Skip to main content
Log in

Hybrid molecular nanostructures with donor-acceptor chains

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We have fabricated hybrid molecular chain structures formed by electron acceptor compound 1 and electron donor molecules 2 and 3 at the liquid/solid interface of graphite surface. The structural details of the mono-component and the binary assemblies are revealed by high resolution scanning tunneling microscopy (STM). Compound 1 can form two well-ordered lamellar patterns at different concentrations. In the co-adsorption structures, compounds 2 and 3 can insert into the space between molecular chains of compound 1 and form large area well-ordered nanoscale phase separated lamellar structures. The unit cell parameters for the coassemblies can be “flexibly” adjusted to make the electron donors and acceptors perfectly match along the molecular chains. Scanning tunneling spectroscopy (STS) results indicate that the electronic properties of individual molecular donors and acceptors are preserved in the binary self-assembly. These results provide molecular insight into the nanoscale phase separation of organic electron acceptors and donors on surfaces and are helpful for the fabrication of surface supramolecular structures and molecular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu HB, Xu JL, Li YG, Li YL. Aggregate nanostructures of organic molecular materials. Acc Chem Res, 2010, 43: 1496–1508

    Article  CAS  Google Scholar 

  2. Müllen K, Rabe JP. Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. Acc Chem Res, 2008, 41: 511–520

    Article  Google Scholar 

  3. Gross M, Müller DC, Nothofer HG, Scherf U, Neher D, Bräuchle C, Meerholz K. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature, 2000, 405: 661–665

    Article  CAS  Google Scholar 

  4. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL. Charge transport in organic semiconductors. Chem Rev, 2007, 107: 926–952

    Article  CAS  Google Scholar 

  5. Dimitrakopoulos CD, Malenfant PRL. Organic thin film transistors for large area electronics. Adv Mater, 2002, 14: 99–117

    Article  CAS  Google Scholar 

  6. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347: 539–541

    Article  CAS  Google Scholar 

  7. Roy VAL, Zhi YG, Xu ZX, Yu SC, Chan PWH, Che CM. Functionalized arylacetylene oligomers for organic thin-film transistors (OTFTs). Adv Mater, 2005, 17: 1258–1261

    Article  CAS  Google Scholar 

  8. Zang L, Che Y, Moore JS. One-dimensional self-assembly of planar π-conjugated molecules: Adaptable building blocks for organic nanodevices. Acc Chem Res, 2008, 41: 1596–1608

    Article  CAS  Google Scholar 

  9. Yuen MY, Roy VAL, Lu W, Kui SCF, Tong GSM, So MH, Chui SSY, Muccini M, Ning JQ, Xu SJ, Che CM. Semiconducting and electroluminescent nanowires self-assembled from organoplatinum(II) complexes. Angew Chem Int Ed, 2008, 47: 9895–9899

    Article  CAS  Google Scholar 

  10. Lindsey JS. Synthetic routes to meso-patterned porphyrins. Acc Chem Res, 2009, 43: 300–311

    Article  Google Scholar 

  11. Lee CC, Grenier C, Meijer EW, Schenning APHJ. Preparation and characterization of helical self-assembled nanofibers. Chem Soc Rev, 2009, 38: 671–683

    Article  CAS  Google Scholar 

  12. Lei T, Zhou Y, Cheng CY, Cao Y, Peng Y, Bian J, Pei J. Aceno [2,1,3] thiadiazoles for field-effect transistors: Synthesis and crystal packing. Org Lett, 2011, 13: 2642–2645

    Article  CAS  Google Scholar 

  13. Bae J, Choi JH, Yoo YS, Oh NK, Kim BS, Lee M. Helical nanofibers from aqueous self-assembly of an oligo(p-phenylene)-based molecular dumbbell. J Am Chem Soc, 2005, 127: 9668–9669

    Article  CAS  Google Scholar 

  14. Milic TN, Chi N, Yablon DG, Flynn GW, Batteas JD, Drain CM. Controlled hierarchical self-assembly and deposition of nanoscale photonic materials. Angew Chem Int Ed, 2002, 41: 2117–2119

    Article  CAS  Google Scholar 

  15. Chen LM, Hong Z, Li G, Yang Y. Recent progress in polymer solar cells: Manipulation of polymer: Fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater, 2009, 21: 1434–1449

    Article  CAS  Google Scholar 

  16. Bocheux A, Tahar DI, Fiorini DC, Douillard L, Mathevet F, Attias AJ, Charra F. Self-templating polythiophene derivatives: electronic decoupling of conjugated strands through staggered packing. Langmuir, 2011, 27: 10251–10255

    Article  CAS  Google Scholar 

  17. Yokoyama T, Kurata S, Tanaka S. Direct identification of conformational isomers of adsorbed oligothiophene on Cu(100). J Phys Chem B, 2006, 110: 18130–18133

    Article  CAS  Google Scholar 

  18. Chen T, Pan GB, Yan HJ, Wan LJ, Matsuo Y, Nakamura E. Substituent-dependent ordering of adlayer structures of fullerene derivatives adsorbed on Au (111): A scanning tunneling microscopy study. J Phys Chem C, 2010, 114: 3170–3174

    Article  CAS  Google Scholar 

  19. Nakanishi T, Miyashita N, Michinobu T, Wakayama Y, Tsuruoka T, Ariga K, Kurth DG. Perfectly straight nanowires of fullerenes bearing long alkyl chains on graphite. J Am Chem Soc, 2006, 128: 6328–6329

    Article  CAS  Google Scholar 

  20. Écija D, Seufert K, Heim D, Auwärter W, Aurisicchio C, Fabbro C, Bonifazi D, Barth JV. Hierarchic self-assembly of nanoporous chiral networks with conformationally flexible porphyrins. ACS Nano, 2010, 4: 4936–4942

    Article  Google Scholar 

  21. Miyake K, Hori Y, Ikeda T, Asakawa M, Shimizu T, Sasaki S. Alkyl chain length dependence of the self-organized structure of alkyl-substituted phthalocyanines. Langmuir, 2008, 24: 4708–4714

    Article  CAS  Google Scholar 

  22. Qiu XH, Wang C, Zeng QD, Xu B, Yin SX, Wang HN, Xu SD, Bai CL. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. J Am Chem Soc, 2000, 122: 5550–5556

    Article  CAS  Google Scholar 

  23. Otsuki J, Nagamine E, Kondo T, Iwasaki K, Asakawa M, Miyake K. Surface patterning with two-dimensional porphyrin supramolecular arrays. J Am Chem Soc, 2005, 127: 10400–10405

    Article  CAS  Google Scholar 

  24. Deng ZT, Guo HM, Guo W, Gao L, Cheng ZH, Shi DX, Gao HJ. Structural properties of tetra-tert-butyl Zinc(II) phthalocyanine isomers on a Au(111) surface. J Phys Chem C, 2009, 113: 11223–11227

    Article  CAS  Google Scholar 

  25. Huang YL, Li H, Ma J, Huang H, Chen W, Wee ATS. Scanning tunneling microscopy investigation of self-assembled CuPc/F16CuPc binary superstructures on graphite. Langmuir, 2010, 26: 3329–3334

    Article  CAS  Google Scholar 

  26. Wang L, Chen Q, Pan GB, Wan LJ, Zhang SM, Zhan XW, Northrop BH, Stang PJ. Nanopatterning of donor/acceptor hybrid supramolecular architectures on highly oriented pyrolytic graphite: A scanning tunneling microscopy study. J Am Chem Soc, 2008, 130: 13433–13441

    Article  CAS  Google Scholar 

  27. Yoshimoto S, Honda Y, Ito O, Itaya K. Supramolecular pattern of fullerene on 2D bimolecular “chessboard” consisting of bottom-up assembly of porphyrin and phthalocyanine molecules. J Am Chem Soc, 2008, 130: 1085–1092

    Article  CAS  Google Scholar 

  28. Huang CS, Li YL, Song YL, Li YJ, Liu HB, Zhu DB. Ordered nanosphere alignment of porphyrin for the improvement of nonlinear optical properties. Adv Mater, 2010, 22: 3532–3536

    Article  CAS  Google Scholar 

  29. Zhang SM, Guo YL, Zhang YJ, Liu RG, Li QK, Zhan XW, Liu YQ, Hu WP. Synthesis, self-assembly, and solution-processed nanoribbon field-effect transistor of a fused-nine-ring thienoacene. Chem Commun, 2010, (46): 2841–2843

  30. Yue W, Zhen YG, Li Y, Jiang W, Lv AF, Wang ZH. One-pot synthesis of well-defined oligo-butadiynylene-naphthalene diimides. Org Lett, 2010, 12: 3460–3463

    Article  CAS  Google Scholar 

  31. Chen Q, Chen T, Pan GB, Yan HJ, Song WG, Wan LJ, Li ZT, Wang ZH, Shang B, Yuan LF, Yang JL. Structural selection of graphene supramolecular assembly oriented by molecular conformation and alkyl chain. Proc Natl Acad Sci USA, 2008, 105: 16849–16854

    Article  CAS  Google Scholar 

  32. Tan L, Zhang L, Jiang X, Yang XD, Wang LJ, Wang ZH, Li LQ, Hu WP, Shuai ZG, L. L, Zhu DB. A densely and uniformly packed organic semiconductor based on annelated β-trithiophenes for high-performance thin film transistors. Adv Funct Mater, 2009, 19: 272–276

    Article  CAS  Google Scholar 

  33. Zhang L, Tan L, Wang ZH, Hu WP, Zhu DB. High-performance, stable organic field-effect transistors based on trans-1,2-(dithieno [2,3-b:3′,2′-d] thiophene) ethene. Chem Mater, 2009, 21: 1993–1999

    Article  Google Scholar 

  34. Uji-i H, Miura A, Schenning A, Meijer EW, Chen ZJ, Würthner F, De Schryver FC, Van der Auweraer M, De Feyter S. Scanning tunneling microscopy and spectroscopy of donor-acceptor-donor triads at the liquid/solid interface. ChemPhysChem, 2005, 6: 2389–2395

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wang or LiJun Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Guan, C., Yue, W. et al. Hybrid molecular nanostructures with donor-acceptor chains. Sci. China Chem. 56, 124–130 (2013). https://doi.org/10.1007/s11426-012-4666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4666-y

Keywords

Navigation