Skip to main content
Log in

Cellulose decomposition behavior in hot-compressed aprotic solvents

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Microcrystalline cellulose (avicel) is treated in hot-compressed aprotic solvents, sulfolane and 1,4-dioxane, using a batch-type reaction system with a molten tin bath in a range from 290 to 390°C. The corresponding densities of the solvent are 0.25–1.26 g/cm3 and 0.21–1.03 g/cm3 for sulfolane and 1,4-dioxane, respectively. As a result, in both solvents, more than 90% of cellulose is found to be decomposed to the solvent-soluble portion in which levoglucosan is the main component with the highest yield of about 35% on original cellulose basis. The decomposition rate to levoglucosan is, however, faster in sulfolane than in 1,4-dioxane, while levoglucosan is more stable in 1,4-dioxane. In addition, its yield is found to be solvent-density dependent to be highest around 0.4–0.5 g/cm3 for both solvents. To elucidate these decomposition behaviors, the results obtained in this study with aprotic solvents are compared with protic solvents such as water and methanol in previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shafizadeh F, Fu Y L. Pyrolysis of cellulose. Carbohy Res, 1973, 29: 113–122

    Article  CAS  Google Scholar 

  2. Shafizadeh F. Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis, 1982, 3: 283–305

    Article  CAS  Google Scholar 

  3. Shafizadeh F, Furneaux R H, Cochran T G, Scholl J P, Sakai Y. Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Poly Sci, 1979, 23: 3525–3539

    Article  CAS  Google Scholar 

  4. Kwon G-J, Kim D-Y, Kimura S, Kuga S. Rapid-cooling, continuous-feed pyrolyzer for biomass processing Preparation of levoglucosan from cellulose and starch. J Anal Appl Pyrolysis, 2007, 80: 1–5

    Article  CAS  Google Scholar 

  5. Dobele G, Rossinskaja G, Dizhbite T, Telysheva G, Meier D, Faix O. Application of catalysts for obtaining 1,6-anhydrosacchadides from cellulose and wood by fast pyrolysis. J Anal Appl Pyrolysis, 2005, 74: 401–405

    Article  CAS  Google Scholar 

  6. Piskorz J, Majerski P, Radlein D, Vladars-Usas A, Scott D S. Flash pyrolysis of cellulose for production of anhydro-oligomers. J Anal Appl Pyrolysis, 2000, 56: 145–166

    Article  CAS  Google Scholar 

  7. Ehara K, Saka S. A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose, 2002, 9: 301–311

    Article  CAS  Google Scholar 

  8. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res, 2000, 39: 2883–2890

    Article  CAS  Google Scholar 

  9. Sakaki T, Shibata M, Miki T, Hirousue H, Hayashi N. Decomposition of cellulose in near-critical water and fermentability of the products. Energ Fuel, 1996, 10: 684–688

    Article  CAS  Google Scholar 

  10. Sakaki T, Shibata M, Miki T, Hirousue H, Hayashi N. Reaction model of cellulose decomposition in near-critical water and fermentation of products. Bioresour Technol, 1996, 58: 197–202

    Article  CAS  Google Scholar 

  11. Saka S, Ueno T. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water. Cellulose, 1999, 6: 177–191

    Article  CAS  Google Scholar 

  12. Ishikawa Y, Saka S. Chemical conversion of cellulose as treated in supercritical methanol. Cellulose, 2001, 8: 189–195

    Article  CAS  Google Scholar 

  13. Köll P, Borchers G, Metzger J O. Thermal degradation of chitin and cellulose. J Anal Appl Pyrolysis, 1991, 19: 119–129

    Article  Google Scholar 

  14. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Weinheim: VCH, 1988

    Google Scholar 

  15. Parker A J. Protic-dipolar aprotic solvent effects on rates of biomolecular reactions. Chem Rev, 1969, 69(1): 1–32

    Article  CAS  Google Scholar 

  16. Tondo D W, Jr Pliego J R. Modeling protic to dipolar aprotic solvent rate acceleration and leaving group effects in SN2 reaction. J Phys Chem A, 2005, 109: 507–511

    Article  CAS  Google Scholar 

  17. Voronova M I, Lebedeva T N, Radugin M V, Surov O V, Prusov A N, Zakharov A G. Interactions of water-DMSO mixtures with cellulose. J Mol Liq, 2006, 126: 124–129

    Article  CAS  Google Scholar 

  18. Kawamoto H, Hatanaka W, Saka S. Thermochemical conversion of cellulose in polar solvent (sulfolane) into levoglucosan and other low molecular-weight substances. J Anal Appl Pyrolysis, 2003, 70: 303–313

    Article  CAS  Google Scholar 

  19. Yamada T, Ono H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresour Technol, 1999, 70(1): 61–67

    Article  CAS  Google Scholar 

  20. Hosoya T, Kawamoto H, Saka S. Oxime-trimethylsilylation method for analysis of wood pyrolysate. J Anal Appl Pyrolysis, 2006, 77: 121–126

    Article  CAS  Google Scholar 

  21. Sekiguchi Y, Frye J S, Shafizadeh F. Structure and formation of cellulosic chars. J Appl Poly Sci, 1983, 28: 3513–3525

    Article  CAS  Google Scholar 

  22. Julien S, Chornet E, Tiwari P K, Overend R P. Vacuum pyrolysis of cellulose: Fourier transform infrared characterization of solid residues, product distribution and correlations. J Anal Appl Pyrolysis, 1991, 19: 81–104

    Article  CAS  Google Scholar 

  23. Schwanninger M, Rodrigues J C, Pereira H, Hinterstoisser B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectr, 2004, 36: 23–40

    Article  CAS  Google Scholar 

  24. Kawamoto H, Saka S. Heterogeneity in cellulose pyrolysis indicated from the pyrolysis in sulfolane. J Anal Appl Pyrolysis, 2006, 76: 280–284

    Article  CAS  Google Scholar 

  25. Mok W S, Antal M J. Formation of charcoal from biomass in a sealed reactor. Ind Eng Chem Res, 1992, 31: 1162–1166

    Article  CAS  Google Scholar 

  26. Saka S, Ehara K, Minami E. Efficient utilization of woody biomass with supercritical fluid technologies. Mokuzai Gakkaishi (in Japanese), 2005, 51: 207–217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuiRong Bao.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 90610035)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, G., Shiro, S. & Wang, H. Cellulose decomposition behavior in hot-compressed aprotic solvents. Sci. China Ser. B-Chem. 51, 479–486 (2008). https://doi.org/10.1007/s11426-008-0052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0052-1

Keywords

Navigation