Skip to main content
Log in

Hyperbolic-parabolic deformations of rational maps

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L. Conformal Invariants: Topics in Geometric Function Theory. New York: McGraw-Hill Book Company, 1973

    MATH  Google Scholar 

  2. Beardon A. Iteration of Rational Functions. Graduate Texts in Mathematics, vol. 132. Berlin: Springer-Verlag, 1991

  3. Benson F, Margalit D. A Primer on Mapping Class Groups. Princeton: Princeton University Press, 2011

    MATH  Google Scholar 

  4. Bielefeld B, Douady A, McMullen C. Conformal Dynamics Problem List. ArXiv:math/9201271, 1990

    Google Scholar 

  5. Buff X, Cui G, Tan L. Teichmüller spaces and holomorphic dynamics. In: Handbook of Teichmüller Theory, vol. 4. Zürich: Eur Math Soc, 2014, 717–756

    MATH  Google Scholar 

  6. Cui G. Conjugacies between rational maps and extremal quasiconformal maps. Proc Amer Math Soc, 2001, 129: 1949–1953

    Article  MathSciNet  MATH  Google Scholar 

  7. Cui G, Jiang Y. Geometrically finite and semi-rational branched coverings of the two-sphere. Trans Amer Math Soc, 2011, 363: 2701–2714

    Article  MathSciNet  MATH  Google Scholar 

  8. Cui G, Peng W, Tan L. On a theorem of Rees-Shishikura. Fac Sci Toulouse Math (6), 2012, 21: 981–993

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui G, Tan L. Distortion control of conjugacies between quadratic polynomials. Sci China Math, 2010, 53: 625–634

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui G, Tan L. A characterization of hyperbolic rational maps. Invent Math, 2011, 183: 451–516

    Article  MathSciNet  MATH  Google Scholar 

  11. Douady A, Hubbard J. A proof of Thurston’s topological characterization of rational functions. Acta Math, 1993, 171: 263–297

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldberg L, Milnor J. Fixed points of polynomial maps, II: Fixed point portraits. Ann Sci école Norm Sup (4), 1993, 26: 51–98

    Article  MathSciNet  MATH  Google Scholar 

  13. Haïssinsky P. Chirurgie parabolique. C R Math Acad Sci Paris, 1998, 327: 195–198

    Article  MathSciNet  MATH  Google Scholar 

  14. Haïssinsky P. Déformation J-équivalente de polynômes géométriquement finis. Fund Math, 2000, 163: 131–141

    MathSciNet  MATH  Google Scholar 

  15. Haïssinsky P. Pincements de polynômes. Comment Math Helv, 2002, 77: 1–23

    Article  MathSciNet  MATH  Google Scholar 

  16. Haïssinsky P, Tan L. Convergence of pinching deformations and matings of geometrically finite polynomials. Fund Math, 2004, 181: 143–188

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang Y, Zhang G. Combinatorial characterization of sub-hyperbolic rational maps. Adv Math, 2009, 221: 1990–2018

    Article  MathSciNet  MATH  Google Scholar 

  18. Kawahira T. Semiconjugacies between the Julia sets of geometrically finite rational maps. Ergodic Theory Dynam Systems, 2003, 23: 1125–1152

    Article  MathSciNet  MATH  Google Scholar 

  19. Kawahira T. Semiconjugacies between the Julia sets of geometrically finite rational maps II. In: Dynamics on the Riemann Sphere. Zürich: Eur Math Soc, 2006, 131–138

    Chapter  Google Scholar 

  20. Lehto O. Univalent Functions and Teichmüller Spaces. New York: Springer-Verlag, 1987

    Book  MATH  Google Scholar 

  21. Lyubich M, Minsky Y. Laminations in holomorphic dynamics. J Differential Geom, 1997, 47: 17–94

    Article  MathSciNet  MATH  Google Scholar 

  22. Makienko P. Unbounded components in parameter space of rational maps. Conform Geom Dyn, 2000, 4: 1–21

    Article  MathSciNet  MATH  Google Scholar 

  23. Maskit B. Parabolic elements in Kleinian groups. Ann of Math (2), 1983, 117: 659–668

    Article  MathSciNet  MATH  Google Scholar 

  24. McMullen C. Cusps are dense. Ann of Math (2), 1991, 133: 217–247

    Article  MathSciNet  MATH  Google Scholar 

  25. McMullen C. Rational maps and Teichmüller space. In: Linear and Complex Analysis Problem Book 3. Lecture Notes in Mathematics, vol. 1574. Berlin: Springer-Verlag, 1994, 430–433

    Google Scholar 

  26. McMullen C. Complex Dynamics and Renormalization. Annals of Mathematics Studies, vol. 135. Princeton: Princeton University Press, 1994

  27. McMullen C. Self-similarity of Siegel disks and the Hausdorff dimension of Julia sets. Acta Math, 1998, 180: 247–292

    Article  MathSciNet  MATH  Google Scholar 

  28. McMullen C. Hausdorff dimension and conformal dynamics, II: Geometrically finite rational maps. Comment Math Helv, 2000, 75: 535–593

    Article  MathSciNet  MATH  Google Scholar 

  29. McMullen C, Sullivan D. Quasiconformal homeomorphisms and dynamics III: The Teichmüller space of a holomorphic dynamical system. Adv Math, 1998, 135: 351–395

    Article  MathSciNet  MATH  Google Scholar 

  30. Milnor J. Dynamics in One Complex Variable, 3rd Ed. Annals of Mathematics Studies, vol. 160. Princeton: Princeton University Press, 2006

  31. Petersen C, Meyer D. On the notions of mating. Ann Fac Sci Toulouse Math (6), 2012, 21: 839–876

    Article  MathSciNet  MATH  Google Scholar 

  32. Pommerenke C. Univalent Functions. Göttingen: Vandenhoeck and Ruprecht, 1975

    MATH  Google Scholar 

  33. Reich E, Strebel K. Extremal quasiconformal mapping with given boundary values. Bull Amer Math Soc, 1973, 79: 488–490

    Article  MathSciNet  MATH  Google Scholar 

  34. Shishikura M. On a theorem of Mary Rees for matings of polynomials. In: The Mandelbrot Set, Theme and Variations. London Mathematical Society Lecture Note Series, vol. 274. Cambridge: Cambridge University Press, 2000, 289–305

    Article  MathSciNet  MATH  Google Scholar 

  35. Strebel K. On quasiconformal mappings of open Riemann surfaces. Comment Math Helv, 1978, 53: 301–321

    Article  MathSciNet  MATH  Google Scholar 

  36. Tan L. Matings of quadratic polynomials. Ergodic Theory Dynam Systems, 1992, 12: 589–620

    MathSciNet  MATH  Google Scholar 

  37. Tan L. On pinching deformations of rational maps. Ann Sci éc Norm Supér (4), 2002, 35: 353–370

    Article  MathSciNet  MATH  Google Scholar 

  38. Urbánski M. Rational functions with no recurrent critical points. Ergodic Theory Dynam Systems, 1994, 14: 1–29

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11125106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guizhen Cui.

Additional information

Dedicated to the Memory of Professor Lei Tan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, G., Tan, L. Hyperbolic-parabolic deformations of rational maps. Sci. China Math. 61, 2157–2220 (2018). https://doi.org/10.1007/s11425-018-9426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9426-4

Keywords

MSC(2010)

Navigation