Article  CAS  Google Scholar 

  18. Corbet M, De Campo F. Angew Chem Int Ed. 2013, 52: 9896–9898

    Article  CAS  Google Scholar 

  19. Song G, Li X. Acc Chem Res. 2015, 48: 1007–1020

    Article  CAS  PubMed  Google Scholar 

  20. Zhu RY, Farmer ME, Chen YQ, Yu JQ. Angew Chem Int Ed. 2016, 55: 10578–10599

    Article  CAS  Google Scholar 

  21. He J, Wasa M, Chan KSL, Shao Q, Yu JQ. Chem Rev. 2017, 117: 8754–8786

    Article  CAS  PubMed  Google Scholar 

  22. (a) Lyons TW, Sanford MS. Chem Rev. 2010, 110: 1147–1169

    Article  CAS  PubMed  Google Scholar 

  23. Engle KM, Yu JQ. J Org Chem. 2013, 78: 8927–8955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye B, Cramer N. Acc Chem Res. 2015, 48: 1308–1318

    Article  CAS  PubMed  Google Scholar 

  25. Saint-Denis TG, Zhu RY, Chen G, Wu QF, Yu JQ. Science. 2018, 359: eaao4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. (a) Biswas J, Maxwell IE. Appl Catal. 1990, 63: 197–258

    Article  Google Scholar 

  27. Otterstedt JE, Gevert SB, Jäås SG, Menon PG. Appl Catal. 1986, 22: 159–179

    Article  CAS  Google Scholar 

  28. (a) Fu J, Huo X, Li B, Zhang W. Org Biomol Chem. 2017, 15: 9747–9759

    Article  PubMed  Google Scholar 

  29. Pye DR, Mankad NP. Chem Sci. 2017, 8: 1705–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mankad NP. Chem Eur J. 2016, 22: 5822–5829

    Article  CAS  PubMed  Google Scholar 

  31. Hetterscheid DGH, Chikkali SH, de Bruin B, Reek JNH. ChemCatChem. 2013, 5: 2785–2793

    Article  CAS  Google Scholar 

  32. Park J, Hong S. Chem Soc Rev. 2012, 41: 6931–6943

    Article  CAS  PubMed  Google Scholar 

  33. Pérez-Temprano MH, Casares JA, Espinet P. Chem Eur J. 2012, 18: 1864–1884

    Article  CAS  PubMed  Google Scholar 

  34. Matsunaga S, Shibasaki M. Bull Chem Soc Jpn. 2008, 81: 60–75

    Article  CAS  Google Scholar 

  35. van den Beuken EK, Feringa BL. Tetrahedron. 1998, 54: 12985–13011

    Article  CAS  Google Scholar 

  36. Rowlands GJ. Tetrahedron. 2001, 57: 1865–1882

    Article  CAS  Google Scholar 

  37. (a) Trost BM, Toste FD, Pinkerton AB. Chem Rev. 2001, 101: 2067–2096

    Article  CAS  PubMed  Google Scholar 

  38. Bolm C, Legros J, Le Paih J, Zani L. Chem Rev. 2004, 104: 6217–6254

    Article  CAS  PubMed  Google Scholar 

  39. Yin L, Liebscher J. Chem Rev. 2007, 107: 133–173

    Article  CAS  PubMed  Google Scholar 

  40. Monnier F, Taillefer M. Angew Chem Int Ed. 2009, 48: 6954–6971

    Article  CAS  Google Scholar 

  41. Rodríguez N, Goossen LJ. Chem Soc Rev. 2011, 40: 5030–5048

    Article  CAS  PubMed  Google Scholar 

  42. Yeung CS, Dong VM. Chem Rev. 2011, 111: 1215–1292

    Article  CAS  PubMed  Google Scholar 

  43. (a) Jun CH. Chem Soc Rev. 2004, 33: 610–618

    Article  Google Scholar 

  44. Murakami M, Matsuda T. Chem Commun. 2011, 47: 1100–1105

    Article  CAS  Google Scholar 

  45. Dermenci A, Coe JW, Dong G. Org Chem Front. 2014, 1: 567–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Souillart L, Cramer N. Chem Rev. 2015, 115: 9410–9464

    Article  CAS  PubMed  Google Scholar 

  47. Murakami M, Ishida N. J Am Chem Soc. 2016, 138: 13759–13769

    Article  CAS  PubMed  Google Scholar 

  48. Chen P, Billett BA, Tsukamoto T, Dong G. ACS Catal. 2017, 7: 1340–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fumagalli G, Stanton S, Bower JF. Chem Rev. 2017, 117: 9404–9432

    Article  CAS  PubMed  Google Scholar 

  50. Chen F, Wang T, Jiao N. Chem Rev. 2014, 114: 8613–8661

    Article  CAS  PubMed  Google Scholar 

  51. (a) Rubin M, Rubina M, Gevorgyan V. Chem Rev. 2007, 107: 3117–3179

    Article  CAS  PubMed  Google Scholar 

  52. Seiser T, Cramer N. Org Biomol Chem. 2009, 7: 2835–2840

    Article  CAS  PubMed  Google Scholar 

  53. Tipper CFH. J Chem Soc. 1955, 2045–2046

    Google Scholar 

  54. Wiberg KB, Fenoglio RA. J Am Chem Soc. 1968, 90: 3395–3397

    Article  CAS  Google Scholar 

  55. (a) William Suggs J, Cox SD. J Organomet Chem. 1981, 221: 199–201

    Article  Google Scholar 

  56. Suggs JW, Jun CH. J Am Chem Soc. 1984, 106: 3054–3056

    Article  CAS  Google Scholar 

  57. Jun CH, Lee H. J Am Chem Soc. 1999, 121: 880–881

    Article  CAS  Google Scholar 

  58. Jun CH, Lee H, Lim SG. J Am Chem Soc. 2001, 123: 751–752

    Article  CAS  PubMed  Google Scholar 

  59. Dreis AM, Douglas CJ. J Am Chem Soc. 2009, 131: 412–413

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, Chen W, Zuo S, Liu L, Zhang X, Wang J. Angew Chem Int Ed. 2012, 51: 12334–12338

    Article  CAS  Google Scholar 

  61. (a) Tobisu M, Chatani N. Chem Soc Rev. 2008, 37: 300–307

    Article  PubMed  Google Scholar 

  62. Kou X, Fan J, Tong X, Shen Z. Chin J Org Chem. 2013, 33: 1407

    Article  CAS  Google Scholar 

  63. Chen F, Wang T, Jiao N. Chem Rev. 2014, 114: 8613–8661

    Article  CAS  PubMed  Google Scholar 

  64. Wen Q, Lu P, Wang Y. RSC Adv. 2014, 4: 47806–47826

    Article  CAS  Google Scholar 

  65. Murahashi S, Naota T, Nakajima N. J Org Chem. 1986, 51: 898–901

    Article  CAS  Google Scholar 

  66. Taw FL, White PS, Bergman RG, Brookhart M. J Am Chem Soc. 2002, 124: 4192–4193

    Article  CAS  PubMed  Google Scholar 

  67. Nakao Y, Oda S, Hiyama T. J Am Chem Soc. 2004, 126: 13904–13905

    Article  CAS  PubMed  Google Scholar 

  68. Nakao Y, Yukawa T, Hirata Y, Oda S, Satoh J, Hiyama T. J Am Chem Soc. 2006, 128: 7116–7117

    Article  CAS  PubMed  Google Scholar 

  69. Tobisu M, Kita Y, Chatani N. J Am Chem Soc. 2006, 128: 8152–8153

    Article  CAS  PubMed  Google Scholar 

  70. (a) DuPont. Chem Eng News. 1971, 49: 30–31

    Google Scholar 

  71. Huthmacher K, Krill S. In: Cornils B, Hermann WA, eds. Applied Homogeneous Catalysis with Organometallic Compounds. 2nd ed. Weinheim: Wiley-VCH. 2002

    Google Scholar 

  72. (a) Nakao Y, Hiyama T. J Syn Org Chem Jpn. 2007, 65: 999–1008

    Article  Google Scholar 

  73. Nakao Y, Hiyama T. Pure Appl Chem. 2008, 80: 1097–1107

    Article  CAS  Google Scholar 

  74. Yada A, Yukawa T, Idei H, Nakao Y, Hiyama T. Bull Chem Soc Jpn. 2010, 83: 619–634

    Article  CAS  Google Scholar 

  75. Nakao Y. Bull Chem Soc Jpn. 2012, 85: 731–745

    Article  CAS  Google Scholar 

  76. Brunkan NM, Brestensky DM, Jones WD. J Am Chem Soc. 2004, 126: 3627–3641

    Article  CAS  PubMed  Google Scholar 

  77. Nakao Y, Hirata Y, Tanaka M, Hiyama T. Angew Chem Int Ed. 2008, 47: 385–387

    Article  CAS  Google Scholar 

  78. Watson MP, Jacobsen EN. J Am Chem Soc. 2008, 130: 12594–12595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hirata Y, Yada A, Morita E, Nakao Y, Hiyama T, Ohashi M, Ogoshi S. J Am Chem Soc. 2010, 132: 10070–10077

    Article  CAS  PubMed  Google Scholar 

  80. Minami Y, Yoshiyasu H, Nakao Y, Hiyama T. Angew Chem Int Ed. 2013, 52: 883–887

    Article  CAS  Google Scholar 

  81. Miyazaki Y, Ohta N, Semba K, Nakao Y. J Am Chem Soc. 2014, 136: 3732–3735

    Article  CAS  PubMed  Google Scholar 

  82. Rondla NR, Ogilvie JM, Pan Z, Douglas CJ. Chem Commun. 2014, 50: 8974–8977

    Article  CAS  Google Scholar 

  83. Nakao Y, Yada A, Ebata S, Hiyama T. J Am Chem Soc. 2007, 129: 2428–2429

    Article  CAS  PubMed  Google Scholar 

  84. Nakao Y, Ebata S, Yada A, Hiyama T, Ikawa M, Ogoshi S. J Am Chem Soc. 2008, 130: 12874–12875

    Article  CAS  PubMed  Google Scholar 

  85. (a) Hirata Y, Yukawa T, Kashihara N, Nakao Y, Hiyama T. J Am Chem Soc. 2009, 131: 10964–10973

    Article  CAS  PubMed  Google Scholar 

  86. Yada A, Yukawa T, Nakao Y, Hiyama T. Chem Commun. 2009, 107: 3931–3933

    Article  CAS  Google Scholar 

  87. Nakao Y, Yada A, Hiyama T. J Am Chem Soc. 2010, 132: 10024–10026

    Article  CAS  PubMed  Google Scholar 

  88. Yada A, Ebata S, Idei H, Zhang D, Nakao Y, Hiyama T. Bull Chem Soc Jpn. 2010, 83: 1170–1184

    Article  CAS  Google Scholar 

  89. Yamada Y, Ebata S, Hiyama T, Nakao Y. Tetrahedron. 2015, 71: 4413–4417

    Article  CAS  Google Scholar 

  90. (a) Huang J, Haar CM, Nolan SP, Marcone JE, Moloy KG. Organometallics. 1999, 18: 297–299

    Article  Google Scholar 

  91. Shen Q, Hartwig JF. J Am Chem Soc. 2007, 129: 7734–7735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakai K, Kurahashi T, Matsubara S. J Am Chem Soc. 2011, 133: 11066–11068

    Article  CAS  PubMed  Google Scholar 

  93. (a) Nakai K, Kurahashi T, Matsubara S. Org Lett. 2013, 15: 856–859

    Article  CAS  PubMed  Google Scholar 

  94. Nakai K, Kurahashi T, Matsubara S. Tetrahedron. 2015, 71: 4512–4517

    Article  CAS  Google Scholar 

  95. (a) Patra T, Agasti S, Akanksha S, Maiti D. Chem Commun. 2013, 49: 69–71

    Article  CAS  Google Scholar 

  96. Patra T, Agasti S, Modak A, Maiti D. Chem Commun. 2013, 49: 8362–8364

    Article  CAS  Google Scholar 

  97. Romeder G. Hydrogen Cyanide. e-EROS Encyclopedia of Reagents for Organic Synthesis. 2000

    Google Scholar 

  98. (a) Fang X, Yu P, Morandi B. Science. 2016, 351: 832–836

    Article  CAS  PubMed  Google Scholar 

  99. Yu P, Morandi B. Angew Chem Int Ed. 2017, 56: 15693–15697

    Article  CAS  Google Scholar 

  100. Fang X, Yu P, Prina Cerai G, Morandi B. Chem Eur J. 2016, 22: 15629–15633

    Article  CAS  PubMed  Google Scholar 

  101. Tamaki T, Ohashi M, Ogoshi S. Angew Chem Int Ed. 2011, 50: 12067–12070

    Article  CAS  Google Scholar 

  102. (a) Nakao Y, Kanyiva KS, Hiyama T. J Am Chem Soc. 2008, 130: 2448–2449

    Article  CAS  PubMed  Google Scholar 

  103. Yang L, Semba K, Nakao Y. Angew Chem Int Ed. 2017, 56: 4853–4857

    Article  CAS  Google Scholar 

  104. Hara N, Saito T, Semba K, Kuriakose N, Zheng H, Sakaki S, Nakao Y. J Am Chem Soc. 2018, 140: 7070–7073

    Article  CAS  PubMed  Google Scholar 

  105. (a) Nakao Y, Idei H, Kanyiva KS, Hiyama T. J Am Chem Soc. 2009, 131: 5070–5071

    Article  CAS  PubMed  Google Scholar 

  106. Kanyiva KS, Löbermann F, Nakao Y, Hiyama T. Tetrahedron Lett. 2009, 50: 3463–3466

    Article  CAS  Google Scholar 

  107. Nakao Y, Idei H, Kanyiva KS, Hiyama T. J Am Chem Soc. 2009, 131: 15996–15997

    Article  CAS  PubMed  Google Scholar 

  108. Nakao Y, Yamada Y, Kashihara N, Hiyama T. J Am Chem Soc. 2010, 132: 13666–13668

    Article  CAS  PubMed  Google Scholar 

  109. Tsai CC, Shih WC, Fang CH, Li CY, Ong TG,Ya. GPA. J Am Chem Soc. 2010, 132: 11887–11889

    Article  CAS  Google Scholar 

  110. Nakao Y, Morita E, Idei H, Hiyama T. J Am Chem Soc. 2011, 133: 3264–3267

    Article  CAS  PubMed  Google Scholar 

  111. Miyazaki Y, Yamada Y, Nakao Y, Hiyama T. Chem Lett. 2012, 41: 298–300

    Article  CAS  Google Scholar 

  112. Shih WC, Chen WC, Lai YC, Yu MS, Ho JJ, Yap GPA, Ong TG. Org Lett. 2012, 14: 2046–2049

    Article  CAS  PubMed  Google Scholar 

  113. Tamura R, Yamada Y, Nakao Y, Hiyama T. Angew Chem. 2012, 124: 5777–5780

    Article  Google Scholar 

  114. Liu S, Sawicki J, Driver TG. Org Lett. 2012, 14: 3744–3747

    Article  CAS  PubMed  Google Scholar 

  115. Lee WC, Wang CH, Lin YH, Shih WC, Ong TG. Org Lett. 2013, 15: 5358–5361

    Article  CAS  PubMed  Google Scholar 

  116. Yu MS, Lee WC, Chen CH, Tsai FY, Ong TG. Org Lett. 2014, 16: 4826–4829

    Article  CAS  PubMed  Google Scholar 

  117. Lee WC, Shih WC, Wang TH, Liu Y, Yap GPA, Ong TG. Tetrahedron. 2015, 71: 4460–4464

    Article  CAS  Google Scholar 

  118. Lee WC, Chen CH, Liu CY, Yu MS, Lin YH, Ong TG. Chem Commun. 2015, 51: 17104–17107

    Article  CAS  Google Scholar 

  119. Okumura S, Tang S, Saito T, Semba K, Sakaki S, Nakao Y. J Am Chem Soc. 2016, 138: 14699–14704

    Article  CAS  PubMed  Google Scholar 

  120. Okumura S, Nakao Y. Org Lett. 2017, 19: 584–587

    Article  CAS  PubMed  Google Scholar 

  121. Inoue F, Saito T, Semba K, Nakao Y. Chem Commun. 2017, 53: 4497–4500

    Article  CAS  Google Scholar 

  122. Okumura S, Komine T, Shigeki E, Semba K, Nakao Y. Angew Chem Int Ed. 2018, 57: 929–932

    Article  CAS  Google Scholar 

  123. Donets PA, Cramer N. Angew Chem. 2015, 127: 643–647

    Article  Google Scholar 

  124. Miura T, Yamauchi M, Murakami M. Chem Commun. 2009, 36: 1470–1471

    Article  CAS  Google Scholar 

  125. Kajita Y, Matsubara S, Kurahashi T. J Am Chem Soc. 2008, 130: 6058–6059

    Article  CAS  PubMed  Google Scholar 

  126. Shiba T, Kurahashi T, Matsubara S. J Am Chem Soc. 2013, 135: 13636–13639

    Article  CAS  PubMed  Google Scholar 

  127. Nakai K, Kurahashi T, Matsubara S. Chem Lett. 2013, 42: 1238–1240

    Article  CAS  Google Scholar 

  128. (a) Sergeev AG, Hartwig JF. Science. 2011, 332: 439–443

    Article  CAS  PubMed  Google Scholar 

  129. Sergeev AG, Webb JD, Hartwig JF. J Am Chem Soc. 2012, 134: 20226–20229

    Article  CAS  PubMed  Google Scholar 

  130. (a) Hsieh JC, Ebata S, Nakao Y, Hiyama T. Synlett. 2010, 11: 1709–1711

    Google Scholar 

  131. Watson MP, Jacobsen EN. J Am Chem Soc. 2008, 130: 12594–12595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Diesel J, Finogenova AM, Cramer N. J Am Chem Soc. 2018, 140: 4489–4493

    Article  CAS  PubMed  Google Scholar 

  133. (a) Yoshikai N, Mashima H, Nakamura E. J Am Chem Soc. 2005, 127: 17978–17979

    Article  CAS  PubMed  Google Scholar 

  134. Yoshikai N, Matsuda H, Nakamura E. J Am Chem Soc. 2009, 131: 9590–9599

    Article  CAS  PubMed  Google Scholar 

  135. Ackermann L, Althammer A. Chem Unserer Zeit. 2009, 43: 74–83

    Article  CAS  Google Scholar 

  136. Jin Z, Li YJ, Ma YQ, Qiu LL, Fang JX. Chem Eur J. 2012, 18: 446–450

    Article  CAS  PubMed  Google Scholar 

  137. For related reviews on SPO ligands, see: (a) Dubrovina NV, Börner A. Angew Chem Int Ed. 2004, 43: 5883–5886

    Article  CAS  Google Scholar 

  138. Ackermann L, Born R, Spatz JH, Althammer A, Gschrei CJ. Pure Appl Chem. 2006, 78: 209–214

    Article  CAS  Google Scholar 

  139. Nemoto T, Hamada Y. Chem Record. 2007, 7: 150–158

    Article  CAS  Google Scholar 

  140. Nemoto T. Chem Pharm Bull. 2008, 56: 1213–1228

    Article  CAS  Google Scholar 

  141. Ackermann L. Isr J Chem. 2010, 50: 652–663

    Article  CAS  Google Scholar 

  142. Nemoto T, Hamada Y. Tetrahedron. 2011, 67: 667–687

    Article  CAS  Google Scholar 

  143. Shaikh TM, Weng CM, Hong FE. Coordin Chem Rev. 2012, 256: 771–803

    Article  CAS  Google Scholar 

  144. For recent enantioselective examples, see: (h) Achard T. Chimia. 2016, 70: 8–19

    Article  CAS  PubMed  Google Scholar 

  145. Dong K, Wang Z, Ding K. J Am Chem Soc. 2012, 134: 12474–12477

    Article  CAS  PubMed  Google Scholar 

  146. Dong K, Li Y, Wang Z, Ding K. Angew Chem Int Ed. 2013, 52: 14191–14195

    Article  CAS  Google Scholar 

  147. Chen C, Zhang Z, Jin S, Fan X, Geng M, Zhou Y, Wen S, Wang X, Chung LW, Dong XQ, Zhang X. Angew Chem Int Ed. 2017, 56: 6808–6812

    Article  CAS  Google Scholar 

  148. Donets PA, Cramer N. J Am Chem Soc. 2013, 135: 11772–11775

    Article  CAS  PubMed  Google Scholar 

  149. Liu QS, Wang DY, Yang ZJ, Luan YX, Yang JF, Li JF, Pu YG, Ye M. J Am Chem Soc. 2017, 139: 18150–18153

    Article  CAS  PubMed  Google Scholar 

  150. Wang YX, Qi SL, Luan YX, Han XW, Wang S, Chen H, Ye M. J Am Chem Soc. 2018, 140: 5360–5364

    Article  CAS  PubMed  Google Scholar 

  151. Tan KL, Bergman RG, Ellman JA. J Am Chem Soc. 2001, 123: 2685–2686

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21672107) and the “1000-Youth Talents Plan”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengchun Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YX., Ye, M. Recent advances in Ni−Al bimetallic catalysis for unreactive bond transformation. Sci. China Chem. 61, 1004–1013 (2018). https://doi.org/10.1007/s11426-018-9333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9333-x

Keywords

Navigation