Skip to main content
Log in

An ecoprofile of thermoplastic protein derived from blood meal Part 2: thermoplastic processing

  • LCA FOR RENEWABLE RESOURCES
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this research was to develop a nonrenewable energy and greenhouse gas emissions ecoprofile of thermoplastic protein derived from blood meal (Novatein thermoplastic protein; NTP). This was intended for comparison with other bioplastics as well as identification of hot spots in its cradle-to-gate production. In Part 1 of this study, the effect of allocation on the blood meal used as a raw material was discussed. The objective of Part 2 was to assess the ecoprofile of the thermoplastic conversion process and to compare the cradle-to-gate portion of the polymer's life cycle to other bioplastics.

Methods

Inventory was collected to aggregate nonrenewable primary energy use and greenhouse gas emissions. Data were collected from a variety of sources including published papers, reports to government agencies, engineering models and information from a single blood meal production facility. Several assumptions regarding the thermoplastic conversion process were evaluated by way of a sensitivity analysis.

Results

The allocation procedure chosen for the impacts of farming and meat processing had the greatest effect on results. Excluding farming and meat processing, blood drying had the greatest contribution to nonrenewable energy use and GHGs, followed by the petrochemical plasticizer used. Other assumptions, such as scarcity of water or inclusion of pigments, although significant when considered for blood meal conversion to NTP alone, were found not to be significant when production of blood meal was included in the analysis. Qualitative differences were observed between NTP and other bioplastics. For example, the profiles of some other bio-based polymers were dominated by fermentation and polymer recovery processes. In the case of NTP, it is the production of the raw material used that is most significant, and thermoplastic modification has a relatively low contribution to GHGs and nonrenewable energy use.

Conclusions

For a truly attributional scenario, production of any ruminant animal products does have an associated GHG. Deriving this for blood meal on a mass-based allocation seems to indicate that NTP is less favorable than other cradle-to-gate bioplastic production systems from a global warming perspective.

On the other hand, the motivation for developing the material in the first place was to make use of an existing waste product. If it is assumed that the magnitude of blood meal production is independent of fertilizer or plastics demand and, instead, reflects demand for major products such as meat, further development of NTP is justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyama M, Tsuge T, Doi Y (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym Degrad Stab 80:183–194

    Article  CAS  Google Scholar 

  • Alcorn A, Wood P (1998) New Zealand building materials embodied energy coefficients database. Volume II—coefficients. ISSN 1172-563X, ISBN 0-475-50017-2, Centre for Building Performance Research, Victoria University of Wellington, Wellington

  • Barber A (2009) NZ fuel and electricity—total primary energy use, carbon dioxide and GHG emission factors, AgriLINK NZ Ltd (The AgriBusiness Group) http://agrilink.co.nz/

  • Barber A, Campbell A, Hennessy W (2007) Primary energy and net greenhouse gas emissions from biodiesel made from New Zealand Tallow—CRL Energy Report 06-11547b. CRL Energy Report 06-11547b, Report to Energy Efficiency and Conservation Authority (EECA). Prepared by CRL Energy Ltd, Lower Hutt

  • Bier J (2010) The eco-profile of thermoplastic protein derived from blood meal, by Jim Bier., The University of Waikato, Te Whare Wananga o Waikato Hamilton, xi, pp 150

  • British Standards Institution (2008) PAS 2050:2008 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution, London

    Google Scholar 

  • Capello C, Wernet G, Sutter J, Hellweg S, Hungerbühler K (2009) A comprehensive environmental assessment of petrochemical solvent production. Int J Life Cycle Assess 14:467–479

    Article  CAS  Google Scholar 

  • European Commission (2007) Reference document on best available techniques for the manufacture of large volume inorganic chemicals—solids and others industry, European Commission Joint Research Centre (DG JRC) Institute for Prospective Technological Studies

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerngross TU (1999) Can biotechnology move us toward a sustainable society? Nat Biotechnol 17:541–544

    Article  CAS  Google Scholar 

  • Hischier R, Hellweg S, Capello C, Primas A (2005) Establishing life cycle inventories of chemicals based on differing data availability (9 pp). Int J Life Cycle Assess 10:59–67

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks AJ, van de Meent D, Ragas AMJ, Reijnders L, Struijs J (2005) Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol 40:641

    Article  Google Scholar 

  • Jiménez-González C, Kim S, Overcash M (2000) Methodology for developing gate-to-gate Life cycle inventory information. Int J Life Cycle Assess 5:153–159

    Article  Google Scholar 

  • Kim S, Dale B (2005) Life cycle assessment study of biopolymers (polyhydroxyalkanoates)—derived from no-tilled corn. Int J Life Cycle Assess 10:200–210

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2008) Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective. Environ Sci Technol 42:7690–7695

    Article  CAS  Google Scholar 

  • Kim S, Overcash M (2003) Energy in chemical manufacturing processes: gate-to-gate information for life cycle assessment. J Chem Technol Biotechnol 78:995–1005

    Article  CAS  Google Scholar 

  • Madival S, Auras R, Singh SP, Narayan R (2009) Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J Clean Prod 17:1183–1194

    Article  CAS  Google Scholar 

  • Ministry of Economic Development (2009) New Zealand energy data file 09 2008 calendar year edition. In: Dang H et al (eds) New Zealand energy data file. Ministry of Economic Development, Wellington, p 168

    Google Scholar 

  • Patel M (2003a) Do biopolymers fulfil our expectations? In: Chiellini E, Solaro R (eds) Biodegradable polymers and plastics. Kluwer Academic/Plenum, Dordrecht, pp 83–102

    Chapter  Google Scholar 

  • Patel M (2003b) Cumulative energy demand (CED) and cumulative CO2 emissions for products of the organic chemical industry. Energy 28:721–740

    Article  CAS  Google Scholar 

  • Patel M (2005) Environmental life cycle comparisons of biodegradable plastics. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology, Shrewsbury, pp 431–484

    Google Scholar 

  • Patel MK, Theiß A, Worrell E (1999) Surfactant production and use in Germany: resource requirements and CO2 emissions. Resour Conserv Recycl 25:61–78

    Article  Google Scholar 

  • Pietrini M, Roes L, Patel MK, Chiellini E (2007) Comparative life cycle studies on poly(3-hydroxybutyrate)-based composites as potential replacement for conventional petrochemical plastics. Biomacromolecules 8:2210–2218

    Article  CAS  Google Scholar 

  • PlasticsEurope (2008) Linear low density polyethylene (LDPE), PlasticsEurope

  • Reck E, Richards M (1999) TiO manufacture and life cycle analysis. Pigment Resin Technol 28:149–157

    Article  CAS  Google Scholar 

  • Rudnik E (2008) Compostable polymer materials, xiith edn. Elsevier, Amsterdam, p 211

    Google Scholar 

  • Smits R, Riley J, Jager C (2008) Commercial feasibility study: proteinous bioplastic. In: Verbeek J (eds) Novatein Ltd, Hamilton, pp 135

  • Stokes JR, Horvath A (2009) Energy and air emission effects of water supply. Environ Sci Technol 43:2680–2687

    Article  CAS  Google Scholar 

  • Verbeek CJR, van den Berg LE (2010) Extrusion processing and properties of protein-based thermoplastics. Macromol Mater Eng 295:10–21

    Article  CAS  Google Scholar 

  • Verbeek CJR, van den Berg LE (2011) Mechanical properties and water absorption of thermoplastic blood meal. Macromol Mater Eng 296(6):524–534

    Article  CAS  Google Scholar 

  • Verbeek CJR, Viljoen C, Pickering KL, van den Berg LE (2007) NZ551531: Plastics material. In: IPONZ (ed) Waikatolink Limited, New Zealand

  • Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks(TM) polylactide (PLA) production. Polym Degrad Stab 80:403–419

    Article  CAS  Google Scholar 

  • Vink ETH, Glassner DA, Kolstad JJ, Wooley RJ, O'Connor RP (2007) Original research: the eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Ind Biotechnol 3:58–81

    Article  CAS  Google Scholar 

  • Wells CM (2001) Total energy indicators of agricultural sustainability: dairy farming case study. ISBN: 0-478-07968-0 ISSN: 1171–4662, Report to MAF Policy, Department of Physics, University of Otago

Download references

Acknowledgements

The authors would like to acknowledge the support of the University of Waikato, Novatein Ltd. and the C Alma. Baker Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casparus J. R. Verbeek.

Additional information

Responsible editor: Andreas Ciroth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bier, J.M., Verbeek, C.J.R. & Lay, M.C. An ecoprofile of thermoplastic protein derived from blood meal Part 2: thermoplastic processing. Int J Life Cycle Assess 17, 314–324 (2012). https://doi.org/10.1007/s11367-011-0355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-011-0355-x

Keywords

Navigation