Skip to main content
Log in

Functional tuning and expanding of myoglobin by rational protein design

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Rational protein design is a powerful strategy, not only for revealing the structure and function relationship of natural metallo-proteins, but also for creating artificial metalloproteins with improved properties and functions. Myoglobin (Mb), a small heme protein created by nature with diverse functions, has been shown to be an ideal scaffold for rational protein design. The progress reviewed herein includes fine-tuning its native functions of O2 binding and transport, peroxidase activity and nitrite reductase (NIR) activity, and rational expanding its functionalities to peroxygenase, heme-copper oxidase (HCO), nitric oxide reductase (NOR), as well as hydroxylamine reductase. These studies have enhanced our understanding of how metalloproteins work in nature, and provided insights for rational design of functional metalloproteins for practical applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu Y, Yeung N, Sieracki N, Marshall NM. Design of functional metalloproteins. Nature, 2009, 460: 855–862

    CAS  Google Scholar 

  2. Lu Y, Berry SM, Pfister TD. Engineering novel metalloproteins: Design of metal-binding sites into native protein scaffolds. Chem Rev, 2001, 101: 3047–3080

    CAS  Google Scholar 

  3. Waldron KJ, Rutherford JC, Ford D, Robinson NJ. Metalloproteins and metal sensing. Nature, 2009, 460: 823–830

    CAS  Google Scholar 

  4. DeGrado WF, Summa CM, Pavone V, Nastri F, Lombardi A. De novo design and structural characterization of proteins and metalloproteins. Annu Rev Biochem, 1999, 68: 779–819

    CAS  Google Scholar 

  5. Kennedy ML, Gibney BR. Metalloprotein and redox protein design. Curr Opin Struct Biol, 2001, 11: 485–490

    CAS  Google Scholar 

  6. Reedy CJ, Gibney BR. Heme protein assemblies. Chem Rev, 2004, 104: 617–649

    CAS  Google Scholar 

  7. Goodman CM, Choi S, Shandler S, DeGrado WF. Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol, 2007, 3: 252–262

    CAS  Google Scholar 

  8. Heinisch T, Ward TR. Design strategies for the creation of artificial metalloenzymes. Curr Opin Chem Biol, 2010, 14: 184–199

    CAS  Google Scholar 

  9. Köhler V, Wilson YM, Lo C, Sardo A, Ward TR. Protein-based hybrid catalysts-design and evolution. Curr Opin Biotechnol, 2010, 21: 744–752

    Google Scholar 

  10. Reetz MT. Artificial metalloenzymes as catalysts in stereoselective Diels-Alder reactions. Chem Rec, 2012, 12: 391–406

    CAS  Google Scholar 

  11. Dong Z, Luo Q, Liu J. Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev, 2012, 41: 7890–7908

    CAS  Google Scholar 

  12. Lichtenstein BR, Farid TA, Kodali G, Solomon LA, Anderson JL, Sheehan MM, Ennist NM, Fry BA, Chobot SE, Bialas C, Mancini JA, Armstrong CT, Zhao Z, Esipova TV, Snell D, Vinogradov SA, Discher BM, Moser CC, Dutton PL. Engineering oxidoreductases: maquette proteins designed from scratch. Biochem Soc Trans, 2012, 40: 561–566

    CAS  Google Scholar 

  13. Zastrow ML, Pecoraro VL. Designing functional metalloproteins: From structural to catalytic metal sites. Coord Chem Rev, 2013, 257: 2565–2588

    CAS  Google Scholar 

  14. Peacock AF. Incorporating metals into de novo proteins. Curr Opin Chem Biol, 2013, 17: 934–939

    CAS  Google Scholar 

  15. Ueno T, Tabe H, Tanaka Y. Artificial metalloenzymes constructed from hierarchically-assembled proteins. Chem Asian J, 2013, 8: 1646–1660

    CAS  Google Scholar 

  16. Ozaki S, Matsui T, Roach MP, Watanabe Y. Rational molecular design of a catalytic site: engineering of catalytic functions to the myoglobin active site framework. Coord Chem Rev, 2000, 198: 39–59

    CAS  Google Scholar 

  17. Hayashi T, Hisaeda Y. New functionalization of myoglobin by chemical modification of heme-propionates. Acc Chem Res, 2002, 35: 35–43

    CAS  Google Scholar 

  18. Lu Y. Design and engineering of metalloproteins containing unnatural amino acids or non-native metal-containing cofactors. Curr Opin Chem Biol, 2005, 9: 118–126

    CAS  Google Scholar 

  19. Lu Y. Biosynthetic inorganic chemistry. Angew Chem Int Ed, 2006, 45: 5588–5601

    CAS  Google Scholar 

  20. Lu Y. Metalloprotein and metallo-DNA/RNAzyme design: Current approaches, success measures, and future challenges. Inorg Chem, 2006, 45: 9930–9940.

    CAS  Google Scholar 

  21. Ueno T. An engineered metalloprotein as a functional and structural bioinorganic model system. Angew Chem Int Ed, 2010, 49: 3868–3869

    CAS  Google Scholar 

  22. Köhler V, Ward TR. Design of a functional nitric oxide reductase within a myoglobin scaffold. Chembiochem, 2010, 11: 1049–1051

    Google Scholar 

  23. Lin YW, Sawyer EB, Wang J. Heme protein design: All road leads to Rome. Chem Asian J, 2013, 8: 2534–2544

    CAS  Google Scholar 

  24. Lin YW, Wang J. Structure and function of heme proteins in non-native states: A mini-review. J Inorg Biochem, 2013, 129: 162–171

    CAS  Google Scholar 

  25. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 1958, 181: 662–666

    CAS  Google Scholar 

  26. Garry DJ, Mammen PP. Molecular insights into the functional role of myoglobin. Adv Exp Med Biol, 2007, 618: 181–193

    Google Scholar 

  27. Hendgen-Cotta UB, Kelm M, Rassaf T. A highlight of myoglobin diversity: The nitrite reductase activity during myocardial ischemia-reperfusion. Nitric Oxide, 2010, 22: 75–82

    CAS  Google Scholar 

  28. Gros G, Wittenberg BA, Jue T. Myoglobin’s old and new clothes: From molecular structure to function in living cells. J Exp Biol, 2010, 213: 2713–2725

    CAS  Google Scholar 

  29. Phillips SE. Structure and refinement of oxymyoglobin at 1.6 Å resolution. J Mol Biol, 1980, 142: 531–554

    CAS  Google Scholar 

  30. Goldberg DE. Oxygen-avid hemoglobin of Ascaris. Chem Rev, 1999, 99: 3371–3378

    CAS  Google Scholar 

  31. Travaglini Allocatelli C, Cutruzzolà F, Brancaccio A, Vallone B, Brunori M. Engineering Ascaris hemoglobin oxygen affinity in sperm whale myoglobin: role of tyrosine B10. FEBS Lett, 1994, 352: 63–66

    CAS  Google Scholar 

  32. Neya S, Kaku T, Funasaki N, Shiro Y, Iizuka T, Imai K, Hori H. Novel ligand binding properties of the myoglobin substituted with monoazahemin. J Biol Chem, 1995, 270: 13118–13123

    CAS  Google Scholar 

  33. Hayashi T, Dejima H, Matsuo T, Sato H, Murata D, Hisaeda Y. Blue myoglobin reconstituted with an iron porphycene shows extremely high oxygen affinity. J Am Chem Soc, 2002, 124: 11226–11227

    CAS  Google Scholar 

  34. Hayashi T, Murata D, Makino M, Sugimoto H, Matsuo T, Sato H, Shiro Y, Hisaeda Y. Crystal structure and peroxidase activity of myoglobin reconstituted with iron porphycene. Inorg Chem, 2006, 45: 10530–10536

    CAS  Google Scholar 

  35. Matsuo T, Dejima H, Hirota S, Murata D, Sato H, Ikegami T, Hori H, Hisaeda Y, Hayashi T. Ligand binding properties of myoglobin reconstituted with iron porphycene: unusual O2 binding selectivity against CO binding. J Am Chem Soc, 2004, 126: 16007–16017

    CAS  Google Scholar 

  36. Matsuo T, Tsuruta T, Maehara K, Sato H, Hisaeda Y, Hayashi T. Preparation and O2 binding study of myoglobin having a cobalt porphycene. Inorg Chem, 2005, 44: 9391–9396

    CAS  Google Scholar 

  37. Yusa K, Shikama K. Oxidation of oxymyoglobin to metmyoglobin with hydrogen peroxide: Involvement of ferryl intermediate. Biochemistry, 1987, 26: 6684–6688

    CAS  Google Scholar 

  38. Flögel U, Godecke A, Klotz LO, Schrader J. Role of myoglobin in the antioxidant defense of the heart. FASEB J, 2004, 18: 1156–1158

    Google Scholar 

  39. Helbo S, Dewilde S, Williams DR, Berghmans H, Berenbrink M, Cossins AR, Fago A. Functional differentiation of myoglobin isoforms in hypoxia-tolerant carp indicates tissue-specific protective roles. Am. J. Physiol, 2012, 302: R693–R701

    CAS  Google Scholar 

  40. Bickler PE, Buck LT. Hypoxia tolerance in reptiles, amphibians, and fishes: Life with variable oxygen availability. Annu Rev Physiol, 2007, 69: 145–170

    CAS  Google Scholar 

  41. Urayama P, Phillips GN Jr, Gruner SM. Probing substates in sperm whale myoglobin using high-pressure crystallography. Structure, 2002, 10: 51–60

    CAS  Google Scholar 

  42. Berglund GI, Carlsson GH, Smith AT, Szöke H, Henriksen A, Hajdu J. The catalytic pathway of horseradish peroxidase at high resolution. Nature, 2002, 417: 463–468

    CAS  Google Scholar 

  43. Finzel BC, Poulos TL, Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7 Å resolution. J Biol Chem, 1984, 259: 13027–13036

    CAS  Google Scholar 

  44. Ozaki S, Matsui T, Roach MP, Watanabe Y. Rational molecular design of a catalytic site: Engineering of catalytic functions to the myoglobin active site framework. Coord Chem Rev, 2000, 198: 39–59

    CAS  Google Scholar 

  45. Matsui T, Ozaki Si, Liong E, Phillips GN Jr, Watanabe Y. Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide. J Biol Chem, 1999, 274: 2838–2844

    CAS  Google Scholar 

  46. Guo WW, Wan D, Liao LF, Lin YW. Unusual peroxidase activity of a myoglobin mutant with two distal histidines. Chin Chem Lett, 2012, 23: 741–744

    CAS  Google Scholar 

  47. Dong SS, Du KJ, You Y, Liu F, Wen GB, Lin YW. Peroxidase-like activity of L29H myoglobin with two cooperative distal histidines on electrode using oxygen as an oxidant. J Electroanal Chem, 2013, 708: 1–6

    CAS  Google Scholar 

  48. Lin YW, Dong SS, Liu JH, Nie CM, Wen GB. Peroxidase activity of a myoglobin with three distal histidines forming a metal-binding site: Implications for the cross-reactivity of cytochrome c oxidase. J Mol Catal B Enzym, 2013, 91: 25–31

    CAS  Google Scholar 

  49. Sigman JA, Kwok BC, Lu YJ. From myoglobin to heme-copper oxidase: Design and engineering of a CuB center into sperm whale myoglobin. J Am Chem Soc, 2000, 122: 8192–8196

    CAS  Google Scholar 

  50. Hunter CL, Maurus R, Mauk MR, Lee H, Raven EL, Tong H, Nguyen N, Smith M, Brayer GD, Mauk AG. Introduction and characterization of a functionally linked metal ion binding site at the exposed heme edge of myoglobin. Proc Natl Acad Sci USA, 2003, 100: 3647–3652

    CAS  Google Scholar 

  51. Cai YB, Li XH, Jing J, Zhang JL. Effect of distal histidines on hydrogen peroxide activation by manganese reconstituted myoglobin. Metallomics, 2013, 5: 828–835

    CAS  Google Scholar 

  52. Du J, Huang X, Sun S, Wang C, Lebioda L, Dawson JH. Amphitrite ornata dehaloperoxidase (DHP): Investigations of structural factors that influence the mechanism of halophenol dehalogenation using “peroxidase-like” myoglobin mutants and “myoglobin-like” DHP mutants. Biochemistry, 2011, 50: 8172–8180

    CAS  Google Scholar 

  53. Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, Steinhoff HJ, Goedecke A, Schrader J, Gladwin MT, Kelm M, Rassaf T. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA, 2008, 105: 10256–10261

    CAS  Google Scholar 

  54. Yi J, Heinecke J, Tan H, Ford PC, Richter-Addo GB. The distal pocket histidine residue in horse heart myoglobin directs the O-binding mode of nitrite to the heme iron. J Am Chem Soc, 2009, 131: 18119–18128

    CAS  Google Scholar 

  55. Yi J, Thomas LM, Richter-Addo GB. Distal pocket control of nitrite binding in myoglobin. Angew Chem Int Ed, 2012, 51: 3625–3627

    CAS  Google Scholar 

  56. Heinecke JL, Yi J, Pereira JC, Richter-Addo GB, Ford PC. Nitrite reduction by Co(II) and Mn(II) substituted myoglobins: towards understanding necessary components of Mb nitrite reductase activity. J Inorg Biochem, 2012, 107: 47–53

    CAS  Google Scholar 

  57. Sun MH, Li W, Liu JH, Wen GB, Tan X, Lin YW. Structural and nitrite reductase activity comparisons of myoglobin with one to three distal histidines. RSC Adv, 2013, 3: 9337–9343

    CAS  Google Scholar 

  58. Castello PR, David PS, McClure T, Crook Z, Poyton RO. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab, 2006, 3: 277–287

    CAS  Google Scholar 

  59. Nurizzo D, Silvestrini MC, Mathieu M, Cutruzzolà F, Bourgeois D, Fülöp V, Hajdu J, Brunori M, Tegoni M, Cambillau C. N-terminal arm exchange is observed in the 2.15 Å crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa. Structure, 1997, 5: 1157–1171

    CAS  Google Scholar 

  60. Lin YW, Nie CM, Liao LF. Rational design of a nitrite reductase based on myoglobin: A molecular modeling and dynamics simulation study. J Mol Model, 2012, 18: 4409–4415

    CAS  Google Scholar 

  61. Ozaki S, Ortiz de Montellano PR. Molecular engineering of horeseradish peroxidase: Thioether sulfoxidation and styrene epoxidation by Phe-41 leucine and threonine mutants. J Am Chem Soc, 1995, 117: 7056–7064

    CAS  Google Scholar 

  62. Savenkova MI, Kuo JM, Ortiz de Montellano PR: Improvement of peroxygenase activity by relocation of a catalytic histidine within the active site of horseradish peroxidase. Biochemistry, 1998, 37: 1828–10836

    Google Scholar 

  63. Levinger DC, Stevenson JA, Wong LL. The catalytic activity of human myoglobin is enhanced by a single active site mutation: F43Y. Chem Commun, 1995, 2305–2306

    Google Scholar 

  64. Hara I, Ueno T, Ozaki S, Itoh S, Lee K, Ueyama N, Watanabe Y. Oxidative modification of tryptophan-43 in the heme vicinity of the F43W/H64L myoglobin mutant. J Biol Chem, 2001, 276: 36067–36070

    CAS  Google Scholar 

  65. Ohashi M, Koshiyama T, Ueno T, Yanase M, Fujii H, Watanabe Y. Preparation of artificial metalloenzymes by insertion of chromium(III) Schiff base complexes into apomyoglobin mutants. Angew Chem Int Ed, 2003, 42: 1005–1008

    CAS  Google Scholar 

  66. Ueno T, Ohashi M, Kono M, Kondo K, Suzuki A, Yamane T, Watanabe Y. Crystal structures of artificial metalloproteins: Tight binding of FeIII (Schiff-base) by mutation of Ala71 to Gly in apo-myoglobin. Inorg Chem, 2004, 43: 2852–2858

    CAS  Google Scholar 

  67. Ueno T, Koshiyama T, Ohashi M, Kondo K, Kono M, Suzuki A, Yamane T, Watanabe Y. Coordinated design of cofactor and active site structures in development of new protein catalysts. J Am Chem Soc, 2005, 127: 6556–6562

    CAS  Google Scholar 

  68. Oohora K, Kihira Y, Mizohata E, Inoue T, Hayashi T. C(sp3)-H bond hydroxylation catalyzed by myoglobin reconstituted with manganese porphycene. J Am Chem Soc, 2013, 135: 17282–17285

    CAS  Google Scholar 

  69. Carey JR, Ma SK, Pfister TD, Garner DK, Kim HK, Abramite JA, Wang Z, Guo Z, Lu Y. A site-selective dual anchoring strategy for artificial metalloprotein design. J Am Chem Soc, 2004, 126: 10812–1083

    CAS  Google Scholar 

  70. Garner DK, Liang L, Barrios DA, Zhang JL, Lu Y. Covalent anchor positions play an important role in tuning catalytic properties of a rationally designed MnSalen-containing metalloenzyme. ACS Catal, 2011, 1: 1083–1089

    CAS  Google Scholar 

  71. van der Oost J, de Boer AP, de Gier JW, Zumft WG, Stouthamer AH, van Spanning RJ. The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol Lett, 1994, 121: 1–9

    Google Scholar 

  72. Sigman JA, Kim HK, Zhao X, Carey JR, Lu Y. The role of copper and protons in heme-copper oxidases: Kinetic study of an engineered heme-copper center in myoglobin. Proc Natl Acad Sci USA, 2003, 100: 3629–3634

    CAS  Google Scholar 

  73. Wang N, Zhao X, Lu Y. Role of heme types in heme-copper oxidases: Effects of replacing a heme b with a heme o mimic in an engineered heme-copper center in myoglobin. J Am Chem Soc, 2005, 127: 16541–16547

    CAS  Google Scholar 

  74. Zhao X, Yeung N, Wang Z, Guo Z, Lu Y. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: Spectroelectrochemical studies of an engineered heme-copper center in myoglobin. Biochemistry, 2005, 44: 1210–1214

    CAS  Google Scholar 

  75. Zhao X, Nilges MJ, Lu Y. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases. Biochemistry, 2005, 44: 6559–6564

    CAS  Google Scholar 

  76. Miner KD, Mukherjee A, Gao YG, Null EL, Petrik ID, Zhao X, Yeung N, Robinson H, Lu Y. A designed functional metalloenzyme that reduces O2 to H2O with over one thousand turnovers. Angew Chem Int Ed, 2012, 51: 5589–5592

    CAS  Google Scholar 

  77. Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science, 1998, 280: 1723–1729

    CAS  Google Scholar 

  78. Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J. Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase. Angew Chem Int Ed, 2012, 51: 4312–4316

    CAS  Google Scholar 

  79. Wasser IM, de Vries S, Moënne-Loccoz P, Schröder I, Karlin KD. Nitric oxide in biological denitrification: Fe/Cu metalloenzyme and metal complex NO(x) redox chemistry. Chem Rev, 2002, 102: 1201–1234

    CAS  Google Scholar 

  80. Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S, Shiro Y. Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science, 2010, 330: 1666–1670

    CAS  Google Scholar 

  81. Zhao X, Yeung N, Russell BS, Garner DK, Lu Y. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions. J Am Chem Soc, 2006, 128: 6766–6767

    CAS  Google Scholar 

  82. Reimann J, Flock U, Lepp H, Honigmann A, Ädelroth P. A pathway for protons in nitric oxide reductase from paracoccus denitrificans. Biochim Biophys Acta, 2007, 1767: 362–373

    CAS  Google Scholar 

  83. Yeung N, Lin YW, Gao YG, Zhao X, Russell BS, Lei L, Miner KD, Robinson H, Lu Y. Rational design of a structural and functional nitric oxide reductase. Nature, 2009, 462: 1079–1082

    CAS  Google Scholar 

  84. Lin YW, Yeung N, Gao YG, Miner KD, Tian S, Robinson H, Lu Y. Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin. Proc Natl Acad Sci USA, 2010, 107: 8581–8586

    CAS  Google Scholar 

  85. Lin YW, Yeung N, Gao YG, Miner KD, Lei L, Robinson H, Lu Y. Introducing a 2-His-1-Glu nonheme iron center into myoglobin confers nitric oxide reductase activity. J Am Chem Soc, 2010, 132: 9970–9972

    CAS  Google Scholar 

  86. Kovaleva EG, Lipscomb JD. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat Chem Biol, 2008, 4: 186–193

    CAS  Google Scholar 

  87. Lin YW. Structural insights into a low-spin myoglobin variant with bis-histidine coordination from molecular modeling. Proteins, 2011, 79: 679–684

    CAS  Google Scholar 

  88. Whittaker JW. Free radical catalysis by galactose oxidase. Chem Rev, 2003, 103: 47–2363

    Google Scholar 

  89. Ye S, Wu X, Wei L, Tang D, Sun P, Bartlam M, Rao Z. An insight into the mechanism of human cysteine dioxygenase. Key roles of the thioether-bonded tyrosine-cysteine cofactor. J Biol Chem, 2007, 282: 3391–3402

    CAS  Google Scholar 

  90. Schnell R, Sandalova T, Hellman U, Lindqvist Y, Schneider G. Siroheme- and [Fe4-S4]-dependent NirA from Mycobacterium tuberculosis is a sulfite reductase with a covalent Cys-Tyr bond in the active site. J Biol Chem, 2005, 280: 27319–27328

    CAS  Google Scholar 

  91. Polyakov KM, Boyko KM, Tikhonova TV, Slutsky A, Antipov AN, Zvyagilskaya RA, Popov AN, Bourenkov GP, Lamzin VS, Popov VO. High-resolution structural analysis of a novel octaheme cytochrome c nitrite reductase from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens. J Mol Biol, 2009, 389: 846–862

    CAS  Google Scholar 

  92. Zhou Q, Hu M, Zhang W, Jiang L, Perrett S, Zhou J, Wang J. Probing the function of the Tyr-Cys cross-link in metalloenzymes by the genetic incorporation of 3-methylthiotyrosine. Angew Chem Int Ed, 2013, 52: 1203–1207

    CAS  Google Scholar 

  93. Wang ZH, Lin YW, Rosell FI, Ni FY, Lu HJ, Yang PY, Tan XS, Li XY, Huang ZX, Mauk AG. Converting cytochrome c into a peroxidase-like metalloenzyme by molecular design. Chembiochem, 2007, 8: 607–609

    Google Scholar 

  94. Ying T, Zhong F, Wang ZH, Li W, Tan X, Huang ZX. A route to novel functional metalloproteins via hybrids of cytochrome P450 and cytochrome c. Chembiochem, 2011, 12: 707–710

    CAS  Google Scholar 

  95. Ying T, Zhong F, Wang ZH, Xie J, Tan X, Huang ZX. Generation of novel functional metalloproteins via hybrids of cytochrome c and peroxidase. Protein Eng Des Sel, 2013, 26: 401–407

    CAS  Google Scholar 

  96. Garner DK, Vaughan MD, Hwang HJ, Savelieff MG, Berry SM, Honek JF, Lu Y. Reduction potential tuning of the blue copper center in Pseudomonas aeruginosa azurin by the axial methionine as probed by unnatural amino acids. J Am Chem Soc, 2006, 128: 15608–15617

    CAS  Google Scholar 

  97. Savelieff MG, Wilson TD, Elias Y, Nilges MJ, Garner DK, Lu Y. Experimental evidence for a link among cupredoxins: red, blue, and purple copper transformations in nitrous oxide reductase. Proc Natl Acad Sci USA, 2008, 105: 7919–7924

    CAS  Google Scholar 

  98. Marshall NM, Garner DK, Wilson TD, Gao YG, Robinson H, Nilges MJ, Lu Y. Rationally tuning the reduction potential of a single cupredoxin beyond the natural range. Nature, 2009, 462: 113–116

    CAS  Google Scholar 

  99. Savelieff MG, Lu Y. Cu(A) centers and their biosynthetic models in azurin. J Biol Inorg Chem, 2010, 15: 461–483

    CAS  Google Scholar 

  100. Wilson TD, Savelieff MG, Nilges MJ, Marshall NM, Lu Y. Kinetics of copper incorporation into a biosynthetic purple Cu(A) azurin: Characterization of red, blue, and a new intermediate species. J Am Chem Soc, 2011, 133: 20778–20792

    CAS  Google Scholar 

  101. Wilson TD, Yu Y, Lu Y. Understanding copper-thiolate containing electron transfer centers by incorporation of unnatural amino acids and the CuA center into the type 1 copper protein azurin. Coord Chem Rev, 2013, 257: 260–276

    CAS  Google Scholar 

  102. Remington SJ. Green fluorescent protein: A perspective. Protein Sci, 2011, 20: 1509–1519

    CAS  Google Scholar 

  103. Liu X, Li J, Dong J, Hu C, Gong W, Wang J. Genetic incorporation of a metal-chelating amino acid as a probe for protein electron transfer. Angew Chem Int Ed, 2012, 51: 10261–10265

    CAS  Google Scholar 

  104. Liu X, Li J, Hu C, Zhou Q, Zhang W, Hu M, Zhou J, Wang J. Significant expansion of the fluorescent protein chromophore through the genetic incorporation of a metal-chelating unnatural amino acid. Angew Chem Int Ed, 2013, 52: 4805–4809

    CAS  Google Scholar 

  105. Zhang WH, Otting G, Jackson CJ. Protein engineering with unnatural amino acids. Curr Opin Struct Biol, 2013, 23: 581–587

    CAS  Google Scholar 

  106. Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J. A genetically encoded 19F NMR probe for tyrosine phosphorylation. Angew Chem Int Ed, 2013, 52: 3958–3962

    CAS  Google Scholar 

  107. Wang J, Zhang W, Song W, Wang Y, Yu Z, Li J, Wu M, Wang L, Zang J, Lin Q. A biosynthetic route to photoclick chemistry on proteins. J Am Chem Soc, 2010, 132: 14812–14818

    CAS  Google Scholar 

  108. Yu Z, Pan Y, Wang Z, Wang J, Lin Q. Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew Chem Int Ed, 2012, 51: 10600–10604

    CAS  Google Scholar 

  109. Li F, Zhang H, Sun Y, Pan Y, Zhou J, Wang J. Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew Chem Int Ed, 2013, 52: 9700–9704

    CAS  Google Scholar 

  110. Fry HC, Lehmann A, Sinks LE, Asselberghs I, Tronin A, Krishnan V, Blasie JK, Clays K, DeGrado WF, Saven JG, Therien MJ. Computational de novo design and characterization of a protein that selectively binds a highly hyperpolarizable abiological chromophore. J Am Chem Soc, 2013, 135: 13914–13926

    CAS  Google Scholar 

  111. Farid TA, Kodali G, Solomon LA, Lichtenstein BR, Sheehan MM, Fry BA, Bialas C, Ennist NM, Siedlecki JA, Zhao Z, Stetz MA, Valentine KG, Anderson JL, Wand AJ, Discher BM, Moser CC, Dutton PL. Elementary tetrahelical protein design for diverse oxidoreductase functions. Nat Chem Biol, 2013, 9: 826–833

    CAS  Google Scholar 

  112. Roy A, Sarrou I, Vaughn MD, Astashkin AV, Ghirlanda G. De novo design of an artificial bis[4Fe-4S] binding protein. Biochemistry, 2013, 52: 7586–7594

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YingWu Lin, JiangYun Wang or Yi Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Wang, J. & Lu, Y. Functional tuning and expanding of myoglobin by rational protein design. Sci. China Chem. 57, 346–355 (2014). https://doi.org/10.1007/s11426-014-5063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5063-5

Keywords

Navigation