Skip to main content
Log in

A facile one-pot synthesis of supercubes of Pt nanocubes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A facile one-pot synthetic strategy is developed to prepare high-quality Pt supercubes. The as-synthesized Pt supercubes are composed of the uniform Pt nanocubes arranged in a primitive cubic structure. The shape and size of the Pt superparticles are readily tuned by varying the structures of pyridyl-containing ligands used in the synthesis. The co-presence of CO and nitrogen-containing ligands is critical to the formation of Pt supercubes. While CO molecules play an important role in the synthesis of Pt nanocube, introducing nitrogen-containing ligands is essential to the successful assembly of those nanocubes into Pt supercubes. Our systematic studies reveal that the electrostatic attraction between positively charged ligands and negatively charged Pt nanocubes is the main driving force for the assembly of Pt nanocubes into supercubes. More importantly, the ligands within the Pt supercubes are readily removed at relatively low temperature to yield surface-clean supercubes which are expected to exhibit unique size-selective catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin YD, Alivisatos AP. Nature, 2005, 437: 664–670

    Article  CAS  Google Scholar 

  2. Wu BH, Zheng NF. Nano Today, 2013, 8: 168–197

    Article  Google Scholar 

  3. Thanh-Dinh N. Nanoscale, 2013, 5: 9455–9482

    Article  Google Scholar 

  4. Jin RC, Nobusada K. Nano Res, 2014, 7: 285–300

    Article  CAS  Google Scholar 

  5. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV. Chem Rev, 2010, 110: 389–458

    Article  CAS  Google Scholar 

  6. Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzan LM. Nanoscale, 2011, 3: 1304–1315

    Article  CAS  Google Scholar 

  7. Lu ZD, Yin YD. Chem Soc Rev, 2012, 41: 6874–6887

    Article  CAS  Google Scholar 

  8. Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB. Nature, 2006, 439: 55–59

    Article  CAS  Google Scholar 

  9. Wang T, LaMontagne D, Lynch J, Zhuang JQ, Cao YC. Chem Soc Rev, 2013, 42: 2804–2823

    Article  CAS  Google Scholar 

  10. Bai F, Wang DS, Huo ZY, Chen W, Liu LP, Liang X, Chen C, Wang X, Peng Q, Li YD. Angew Chem Int Ed, 2007, 46: 6650–6653

    Article  CAS  Google Scholar 

  11. Boeker A, He J, Emrick T, Russell TP. Soft Matter, 2007, 3: 1231–1248

    Article  CAS  Google Scholar 

  12. Dong AG, Chen J, Vora PM, Kikkawa JM, Murray CB. Nature, 2010, 466: 474–477

    Article  CAS  Google Scholar 

  13. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM. ACS Nano, 2010, 4: 3591–3605

    Article  CAS  Google Scholar 

  14. Hu S, Wang X. Sci China Chem, 2012, 55: 2257–2271

    Article  CAS  Google Scholar 

  15. Klajn R, Bishop KJM, Fialkowski M, Paszewski M, Campbell CJ, Gray TP, Grzybowski BA. Science, 2007, 316: 261–264

    Article  CAS  Google Scholar 

  16. Nie ZH, Fava D, Kumacheva E, Zou S, Walker GC, Rubinstein M. Nat Mater, 2007, 6: 609–614

    Article  CAS  Google Scholar 

  17. Sau TK, Murphy CJ. Langmuir, 2005, 21: 2923–2929

    Article  CAS  Google Scholar 

  18. Wang PP, Yu QY, Long Y, Hu S, Zhuang J, Wang X. Nano Res, 2012, 5: 283–291

    Article  CAS  Google Scholar 

  19. Zhuang JQ, Shaller AD, Lynch J, Wu HM, Chen O, Li ADQ, Cao YC. J Am Chem Soc, 2009, 131: 6084–6085

    Article  CAS  Google Scholar 

  20. Park JI, Jun YW, Choi JS, Cheon J. Chem Commun, 2007, 5001–5003

    Google Scholar 

  21. Wang T, Wang XR, LaMontagne D, Wang ZL, Wang ZW, Cao YC. J Am Chem Soc, 2012, 134: 18225–18228

    Article  CAS  Google Scholar 

  22. Kang YJ, Ye XC, Chen J, Qi L, Diaz RE, Doan-Nguyen V, Xing GZ, Kagan CR, Li J, Gorte RJ, Stach EA, Murray CB. J Am Chem Soc, 2013, 135: 1499–1505

    Article  CAS  Google Scholar 

  23. Zhang S, Shao YY, Yin GP, Lin YH. J Mater Chem, 2010, 20: 2826–2830

    Article  CAS  Google Scholar 

  24. Nishida N, Shibu ES, Yao H, Oonishi T, Kimura K, Pradeep T. Adv Mater, 2008, 20: 4719–4723

    Article  CAS  Google Scholar 

  25. Hu CY, Lin KQ, Wang XL, Liu SJ, Yi J, Tian Y, Wu BH, Chen GX, Yang HY, Dai Y, Li H, Zheng NF. J Am Chem Soc, 2014, 136: 12856–12859

    Article  CAS  Google Scholar 

  26. Braun G, Lee SJ, Dante M, Nguyen TQ, Moskovits M, Reich N. J Am Chem Soc, 2007, 129: 6378–6379

    Article  CAS  Google Scholar 

  27. Guo SJ, Sun SH. J Am Chem Soc, 2012, 134: 2492–2495

    Article  CAS  Google Scholar 

  28. Han JS, Zhang X, Zhou YB, Ning Y, Wu J, Liang S, Sun HC, Zhang H, Yang B. J Mater Chem, 2012, 22: 2679–2686

    Article  CAS  Google Scholar 

  29. Nie ZH, Petukhova A, Kumacheva E. Nat Nanotechnol, 2010, 5: 15–25

    Article  CAS  Google Scholar 

  30. Sun SH. Adv Mater, 2006, 18: 393–403

    Article  CAS  Google Scholar 

  31. Sun XH, Zhu X, Zhang N, Guo J, Guo SJ, Huang XQ. Chem Commun, 2015, 51: 3529–3532

    Article  CAS  Google Scholar 

  32. Wang DH, Kou R, Choi D, Yang ZG, Nie Z, Li J, Saraf LV, Hu DH, Zhang JG, Graff GL, Liu J, Pope MA, Aksay IA. ACS Nano, 2010, 4: 1587–1595

    Article  CAS  Google Scholar 

  33. Zhu K, Wang DH, Liu J. Nano Res, 2009, 2: 1–29

    Article  CAS  Google Scholar 

  34. Kalsin AM, Fialkowski M, Paszewski M, Smoukov SK, Bishop KJM, Grzybowski BA. Science, 2006, 312: 420–424

    Article  CAS  Google Scholar 

  35. Meng LR, Chen WM, Tan YW, Zou L, Chen CP, Zhou HP, Peng Q, Li YD. Nano Res, 2011, 4: 370–375

    Article  CAS  Google Scholar 

  36. Bishop KJM, Wilmer CE, Soh S, Grzybowski BA. Small, 2009, 5: 1600–1630

    Article  CAS  Google Scholar 

  37. Jenekhe SA, Chen XL. Science, 1998, 279: 1903–1907

    Article  CAS  Google Scholar 

  38. Kuzyk A, Schreiber R, Fan ZY, Pardatscher G, Roller EM, Hoegele A, Simmel FC, Govorov AO, Liedl T. Nature, 2012, 483: 311–314

    Article  CAS  Google Scholar 

  39. Sharma J, Chhabra R, Liu Y, Ke YJ, Yan H. Angew Chem Int Ed, 2006, 45: 730–735

    Article  CAS  Google Scholar 

  40. Maye MM, Lim IIS, Luo J, Rab Z, Rabinovich D, Liu TB, Zhong CJ. J Am Chem Soc, 2005, 127: 1519–1529

    Article  CAS  Google Scholar 

  41. Andrew KB. Boal FI, Jason ED, Thomas TA, Thomas PR, Vincent MR. Nature, 2000, 404: 746–748

    Article  Google Scholar 

  42. Hu MJ, Lin B, Yu SH. Nano Res, 2008, 1: 303–313

    Article  CAS  Google Scholar 

  43. Carroll JB, Frankamp BL, Srivastava S, Rotello VM. J Mater Chem, 2004, 14: 690–694

    Article  CAS  Google Scholar 

  44. Lim II, Pan Y, Mott D, Ouyang J, Njoki PN, Luo J, Zhou S, Zhong CJ. Langmuir, 2007, 23: 10715–10724

    Article  CAS  Google Scholar 

  45. Frankamp BL, Boal AK, Rotello VM. J Am Chem Soc, 2002, 124: 15146–15147

    Article  CAS  Google Scholar 

  46. Chen GX, Tan YM, Wu BH, Fu G, Zheng NF. Chem Commun, 2012, 48: 2758–2760

    Article  CAS  Google Scholar 

  47. Wu J, Zhang X, Yao TJ, Li J, Zhang H, Yang B. Langmuir, 2010, 26: 8751–8757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoliang Fang or Nanfeng Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, D., Huang, H., Qin, R. et al. A facile one-pot synthesis of supercubes of Pt nanocubes. Sci. China Chem. 59, 452–458 (2016). https://doi.org/10.1007/s11426-015-5545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5545-0

Keywords

Navigation