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1 Introduction

In 2010, the Journal of Soils and Sediments (JSS) reached a
milestone: its 10th anniversary. This prompted us to think
about where the academic community has come in its
understanding of the behaviour of soils and sediments
within landscapes. The rapid growth of the journal and the
number of papers published in it, and other related journals,
suggests, probably correctly, that there is much interest in
the topics of soils and sediments.

In the January 2011 editorial (Xu and Owens 2011), we
presented an overview of some of the main developments
in the past 10 years and provided some future directions of
JSS for 2011 and beyond. In that editorial we indicated that
a more comprehensive editorial would be published in the
journal on the recent advances and future directions of soils
and sediments research. The following sections are
presented to fulfill this commitment and start a dialogue
with the journal subject editors, authors and readers in these
important areas of soils and sediments research.

The dawn of the next decade of JSS is a good time to
reflect on progress to-date and, more importantly, to
consider where research needs to go in the years ahead; a

time of rapid environment change, a time of rapid population
growth, and a time when society is increasingly looking to
science to provide the understanding (and solutions) to the
problems that we face.

2 Historical development of the Journal of Soils
and Sediments

Before we move into the particular sections below, it is
timely to have a historical perspective of JSS establishment
and development over the past decade (2001–2010). Here
we would like to separate the 10 years into two periods: the
first five years (2001–2005) involved the establishment of
JSS, whereas the second five years (2006–2010) involved
the consolidation and rapid expansion of JSS. In the 2001–
2005 period, JSS published four issues per year, with a total of
149 peer-reviewed research and review articles as well as 65
editorials and commentaries published. Of these, there were
73 (49.0%) articles in the Soils area, 65 (43.6%) in the
Sediments area, and 11 (7.4%) in the Intercompartment area
involving both soils and sediments research. Since the start of
the second period in 2006, one of us (Xu) has become the
Editor-in-Chief for Soils, together with the other two Editors-
in-Chief: Prof. Förstner (Sediments) and Prof. Salomons
(Intercompartment) who retired from JSS at the end of 2010
(Xu and Owens 2010). JSS published four issues each year in
2006 and 2007 (in total 66 research and review articles), six
issues each year in 2008 and 2009 (106 articles), and eight
issues in 2010 (152 articles), with a total of 324 research and
review articles as well as 61 editorials and commentaries
published in the second five year period of JSS. In this
period 2006–2010, JSS published 190 articles in the Soils
area (58.6%), 113 in the Sediments area (34.9%), and 21 in
the Intercompartment area (6.5%).
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With the first Impact Factor (IF) for the journal in 2007 of
4.373 (59 articles published in 2005 and 2006, and cited in
2007 for calculating the 2007 IF), published in the Journal
Citation Reports by Thomson Reuters (Hollert et al. 2008),
JSS was ranked at the top position among the 30 journals in
the subject category of Soil Science according to the 2007 IF.
This has been followed by the subsequent JSS IF of 2.797
for 2008 (74 articles published in 2006 and 2007, and cited
in 2008; ranked 2 of the 31 journals in Soil Science), 2.613
for 2009 (93 articles published in 2007 and 2008, and cited
in 2009; ranked 3 of the 31 journals in Soil Science), and
2.574 for 2010 (108 articles published in 2008 and 2009, and
cited in 2010; ranked 3 of the 32 journals in Soil Science). In
addition, JSS also received the first 5-year IF of 2.358 for
2010, recently published in the Journal Citation Reports by
Thomson Reuters. We are pleased to note that despite only
10 years of publication since 2001, and thus being a
relatively young journal, JSS has maintained its position as
one of the top three journals in Soil Science for the past
4 years (2007–2010) according to the published IF of
Thomson Reuters. This occurred at a time of growing
competition from more established journals and a rapid
increase in the number of articles published by JSS; from 59
for 2005–2006 to 108 for 2008–2009.

In 2011, we restructured JSS into the two major areas of
Soils and Sediments, with Xu continuing as the Editor-
in-Chief for Soils, and Owens becoming the Editor-in-Chief
for Sediments. In the first five of the eight issues published in
2011, JSS published a total of 79 research and review articles
by early July 2011. Thus the prediction is that more articles
will be published in JSS in 2011 than in any previous year.
Perhaps more relevant is the huge increase in the number of
manuscripts submitted to JSS, which is likely to be >500 in
2011. This increase, especially in the Soils area, partly reflects
the high IFs of JSS within the Soil Science category of Journal
Citation Reports; thus JSS is an obvious and very visible
journal choice for the soils community. Historically, research
on sediments has tended to be published in the geomorphol-
ogy, hydrology and environmental science literature. Slowly,
the profile of JSS is increasing in the sediments community.
We anticipate that JSS will continue to attract an increasing
number of submissions and publish more papers from the
sediments community in the coming years, especially since
the areas of Soils and Sediments are closely linked in the
context of combating the global climate change challenge and
in addressing increasing environmental issues around the
world at basin and regional scales.

3 Soils research

There have been a number of editorials and review papers
published in JSS on the trends, challenges and develop-

ments in soils research within forest ecosystems for the
past five years (Chen and Xu 2006, 2008, 2010; Xu et al.
2009). Currently, JSS Soils area consists of five subject
sections:

(1) Soil organic matter dynamics and nutrient cycling;
(2) Global change, environmental risk assessment, and

sustainable land use;
(3) Remediation and management of contaminated or

degraded lands;
(4) Ecotoxicology; and
(5) Soil and landscape ecology.

Global challenges such as climate change have
continued to attract growing interest and indeed increas-
ing numbers of submissions and publications in Soils
Section 1 (e.g. Blumfield et al. 2006; Huang et al. 2008;
Pan et al. 2008; Xu et al. 2008; Sun et al. 2010), Section 2
(e.g. Ge et al. 2008; Zheng et al. 2008; Ibell et al. 2010;
Liu et al. 2010; Xing et al. 2010) and Section 5 (e.g. He
et al. 2008, 2009; Zhang et al. 2009a, b; Curlevski et al.
2010). Local and regional environmental issues have been
addressed in all the five Soils sections, with increasing
numbers of submissions and publications in Soils Section 2
(e.g. Burton et al. 2010; Chen et al. 2010; Jiang et al.
2010; Sigua and Coleman 2010), Section 3 (e.g. Liu et al.
2008; Wang et al. 2010) and Section 4 (e.g. Li and Wong
2010; Li et al. 2010).

3.1 Soils and climate change

Climate change has been one of the greatest challenges
confronting all the people of the world, and attracted
much attention and efforts from both the scientific
community and the public in combating this truly global
challenge. Climate change, particularly rising atmospheric
carbon dioxide (CO2) and global warming, has been well
established in the literature (Xu and Chen 2006; Xu et al.
2009; Frank et al. 2010; Lacis et al. 2010; Schiermeier
2010) and this pattern is projected to intensify in the
coming decades (Xu et al. 2009; Doak and Morris 2010;
Zhao and Running 2010; Crimmins et al. 2011; Min et al.
2011). However, the impact of climate change, particularly
complex atmospheric CO2, temperature and water inter-
actions, on plant photosynthesis and tree growth remains
elusive (Xu et al. 2009; Jung et al. 2010; Piao et al. 2010;
Schiermeier 2010). Plant photosynthesis is an important
biological process, subject to CO2 or water limitation (Xu
et al. 2009). Recent research findings (Helliker and
Richter 2009; Mahecha et al. 2010) have highlighted that
there is a global convergence towards an optimum
temperature of 21.4°C at photosynthesizing leaves within
forest canopies during the growing season. Moreover,
there is also a global convergence in temperature sensi-
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tivity of respiration in terrestrial ecosystems (including
tropical, subtropical, temperate and boreal forest ecosys-
tems) (Mahecha et al. 2010). Despite the global tempera-
ture convergence for plant photosynthesis at the leaf level
(Helliker and Richter 2009) and for respiration at the
ecosystem level (Mahecha et al. 2010), there is a strong
relationship between photosynthesis and respiration in
terrestrial ecosystems (Mahecha et al. 2010). This highlights
the importance of plant photosynthesis in driving the
dynamic CO2 exchange between the atmosphere and the
terrestrial ecosystems, and hence the feedbacks between the
changing climate and the terrestrial carbon (C) cycle at both
local and global scales.

3.2 Soil carbon and nutrient dynamics

Terrestrial ecosystems respond non-linearly to climate
change with multiple factors over long periods (Scheffer
et al. 2009; Dillon et al. 2010; Doak and Morris 2010;
Drake and Griffen 2010; Sun et al. 2010), and can have
tipping points or critical boundaries at which a sudden
shift to a contrasting dynamic regime might occur
(Rockström et al. 2009; Scheffer et al. 2009; Dillon
et al. 2010; Doak and Morris 2010; Drake and Griffen
2010). Significantly, more C is stored in the world’s soils
than in the above-ground biomass and atmosphere
(Davidson and Janssens 2006; Fontaine et al. 2007;
Gruber and Galloway 2008; Heimann and Reichstein
2008; Piao et al. 2009). Soil C dynamics and N cycling
are closely linked, important biogeochemical processes
underpinning the positive feedbacks between terrestrial
ecosystems and global warming (Davidson and Janssens
2006; Gruber and Galloway 2008; Heimann and
Reichstein 2008; Schulze et al. 2009; Xu et al. 2009). In
the past decade, there have been significant and exciting
developments in testing and applying advanced chemical
and bio-molecular techniques for unravelling soil C and N
cycling processes in terrestrial ecosystems, such as those
of stable isotope methods (Blumfield et al. 2004;
Bengtson and Bengtsson 2007; Burton et al. 2007; Strand
et al. 2008; Xu et al. 2009), nuclear magnetic resonance
(NMR) spectroscopy (Mathers et al. 2000; Mao et al.
2002; Chen et al. 2004; Fontaine et al. 2007; Xu et al.
2009), and bio-molecular approaches (He et al. 2005,
2006, 2007; Bastias et al. 2007; Di et al. 2009). In the
first application of 14N-NMR to soil humic acid (HA)
studies, it was discovered that there was the surprising
existence of inorganic nitrate-N in soil HA, with the HA
nitrate-N closely related to soil N availability and rather
responsive to ecosystem management (Mao et al. 2002).
The nature of the HA nitrate-N is not yet known, but it is
biologically related and highly sensitive to ecosystem
management and environmental changes (Xu et al. 2009).

3.3 Soil microbes in C and nutrient cycling

Recent literature reviews on greenhouse gas emissions (Liu
and Greaver 2009; Schulze et al. 2009) and terrestrial C and
N cycles (Gruber and Galloway 2008; Heimann and
Reichstein 2008; Xu et al. 2009) have highlighted that soil
microbial populations (Mitchell et al. 2009) play a central
role in regulating the major greenhouse emissions of CO2

(Bond-Lamberty et al. 2007; Arnone et al. 2008; Bowman
et al. 2009; Dorrepaal et al. 2009), methane (CH4)
(Raghoebarsing et al. 2006; Dunfield et al. 2007; Kennedy
et al. 2008; Megonigal and Guenther 2008), and nitrous
oxide (N2O) (Horz et al. 2004; Leininger et al. 2006; Di
et al. 2009; Erguder et al. 2009; Martens-Habbena et al.
2009), particularly in the context of climate change and
management options for reducing greenhouse gas emissions
(Di et al. 2009; Ravishankara et al. 2009; Schulze et al.
2009) and increasing C sequestration in terrestrial ecosys-
tems (Magnani et al. 2007; Houlton et al. 2008; Lewis et al.
2009; Reich 2009; Rotenberg and Yakir 2010). Labile soil
C and N pools and dynamics are more sensitive to climate
change (Davidson and Janssens 2006; Fontaine et al. 2007;
Arnone et al. 2008; Trumbore and Czimczic 2008;
Dorrepaal et al. 2009) and management regimes (Mao
et al. 2002; Magnani et al. 2007; Di et al. 2009), and
closely linked to the greenhouse gas emissions (Di et al.
2009; Liu and Greaver 2009; Schulze et al. 2009), although
more recalcitrant soil C and N pools (Davidson and
Janssens 2006; Fontaine et al. 2007; Trumbore and
Czimczic 2008; Xu et al. 2009) are important for soil C
sequestration in terrestrial ecosystems. The recent work
(e.g. Di et al. 2009) on ammonia-oxidizing bacteria (AOB)
and archaea (AOA) has highlighted that despite the large
number and abundance of AOA in agricultural soils
nitrification is driven by AOB rather than by AOA, and
AOB is much more sensitive and responsive to manage-
ment practices. Overall, there have been few studies in
testing, developing and applying both advanced chemical
technologies and innovative bio-molecular approaches for
quantifying important soil C and N cycling processes and
their interactions with both climate change and manage-
ment options (Ambebe and Dang 2009; Xu et al. 2009).

4 Sediments research

It can be argued that academic research on sediments is
increasing; both in volume and in breadth. This statement is
demonstrated by several recent (in academic terms)
initiatives including, but not limited to:

& the European Sediment Network (SedNet);
& the International Sedimentation Initiative (ISI);
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& the International Commission on Continental Erosion
(ICCE);

& the International Association for Sediment Water
Science (IASWS); and

& the World Association of Sedimentation and Erosion
Research (WASER).

Coupled with these initiatives is a series of publications
that focus on sediment research. There are several useful
reviews that consider the history of these initiatives and
publications, and some of the developments made. For
example, Petticrew (2009) reviews developments made by
IASWS since 1976 as documented in over 500 publica-
tions, and Fig. 1 shows some of the themes and topics that
have been addressed. In many respects, Fig. 1 encapsulates
the main themes addressed in JSS, albeit described by
different phrases, such as: sediment quality and impact
assessment; physical and biogeochemical processes; hill-
slope and river basin sediment dynamics; sediment-ecology
interactions; and sediment management. This overlap in
research areas is not entirely surprising given the role
played by key individuals in both organizations (e.g.
Förstner 1977, 2002). The following sections consider
some of the recent developments in these themes and offer
some future research directions, although both are far from
exhaustive.

4.1 Sediment quality and impact assessment

One of the core areas of sediment research has been the
quality of the sediment (mainly from a chemical perspec-
tive) and the impact of “contaminated” sediment on the
environment. This comes from an increasing realization that

sediments act as a vector and reservoir of anthropogenic
contaminants. Muir and Howard (2006) estimate that there
are 8.4 million substances commercially available at
present. As such, there is much research on ways to
identify and measure contaminants, and to assess their
impacts. The sections below consider some of these
developments; other aspects are considered in Section 4.2.

4.1.1 Analytical techniques and protocols

A continuing area of research is likely to be ways to
improve analysis of sediments and associated chemicals.
This demand comes from a growing list of synthetic
chemicals within the environmental and a need for greater
precision and accuracy of measurement for assessment and
regulation purposes. As such, there will be a constant drive
to improve analytical methods, including, for example, the
coupling of different techniques (i.e. “hyphenated techni-
ques”) such as the use of high performance liquid
chromatography—inductively coupled plasma—mass spec-
trometry (HPLC-ICP-MS). These advances can be made
through developments in full computerization of instru-
mental control and advances in engineering, thus enabling
linkage interfaces between different separation and detec-
tion instruments (Parkinson and Dust 2010). Despite such
advances, sample collection and preparation are crucial to
maintain consistency and preserve the integrity of the
samples under investigation (Parkinson and Dust 2010).
Too often, the ways in which samples are collected, stored
and prepared are less than ideal, and indeed sometimes
inadequate. Despite excellent advances in analytical techni-
ques, more emphasis needs to be placed on ensuring
adequate sampling (including the use of appropriate
statistical design; e.g. Church et al. 1987), storage (e.g.
Phillips and Walling 1995) and preparation (e.g. Condron
and Newman 2011; Reid et al. 2011) protocols; instruments
will always give values, but are these values meaningful in
terms of what information they are providing about the real
environment?

4.1.2 In-situ field methods

The development of instruments that are able to measure
properties in the field—i.e. field-portable, in situ equipment
—will likely receive increasing interest. Good examples of
this include equipment to measure radionuclide and metal
contents in soils and sediments within the field (e.g. He and
Walling 2000), and the in-situ measurement of sediment
particle size and shape in aquatic systems. In the case of the
latter, use of equipment such as the Laser In-Situ Scattering
and Transmissometry (LISST) within waterbodies has
greatly improved our understanding of the transport of
composite particles and associated contaminants within

Fig. 1 The dominant themes addressed by IASWS over the last
30 years as documented in >500 publications. The inclusion of topics
surrounding the box is implicit throughout all themes (from Petticrew
(2009), reproduced with permission of CSIRO Publishing)
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channel (e.g. Williams et al. 2007) and floodplain (e.g.
Thonon et al. 2005) environments, and particle movement
and settling within estuarine and marine environments (e.g.
Braithwaite et al. 2010). Techniques for in-situ, real-time
analysis of inorganic and organic chemicals are also
showing potential (Parkinson and Dust 2010), but clearly
there is need for further developments in this area.

4.1.3 Sediment impacts on ecosystem and human health

One area that does merit further attention, is the link
between sediment and human health. While there is a
considerable body of research on the impacts of sediment
on aquatic ecosystems (mainly in terms of aquatic organ-
isms like invertebrates and fish: Bilotta and Brazier 2008;
Hallare et al. 2011; Kemp et al. 2011), there is fairly limited
research on the impacts of sediment on humans. The in-
direct link between sediment-associated contaminants and
human health has been known for a long time in terms of
the role of sediment as a component within the food-chain
(i.e. habitat for organisms lower in the food-chain), but the
direct link has received less attention. Perhaps the largest
body of information has come from research on the link
between airborne particulates (e.g. PM2.5) and human
health, in terms of respiratory and other health problems.
Most of this work has been undertaken in urban and peri-
urban areas (e.g. Ostro et al. 2006; Taylor and Owens 2009;
Jiménez et al. 2010), although other studies have been
undertaken near agricultural and mining sites (e.g. Csavina
et al. 2011). Recent work has also demonstrated the link
between sediment-associated pathogens and human health
(e.g. Droppo et al. 2010). The direct role of sediment
quantity (e.g. PM2.5) and composition/quality (e.g. metals,
radionuclides, pathogens) on human health and well-being
is, therefore, likely to be a growing area of research.

4.2 Physical and biogeochemical processes

Process-based research tends to be at the small- to medium-
scale. In part, this is due to the detailed level of observation
or measurement required for the detection of the interac-
tions between physical, chemical and biological processes.
Process-based research will always be central to a scientific
discipline because it provides the basic understanding
which is utilized by the other parts of the discipline (i.e.
sediment quality and impact assessment, hillslope and river
basin sediment dynamics, sediment–ecology interactions,
sediment management).

4.2.1 Sediment–water interface

In aquatic systems (i.e. freshwater, lacustrine, estuarine,
marine) the boundary between deposited sediment and the

overlying water column will always be critical. Indeed, the
boundary between two media/components of a system
(particle–solution, freshwater–saltwater, hillslope–channel)
is often the most important, and complex, to understand.
Research on physical and biogeochemical processes at the
sediment–water interface is likely to remain one of the most
important sediment research areas. This interface is key in
terms of controlling the mobilization of aqueous sediment, and
in regulating chemical exchanges between sediments and
porewaters and the overlying water. Recent developments
include understanding the role that micro-organisms play in
stabilizing the deposited sediment. For example, studies (e.g.
Garcia-Aragon et al. 2011) have demonstrated the role of
periphyton, biofilms and extracellular polymeric substances
(EPS) in stabilizing channel bed sediment from erosion and
resuspension, thereby limiting the remobilization of contam-
inated sediment. Indeed Gerbersdorf et al. (2011) argue that
such process understanding should be part of sediment quality
assessment. Much of this work on the hydrodynamic and
biogeochemical processes operating at the sediment–water
interface has involved the use of experimental facilities, such
as flumes and within laboratories (e.g. Rex and Petticrew
2008; Garcia-Aragon et al. 2011). A challenge facing
researchers is to undertake such work in the field in order to
confirm the laboratory-based results in more realistic settings.

4.2.2 Sediment–chemical interactions

An understanding of the processes that control the interactions
between sediments and chemicals is central to our ability to
understand and mitigate contaminated sediment dynamics in
aquatic systems. Thus there is a considerable body of research
concerned with examining the fractionation and speciation of
chemicals associated with sediment (e.g. Tallberg et al. 2009;
Sutherland 2010; Condron and Newman 2011; Reid et al.
2011), and the persistence of chemicals and compounds in
deposited sediments (e.g. Byrne et al. 2010; Tamtam et al.
2011). Studies have also investigated the role of microbial
activity in the sorption of chemicals to sediment, and how
this may change due to variations in, for example,
temperature and redox (e.g. Huang et al. 2011). Further
research is likely to focus on improving our understanding of
chemical sorption and desorption to sediment under chang-
ing environmental conditions, including the role of changing
flow regimes such as floods (Wölz et al. 2010), and the role
of thermodynamic and kinetic processes.

4.3 Hillslope and river basin sediment dynamics

4.3.1 Sediment fluxes in river basins and coastal environments

Sediment dynamics within landscapes may have the longest
history within academic sediment research. Soil erosion on
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hillslopes and sediment transport in rivers has been
investigated for many decades (e.g. Middleton 1930;
Hjulstrom 1935; Einstein 1950). For example, there was a
rapid expansion of research on soil erosion and sediment
loss from agricultural fields due to the “Dust Bowl” crisis in
the USA in the 1930s. More recent developments are trying
to link sediment dynamics on hillslopes with those in river
channels and in coastal environments (Salomons 2005).
The coupling of terrestrial, freshwater and coastal environ-
ments has developed from the recognition that water,
sediment and chemicals flow between these environments.
As a physical rule, flows have been down-slope and down-
river, towards the global ocean, but anthropogenic activities
now mean that water and materials move in complex
patterns, often with transfers between river basins. Much of
this need for spatially integrated coupling has been driven
by legislation (such as the EU Water Framework Directive)
and the need to address problems at the downstream end of
river basins, such as sedimentation in harbours and
estuaries (e.g. Netzband et al. 2002) and in sensitive
environments such as barrier reef systems (e.g. Nunny
et al. 2006), by adopting a river basin-scale approach
(Owens 2005a). For example, in Australia there has been
much research on rivers that supply sediment and chemicals
to the Great Barrier Reef (e.g. McCulloch et al. 2003),
which has required research to follow sediment from source
to sink, and to quantify intermediate storage elements (e.g.
Amos et al. 2009). The renewed interest in understanding
sediment fluxes in river basins has also been prompted by
the realization—although Earth scientists have known this
for decades—that sediment fluxes are responsible for
delivering chemical elements, in particular nutrients
and C, to the global ocean (Milliman and Farnsworth
2011), and are therefore an important component of global
environmental change (including coastal eutrophication and
global climate change).

4.3.2 Sediment response to disturbance

Another major growth area in research has been to
investigate how sediment and associated chemical fluxes
respond to disturbances and pertubations, which can be
both natural and anthropogenic in origin (e.g. Walling and
Fang 2003; Syvitski et al. 2005; Middelkoop et al. 2010;
Batalla and Vericat 2011). Generally, most research to date
has tended to consider each element of change—such as the
impact of mining, or reservoir construction or climate
change—in relative isolation. However, in reality, most
landscapes are affected by multiple stressors which may
have cumulative and synergistic effects (Owens et al.
2010). The assessment of how landscapes respond to
present and future “cumulative effects” (Gunn and Noble
2009) may represent one of the greatest challenges facing

researchers, and is likely to require interdisciplinary
thinking and collaboration.

4.3.3 Sediment tracing and fingerprinting

Given the increasing recognition that sediment can be a
major aquatic problem and is an important vector for
associated contaminant and nutrient transport (Förstner and
Owens 2007), there is growing interest in trying to
determine where the sediment has come from and how it
moves through aquatic systems (i.e. from headwaters to the
coastal zone). Consequently, there has been a growth in the
number of studies concerned with sediment tracing and
fingerprinting. Much of the early tracer work utilized
environmental fallout radionuclides, such as caesium-137
(137Cs) and unsupported lead-210 (210Pbun). One could
argue that the use of these radionuclides is now well-
established—although Parsons and Foster (2011) have
recently questioned this, by casting doubt on some of the
underlying assumptions of, for example, 137Cs—and that
most investigations are of the case-study type. Scientific
developments are presently focussing on testing additional
radionuclides, such as beryllium-7 (7Be) and thorium-234
(234Th) (e.g. Blake et al. 1999; Saari et al. 2010), and in
developing new tracers, such as rare earth elements (REE)
and natural and artificial fluorescence (e.g. Polyakov and
Nearing 2004; Granger et al. 2007, 2011; Stevens and
Quinton 2008; Spencer et al. 2011). Many of these newer
tracers are showing considerable promise, particularly for
tracing sediment movement on hillslopes, although further
refinement and testing are required to prove their suitability
at medium to large spatial scales such as the landscape and
river basin scales, and at the interface between freshwater
and brackish/saltwater environments.

Similarly, “sediment fingerprinting” is unquestionably a
major growth area in sediment dynamics research, in part
because the approach is able to address, often simulta-
neously, both scientific understanding and management
decision-making needs. Recent developments have focused
on improving some of the statistical and modeling aspects
of the approach (e.g. Collins et al. 2010a, b), in addition to
testing new “fingerprint” properties such as colour param-
eters, DNA, and total and compound-specific stable
isotopes (e.g. Mahler et al. 1998; McConnachie and
Petticrew 2006; Granger et al. 2007; Gibbs 2008;
Martínez-Carreras et al. 2010) so as to fingerprint the
origin of both the inorganic and organic components of
sediment. Some further research is, however, needed to test
the robustness of the fingerprinting approach, including
improvements in developing procedures to account for
tracer property uncertainty within the statistical and
modeling stages; often the uncertainties associated with
sediment source results are not reflecting the real-world
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situation, and can be misleading. Furthermore, there is a
pressing need to examine the conservative nature of the
fingerprint properties; at present, a “black-box” approach
is typically used whereby there is little understanding of
the processes affecting sediment properties between
upstream sources and downstream sampling location
(Fig. 2).

4.4 Sediment-ecology interactions

There is a long history which has shown how fine-grained
sediment and associated contaminants and nutrients can be
detrimental to aquatic organisms (for recent reviews see:
Bilotta and Brazier 2008; Jones et al. 2011; Kemp et al.
2011). Indeed, sediment toxicity is often assessed using
aquatic organisms (Hallare et al. 2011). Some recent
developments have focused of other aspects of ecological
interactions with sediments. A few examples are given
below.

4.4.1 Link between vegetation and sediment dynamics

The feed-back between vegetation and sediment redistri-
bution has been at the forefront of soils and sediments
research for several decades and continues to be one of
the largest research areas in soil science, physical
geography and geomorphology research groups. Even
today, vegetation is usually identified as a primary factor
in controlling soil erosion (e.g. De Baets et al. 2011),

channel bank erosion (e.g. Eaton and Giles 2008) and
sediment redistribution within the landscape (e.g. López-
Vicente et al. 2011). The recent explosion of interest in
the effects of wildfires on soil erosion, and sediment and
chemical transport through river channels (e.g. Owens et
al. 2006; Petticrew et al. 2006; Blake et al. 2010; Smith et
al. 2011) is another example of this type of work, albeit
from a natural disturbance-response perspective.

4.4.2 In-channel sediment-vegetation dynamics

Several studies have documented the role of in-channel
vegetation in controlling sediment deposition and stabi-
lizing the channel bed. Recent flume-based and field
studies (e.g. Wharton et al. 2006; Heppell et al. 2009;
Harvey et al. 2011; Jones et al. 2011; Salant 2011) have
also demonstrated that both macrophytes and periphyton
are important in controlling sediment deposition and
resuspension within river channels. According to Harvey
et al. (2011) “physical-biological interactions and resulting
effects on sediment and nutrient redistribution are
arguably some of the principal drivers of ecological
function and hydrogeomorphic evolution of aquatic
systems….. and deserve more study”.

4.4.3 The role of aquatic organisms as biogeomorphic agents

Perhaps some of the most exciting recent and on-going
research has investigated how aquatic organisms, such

Fig. 2 Black-box approach
adopted by many sediment
fingerprinting studies, in which
a direct connection between
sources and downstream
sediment is often assumed. In
reality there may be important
processes between upstream
sources and downstream
sediment collection which could
influence the behaviour of
fingerprint properties, thereby
compromising their effective-
ness or negating their use
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as fish and macro-invertebrates, influence the environ-
ment in which they live (De Vries 2011). Good examples
of this include work on the role of salmonids on
disturbing channel bed sediment to make redds (nests).
Much of this work has focused on the Pacific coast of
North America, where salmon returns from the Pacific
Ocean to natal streams and rivers are of epic proportions.
In British Columbia, ca. 30 million sockeye salmon
returned to the Fraser River alone in 2010. Such
migrations represent one of the few significant natural,
upstream movements of biomass and nutrients in river
systems. Rex and Petticrew (2008) and Petticrew and
Albers (2010) have demonstrated how organic material
derived from rotting salmon interact with fine-grained
sediment—much of which is derived by suspension from
the channel bed during redd construction by the
salmon—to create composite particles or flocs. These
flocs, which are larger and heavier than ambient
suspended sediment, settle onto the channel bed, thereby
enabling important marine-derived nutrients to be
retained within the channel environment in headwater
streams, as opposed to being flushed downstream.
Similarly, Hassan et al. (2008) have shown how spawning
salmon are important in terms of bedload transport and in
modifying the channel morphology through the construc-
tion of redds. Such work clearly shows how aquatic
organisms regulate their environment so as to maintain
optimum (physical and chemical) habitats.

4.5 Sediment management

There has been an increase in the amount of science to address
management issues (Petticrew 2009). In many respects this
comes from shifts in the needs of national and international
funding bodies, which are often driven by concerns associ-
ated with financial accountability (from the tax payer) and by
the need to address real and present environmental concerns
(from local and national governments). While there use to
be a difference between “applied” research (usually funded
by industry and government) and “blue-sky” research
(usually funded by national research councils), the distinction
is now less clear and the latter is often driven by the
requirements of governments and industry. While this
inevitably has some drawbacks, there are many positive
aspects (e.g. increased outreach and engagement with the
public) and opportunities (e.g. collaboration with colleagues
from other disciplines, such as the social and health sciences).

4.5.1 Using sediment archives to inform management
decisions

It is well known that changes in land use and land
management, and river use and management influence

sediment and associated contaminant dynamics within
aquatic systems (Walling and Fang 2003; Owens 2005b;
Förstner and Owens 2007). What is less clear is the
magnitude of such changes, and how such changes may
be manifest in the future. In many situations, the instru-
mental record provided by monitoring networks is often of
insufficient length to answer such questions. In this context,
the record contained within sedimentary environments
contains much promise, both from a scientific and a
policy-development perspective. Sedimentary records
contained within floodplain, reservoir, lake and salt marsh
environments, among others, can be used to provide
information on: (a) “background” conditions (i.e. fluxes
and concentrations) prior to a disturbance (e.g. land use
change, climate change, river dredging activities); (b) the
magnitude and rate of response to this disturbance; and (c)
the likely trajectory into the future given anticipated
conditions (e.g. Owens and Walling 2003; Walling et al.
2003; Bindler et al. 2011). A good example of how this can
be used to inform policy is provided by Foster et al. (2011)
who show how lake and reservoir sediments can be used to
reconstruct sediment yields and thereby identify the likely
reduction required to return to background (or desirable)
levels (Fig. 3). Further research is needed to identify
“background” conditions (Bindler et al. 2011) and to
improve the temporal resolution available from such
archives.

4.5.2 Buffering features to regulate sediment and associated
chemical fluxes

Another growth area of research, that has been driven by a
management perspective, is the role of natural (e.g.
wetlands, floodplains, riparian forests) and artificial (e.g.
constructed riparian vegetative strips) buffering features in
the landscape to regulate material fluxes (e.g. water,
sediment and chemicals). Such features have typically been
used to regulate flows between hillslopes and river

Fig. 3 The concept of using paleolimnological reconstruction of
sediment and contaminant dynamics within river basins and other
aquatic systems to inform management and policy decision-making
(modified from Foster et al. 2011)
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channels, often with the aim of trying to improve surface
water quality. Many studies (e.g. Owens et al. 2007;
Clinton 2011) have investigated the efficiency and design
of buffer zones. While such features are no doubt useful,
in many situations they may not be in optimal locations or
of suitable design (e.g. Dosskey et al. 2011). Much
guidance on buffer design and location has been based
on research undertaken in temperate environments, such
as the UK and USA. Such guidance may not be entirely
appropriate in contrasting environments, such as those that
have peak surface flows (during annual periods of
snowmelt) over frozen soils and when vegetation cover
is minimal (e.g. Steward et al. 2011). Further research is
required to evaluate buffer features in such contrasting
conditions. In addition, much of the research has focused
on relatively small sections of the landscape, such as river
reaches, and the effectiveness in reducing sediment loads
at larger spatial scales has been questioned (e.g.
Verstraeten et al. 2006). Thus, research is needed to assess
the role of buffer features at the larger scale, such as the
landscape and river basin scales. This may require a
combination of field testing and spatial extrapolation
techniques, such as modeling and GIS (e.g. Moriasi et al.
2011). Finally, we lack a good understanding of the
resilience of such features to environmental disturbances
(e.g. large-scale forest harvesting and mining) and to
future environmental changes (e.g. anticipated changes in
precipitation and land cover); we are planning for the
present situation, rather than thinking of what might be
needed in the near future.

4.5.3 Decision support frameworks

Ultimately, the management of natural resources (i.e. water,
soil, sediment) comes down to making decisions, often
underpinned by a good understanding of the main processes
involved. As such, there has been a considerable amount of
work on designing appropriate decision support frame-
works to aid with decision making. Such frameworks have
used different approaches, including conceptual (White and
Apitz 2008; Granger et al. 2010), risk-based (Apitz 2008a)
and adaptive (Apitz 2008b; Owens 2009) structures,
among others. These all have various advantages and
disadvantages. A current trend seems to be for more
ecosystem services-based approaches (e.g. Apitz 2011).
Frameworks which are inclusive, more realistic, and
wholistic are likely to offer consider promise, especially
if they are transparent for all to see the mechanisms and
principles behind them. Challenges still remain in trans-
lating such frameworks into products that are usable by
managers and policy-makers. This requires dialogue and
understanding, and the ability to embrace new ideas and
approaches.

5 Conclusion

This article has identified some of the main areas of current
research and has illustrated areas where further research is
needed. Much of this recent progress has come about
because of a shift towards more collaborative, and intra-
and inter-disciplinary research; something at the heart of the
Journal of Soils and Sediments. The review above is far
from complete, maybe only touching the tip of the iceberg.
We hope, however, that it will encourage researchers to
think carefully about what is needed in order to make real
progress in our understanding of soils and sediments within
landscapes, and ultimately how we can protect them and the
ecosystems in which they reside, particularly in the context
of climate change, which is expected to intensify with
significant impacts on both soils and sediments in the
coming decades.
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