Skip to main content
Log in

Inversion Optimization Strategy Based on Primitives with Complement Attributes

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Inverters or logic primitives that have complement attributes are essential to building a logical complement system. NAND and NOR operations which have complement attributes are of high interest for complementary metal-oxide-semiconductor (CMOS) technology, as they can be easily implemented in transistors. Different from the logic models used in standard CMOS, several nano-emerging technologies, such as quantum-dot cellular automata (QCA) and spin torque majority gates, are in favor of realizing a majority voter function but imposing difficulties in implementing inversions. Previous studies pay lots of effort in optimizing the number of inverters in logic representations, whereas the mapping using primitives with complement attributes is not a major concern. In this paper, we establish a technology mapping method from logic representations to nanotechnology primitives by considering NAND-NOR-Inverter (NNI) and exclusive-NOR (XNOR) operations. We adopt XOR-Majority Graph (XMG) as a logic representation. The proposed mapping method is evaluated using the QCA technology. Experimental results over EPFL benchmark suites show we achieve 11.77% and 30.13% reductions in the area and the number of inverters, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu Z, Soeken M, Xia Y et al. Advanced functional decomposition using majority and its applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2020, 39(8): 1621-1634. https://doi.org/10.1109/TCAD.2019.2925392.

    Article  Google Scholar 

  2. Mishchenko A, Chatterjee S, Brayton R. DAG-aware AIG rewriting: A fresh look at combinational logic synthesis. In Proc. the 43rd ACM/IEEE Design Automation Conference, Jul. 2006, pp.532-535. https://doi.org/10.1145/1146909.1147048.

  3. Testa E, Soeken M, Amarú L G, De Micheli G. Logic synthesis for established and emerging computing. Proceedings of the IEEE, 2018, 107(1): 165-184. https://doi.org/10.1109/JPROC.2018.2869760.

    Article  Google Scholar 

  4. Lent C S, Tougaw P D, Porod W, Bernstein G H. Quantum cellular automata. Nanotechnology, 1993, 4(1): Article No. 49. https://doi.org/10.1088/0957-4484/4/1/004.

  5. Nikonov D E, Bourianoff G I, Ghani T. Proposal of a spin torque majority gate logic. IEEE Electron Device Letters, 2011, 32(8): 1128-1130. https://doi.org/10.1109/LED.2011.2156379.

    Article  Google Scholar 

  6. Mohaghegh S M, Reza S N, Mohammadi M. Innovative model for ternary QCA gates. IET Circuits, Devices & Systems, 2017, 12(2): 189-195. https://doi.org/10.1049/iet-cds.2017.0276.

  7. Amarù L, Gaillardon P E, De Micheli G. Majority-inverter graph: A novel data-structure and algorithms for efficient logic optimization. In Proc. the 1st ACM/IEEE Design Automation Conference, Jun. 2014. https://doi.org/10.1145/2593069.2593158.

  8. Amarù L, Gaillardon P E, De Micheli G. Majority-inverter graph: A new paradigm for logic optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2016, 35(5): 806-819. https://doi.org/10.1109/TCAD.2015.2488484.

    Article  Google Scholar 

  9. Haaswijk W, Soeken M, Amarù L et al. A novel basis for logic rewriting. In Proc. the 22nd Asia and South Pacific Design Automation Conference, Jan. 2017, pp.151-156. https://doi.org/10.1109/ASPDAC.2017.7858312.

  10. Testa E, Soeken M, Zografos O et al. Inversion optimization in majority-inverter graphs. In Proc. the 2016 IEEE/ACM Int. Symp. Nanoscale Architectures, Jul. 2016, pp.15-20. https://doi.org/10.1145/2950067.2950072.

  11. Shi L, Chu Z. Inversions optimization in XOR-majority graphs with an application to QCA. In Proc. the 2019 China Semiconductor Technology International Conference, Mar. 2019. https://doi.org/10.1109/CSTIC.2019.8755713.

  12. Chu Z, Shi L, Wang L, Xia Y. Multi-objective algebraic rewriting in XOR-majority graphs. Integration, 2019, 69: 40-49. https://doi.org/10.1016/j.vlsi.2019.08.005.

    Article  Google Scholar 

  13. Momenzadeh M, Huang J, Tahoori M B, Lombardi F. Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2005, 24(12): 1881-1893. https://doi.org/10.1109/TCAD.2005.852667.

    Article  Google Scholar 

  14. Sen B, Sikdar B K. A study on defect tolerance of tiles implementing universal gate functions. In Proc. the 2007 International Conference on Design & Technology of Integrated Systems in Nanoscale Era, Sept. 2007, pp.13-18. https://doi.org/10.1109/DTIS.2007.4449484.

  15. Zhang R, Gupta P, Jha N K. Majority and minority network synthesis with application to QCA-, SET-, and TPL-Based nanotechnologies. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2007, 26(7): 1233-1245. https://doi.org/10.1109/TCAD.2006.888267.

    Article  Google Scholar 

  16. Kong K, Shang Y, Lu R. An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 2010, 9(2): 170-183. https://doi.org/10.1109/TNANO.2009.2028609.

    Article  Google Scholar 

  17. Wang P, Niamat M Y, Vemuru S R, Alam M, Killian T. Synthesis of majority/minority logic networks. IEEE Trans. Nanotechnol., 2015, 14(3): 473-483. https://doi.org/10.1109/TNANO.2015.2408330.

    Article  Google Scholar 

  18. Soeken M, Amarù L, Gaillardon P et al. Exact synthesis of majority-inverter graphs and its applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2017, 36(11): 1842-1855. https://doi.org/10.1109/TCAD.2017.2664059.

    Article  Google Scholar 

  19. Neutzling A, Marranghello F S, Matos J M, Reis A, Ribas R P. maj-n logic synthesis for emerging technology. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2020, 39(3): 747-751. https://doi.org/10.1109/TCAD.2019.2897704.

    Article  Google Scholar 

  20. Vacca M, Vighetti D, Mascarino M, Amarù L G, Graziano M, Zamboni M. Magnetic QCA majority voter feasibility analysis. In Proc. the 7th Conference on Ph.D. Research in Microelectronics and Electronics, Jul. 2011, pp.229-232. https://doi.org/10.1109/PRIME.2011.5966275.

  21. Testa E, Zografos O, Soeken M et al. Inverter propagation and fan-out constraints for beyond-CMOS majority-based technologies. In Proc. the 2017 IEEE Computer Society Annual Symposium on VLSI, Feb. 2017, pp.164-169. https://doi.org/10.1109/ISVLSI.2017.37.

  22. Amarù L G, Gaillardon P E, De Micheli G. The EPFL combinational benchmark suite. In Proc. the 24th International Workshop on Logic & Synthesis, Jun. 2015.

  23. Walus K, Dysart T J, Jullien G A, Budiman R A. QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 2004, 3(1): 26-31. https://doi.org/10.1109/TNANO.2003.820815.

    Article  Google Scholar 

Download references

Acknowledgement

We thank Dr. Augusto Neutzling for providing the source code of maj-n synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Fei Chu.

Supplementary Information

ESM 1

(PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, HM., Chu, ZF. Inversion Optimization Strategy Based on Primitives with Complement Attributes. J. Comput. Sci. Technol. 36, 1145–1154 (2021). https://doi.org/10.1007/s11390-021-0898-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-021-0898-7

Keywords

Navigation